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Medial modes and retangular algebrasAnna Zamojska-DzienioAbstrat. Medial modes, a natural generalization of normal bands, were investigated byP lonka. Retangular algebras, a generalization of retangular bands (diagonal modes)were investigated by P�oshel and Reihel. In this paper we show that eah medialmode embeds as a subredut into a semimodule over a ertain ring, and that a similartheorem holds for eah Lallement sum of anellative modes over a medial mode. Similarresults are obtained for retangular algebras. The paper generalizes earlier results ofA. Romanowska, J.D.H. Smith and A. Zamojska-Dzienio.Keywords: modes (idempotent and entropi algebras), anellative modes, sums of alge-bras, embeddings, semimodules over semirings, idempotent subreduts of semimodulesClassi�ation: Primary: 08A05; Seondary: 03C05, 08C151. IntrodutionAlgebras alled modes are investigated in the two monographs [9℄ and [11℄,where also further referenes an be found. They originated as a ommon ge-neralization of aÆne spaes, onvex sets and semilatties. In this paper, we areinterested in the problem of embedding modes as subreduts into semimodules.One of the most eÆient ways of desribing the struture of an algebra is to em-bed it into another one, usually with a better known and riher struture. Suhmethod appears to be quite suessful in investigating the struture of modes.It is known that modes in many lasses may be haraterized as subreduts ofsemimodules over ommutative semirings. By results of Je�zek and Kepka provedin [1℄ one an dedue that eah binary mode has this property. A similar resultfor so-alled semilattie modes was obtained by Kearnes in [2℄. In [12℄ A. Ro-manowska raised a question whether all modes are subreduts of semimodulesover ommutative semirings. Quite reently M. Stronkowski and D. Stanovsk�yonstruted negative examples but a general haraterization of lasses of modesembeddable into semimodules is still unlear. The paper ontinues earlier inves-tigations on the subjet onduted among others in the papers [10℄, [14℄ and [15℄,and in the dotoral dissertation [16℄.The paper was written within the framework of INTAS projet no. 03 51 4110, \Universalalgebra and lattie theory".



22 A. Zamojska-DzienioIn [14℄, one introdued a ertain speial method of embedding semilattie sumsof anellative modes as subreduts into P lonka sums of aÆne spaes. As a orol-lary, one obtains an embedding of suh semilattie sums into semimodules. A teh-nique of embedding developed there is based on two fats: anellative modesembed into appropriate modules (see Romanowska and Smith [10℄), and then:a P lonka sum of modules over a ertain ring is a semimodule over the same ring.It was shown that eah so-alled semilattie Lallement sum of anellative modesembeds as a subredut into a P lonka sum of ertain aÆne spaes, and hene intoa P lonka sum of the orresponding modules. Consequently, it embeds into a semi-module. We still do not know how far the assumptions of this method an berelaxed.In [15℄, the above result was extended to the ase of Lallement sums of an-ellative modes over semigroup modes (i.e. normal bands). They also embed assubreduts into semimodules over ertain rings. The proof involved ertain newproperties of funtorial sums of algebras, and was done also by showing that theabove mentioned Lallement sums are subalgebras of reduts of P lonka sums ofmodules.In this paper we onsider so-alled medial modes, a ertain generalization ofnormal bands, investigated by P lonka [6℄, and retangular algebras, a generali-zation of retangular bands (diagonal modes), investigated by P�oshel and Rei-hel [8℄, and also Lallement sums of anellative modes over suh algebras. Weshow that all suh modes also embed into semimodules over some rings.The paper is organized as follows. In Setion 2, we reall basi de�nitionsand results onerning modes, medial modes and retangular algebras. Setion 3provides a brief survey of what we need about algebrai quasi-orders and sumsof algebras. The main results onerning retangular algebras and medial modesare proved in Setions 4 and 5. The last setion provides results for Lallementsums of anellative modes over medial modes and retangular algebras.The terminology and the notation of the paper is basially as in the books[9℄ and [11℄. We refer the reader to those books for any otherwise unde�nednotions and further results. In partiular, we use reverse Polish notation, i.e.terms (words) and operations are denoted by x1 . . . xnf instead of f(x1, . . . , xn)with the exeption of traditional binary operations. It allows us to avoid writingtoo many brakets and makes formulas easier to read. The set of 
-terms over Xis denoted by X
, the symbol x1 . . . xnw means that x1, . . . , xn are exatly thevariables of w.2. Medial modes and retangular algebrasAn algebra (A,
) of type τ : 
 −→ Z
+ is alled a mode if it is idempotentand entropi, i.e. eah singleton in A is a subalgebra and eah operation ω ∈ 
is atually a homomorphism from an appropriate power of the algebra. Bothproperties an also be expressed by the following identities:



Medial modes and retangular algebras 23(I) ∀ω ∈ 
, x . . . xω = x(E) ∀ω, ϕ ∈ 
, with m-ary ω and n-ary ϕ,(x11 . . . x1mω) . . . (xn1 . . . xnmω)ϕ = (x11 . . . xn1ϕ) . . . (x1m . . . xnmϕ)ω,satis�ed in the algebra (A,
). A mode (A,
) is anellative if for eah(n-ary) ω in 
, the algebra (A,
) satis�es the anellation law(a1 . . . ai−1 xi ai+1 . . . anω = a1 . . . ai−1 yi ai+1 . . . anω) −→ (xi = yi)for eah i = 1, . . . , n.Let Mτ be the variety of all modes of a given type τ : 
 → (N−{0, 1}). Thenthe quotient ring
R(Mτ) = Z[{Xωi | ω ∈ 
, 1 ≤ i ≤ ωτ}℄/〈1 −

ωτ∑

i=1Xωi | ω ∈ 
〉is alled the aÆnization ring for the variety Mτ . For ω ∈ τ−1(n), the orre-sponding operation on an aÆne spae over R(Mτ) is
x1 . . . xnω = n∑

i=1 xiXωifor the indeterminates Xω1, . . . , Xωn pertaining to ω. The 
-reduts of the aÆne
R(Mτ)-spaes are in the variety Mτ . Note that the ring R(Mτ) is independentof the partiular mode being embedded. It is the most general ring whih an beused to embed all embeddable modes of the variety Mτ into orresponding aÆnespaes.For anellative modes the aÆne spaes over the ring R(Mτ) play an essentialrole, sine we have the followingTheorem 2.1 ([10℄, [11, Setion 7.7℄). Eah anellative mode (C,
) of a �xedtype τ : 
 → Z

+ embeds as an 
-subredut into an aÆne spae (G,P,R(Mτ))over the ring R(Mτ).In this paper we also onsider Lallement sums of anellative modes over medialmodes and over retangular algebras. (See Setion 3.)De�nition 2.2 ([6℄). An algebra (A, f) with one n-ary basi operation is alledmedial , if it satis�es the following identities:
x11 . . . x1nf . . . xn1 . . . xnnff = xi1j1 . . . xi1jnf . . . xinj1 . . . xinjnff



24 A. Zamojska-Dzieniofor every permutation {(i1, j1), (i1, j2), . . . , (in, jn−1), (in, jn)} of the set
{(1, 1), (1, 2), . . . , (n, n−1), (n, n)} suh that (ir, jr) = (r, r) for r = 1, . . . , n, and(y1x2 . . . xnf)y2 . . . ynf = y1(x2y2x3 . . . xnf)y3 . . . ynf= . . . = y1 . . . yn−1(x2x3 . . . xnynf)f.Note that in the ase n = 2, the �rst identity oinides with the entropiity andthe latter one redues to the assoiativity. Note also that idempotent medialalgebras are modes. They are sometimes alled medial modes ([7℄). For n = 2medial modes are just normal bands. If we onsider a redut of normal band (A, ·)with one n-ary operation f (for n ≥ 2) de�ned as follows:

x1x2 . . . xnf = x1 · x2 · . . . · xn,then the mode (A, f) (alled normal {f}-band) is also a medial mode.Medial modes are haraterized by means of two other types of algebras.De�nition 2.3 ([4℄). An idempotent algebra (A, d) with an n-ary operation d isalled an n-dimensional diagonal algebra if it satis�es the diagonal identity
x11 . . . x1nd . . . xn1 . . . xnndd = x11 . . . xnnd.For n = 2, diagonal algebras are preisely retangular bands. Evidently diagonalalgebras are modes.De�nition 2.4 ([5℄). An algebra (A, r) with an n-ary operation r is alled an rn-algebra if (A, r) is the redut of an abelian group (A,+,−, 0) satisfying (n−1)x = 0under the operation x1 . . . xnr = x1 + · · · + xn.Note that eah rn-algebra (A, r) is a anellative mode.Theorem 2.5 ([6℄). An algebra (A, f) with one n-ary basi operation is a medialmode if and only if it is a P lonka sum of algebras, eah of them being the diretprodut of one n-dimensional diagonal algebra and one rn-algebra.Diagonal algebras are haraterized by the following proposition.Proposition 2.6 ([11, Setion 5.2℄). Eah n-ary diagonal mode (A, d) is a diretprodut of n projetion subalgebras (Ai, d) satisfying the identity

x1 . . . xi . . . xnd = xi.For n = 2 Proposition 2.6 redues to well known fat that eah retangular bandis a diret produt of a left-zero semigroup and a right-zero semigroup.A further generalization of diagonal modes was onsidered by P�oshel andReihel in [8℄ under the name of retangular algebras. A mode (A,
) of any�nite type τ : 
 → Z
+ is alled a retangular algebra if eah operation ω in 
satis�es the diagonal identity. A projetion algebra is an algebra (B,
) for whihevery operation ω ∈ 
 is a projetion.



Medial modes and retangular algebras 25Theorem 2.7 ([8, Deomposition Theorem℄). Eah retangular algebra (A,
)is isomorphi to a �nite diret produt of projetion algebras.Denote by Re the variety of retangular algebras of a �nite type, where 
 =
{f1, . . . , fn} for n ≥ 1, and let N = f1τ · f2τ · . . . · fnτ .Theorem 2.8 ([8, Corollary 2.9℄). Up to isomorphism there are exatly N subdi-retly irreduible algebras in the varietyRe. ConsequentlyRe has 2N subvarieties.3. Algebrai quasi-orders and sums of algebrasIn [13℄ it was shown that eah algebra (A,
) having a homomorphism h ontoan idempotent, naturally quasi-ordered algebra (I,
) an be reonstruted asso-alled (generalized oherent) Lallement sum of the orresponding �bres h−1(i)for i ∈ I over (I,
). This onstrution generalizes the funtorial (Agassiz) sumof algebras. We refer the reader to [11, Chapter 4℄ and [13℄, as well as to thepaper [15℄, for de�nitions of various types of sums of algebras and their properties.Let (I,
) be an algebra of type τ : 
 → N. The algebrai quasi-order of thealgebra (I,
) is the quasi-order � de�ned on the set I as follows:

� := {(i, j) | ∃ x1 . . . xnt ∈ X
 and ∃ i1, . . . , ik−1, ik+1, . . . , in ∈ Isuh that j = i1 . . . ik−1iik+1 . . . int}.(See e.g. [13℄ and [11, Chapter 4℄.) If additionally the algebra (I,
) satis�es theondition: if ai � bi, then a1 . . . aωτω � b1 . . . bωτ ωfor all ω in 
 and a1, . . . , aωτ , b1, . . . , bωτ in I, then we say that it is naturallyquasi-ordered . If � = I × I, then the algebra (I,
) has a full algebrai quasi-order. All idempotent (strongly) irregular algebras have full algebrai quasi-orderand are naturally quasi-ordered. Note also that if (I,
) is an 
-semilattie i.e.an 
-redut of a semilattie, then the algebrai quasi-order � of (I,
) oinideswith the semilattie order ≤ de�ned by x ≤ y i� xy = x.In the ase of idempotent algebras, one an reognize whether they are natu-rally quasi-ordered also in a di�erent way. On a quasi-ordered set (I,�) de�ne arelation α as follows (x, y) ∈ α :⇔ x � y and y � x.It is well known that α is an equivalene relation, and that the relation xα ≤ yαi� x � y is an ordering relation. Moreover the following holds.Proposition 3.1 ([13℄, [11, Proposition 4.1.7.℄). An idempotent algebra (I,
) isnaturally quasi-ordered i� the relation α is a ongruene on (I,
) and (Iα,
) isan 
-semilattie.



26 A. Zamojska-DzienioCorollary 3.2 ([13, Examples 2.4, 2.5℄). The P lonka sum of algebras with fullalgebrai quasi-orders is naturally quasi-ordered.We are espeially interested in Lallement sums embeddable into funtorialsums. We will denote a Lallement sum of algebras (Bi,
) over an idempotentnaturally quasi-ordered algebra (I,
) by Li∈I(Bi,
) and a funtorial sum (B,
)of (Bi,
) over (I,
) by (B,
) = ∑
i∈I (Bi,
), similarly as in [15℄.Theorem 3.3 ([13℄, [11, Theorem 7.4.2℄). Let a mode (B,
) be a Lallement sumof anellative modes (Bi,
) over a naturally quasi-ordered mode (I,
). Then(B,
) is a subalgebra of a funtorial sum (E,
) of anellative envelopes (Ei,
)of (Bi,
) over (I,
) (B,
) = Li∈I(Bi,
) ≤ ∑

i∈I

(Ei,
).The anellative envelopes (Ei,
) are extensions of anellative modes (Bi,
)built in a ertain anonial way. (See [11, Setion 7.4℄.)In [14℄ the above result was used together with Theorem 2.1 to prove thefollowingTheorem 3.4 ([14℄). Let a mode (B,
) be a semilattie sum of anellativemodes (Bi,
) over a semilattie (I,
). Then (B,
) is a subredut of a P lonkasum of aÆne R(Mτ)-spaes.Corollary 3.5 ([14℄). Let a mode (B,
) be a semilattie sum of anellativemodes. Then (B,
) embeds as a subredut into a semimodule over a ring.Note that a diret produt of an algebra (A,
) and an idempotent algebra(I,
) an always be onsidered as a funtorial sum of isomorphi 
-algebras
Ai = A × {i}, for i ∈ I, over the algebra I. On the other hand, assume thatin a funtorial sum ∑

i∈I (Ai,
) the indexing algebra (I,
) has a full algebraiquasi-order. Then for any two i, j in I, the summands (Ai,
) and (Aj ,
) areisomorphi, and the funtorial sum is isomorphi to the diret produt of (Ai,
)and (I,
), i.e.(3.5.1) (A,
) = ∑

i∈I

(Ai,
) ∼= (Ai,
) × (I,
).(See [3℄.)The funtorial sums has a speial property whih resembles \assoiativity".Theorem 3.6 ([15℄). Let (E,
) be a funtorial sum of algebras (En,
) over analgebra (N,
). Let (N,
) be a funtorial sum of algebras (Ns,
) over an algebra



Medial modes and retangular algebras 27(S,
). Then (E,
) is a funtorial sum of algebras (Bs,
) over the algebra (S,
),where (Bs,
) is a funtorial sum of (En,
) over (Ns,
). Briey:(3.6.1) ∑ (En | n ∈
∑

s∈S

Ns) = ∑

s∈S

(∑ (En | n ∈ Ns)).4. Embedding retangular algebras into modulesLet Re be a variety of retangular algebras of a given (�nite) type, where
 = {f1, . . . , fn} with n ≥ 1, and N = f1τ · f2τ · · · · · fnτ . By Corollary 2.8,
Re has N subvarieties of projetion algebras. In fat, the sets of operations ofalgebras in eah of these subvarieties di�er only by the ombination of projetions,i.e. 
 = {fik | i = 1, . . . , n, k = 1, . . . , fiτ} with eah operation de�ned as follows

fik : Afiτ −→ A; (
a1, . . . , afiτ

)
7−→ ak.Obviously, for eah k, we have fikτ = fiτ . We denote by Pj1j2...jn , where ji ∈

{1, . . . , fiτ}, the variety of projetion algebras with the set of operations {fiji |
i = 1, . . . n}, i.e. i-th operation is the projetion on the ji oordinate.We start with onstruting the aÆnization rings (see Setion 2) for the varietyof retangular algebras and for its subvarieties of projetion algebras.Lemma 4.1. The following rings are the aÆnization rings for the varieties
Pj1j2...jn and Re:

R(Pj1j2...jn) = Z
[
X11, . . . , X1f1τ , . . . , Xn1, . . . , Xnfnτ

]
/

〈Xi1, . . . , 1 −Xiji , . . . , Xifiτ , 1 −

fiτ∑

j=1Xij | i = 1, . . . , n〉,
R(Re) = Z

[
X11, . . . , X1f1τ , . . . , Xn1, . . . , Xnfnτ

]
/

〈XijXik, Xij(1 −Xij), 1 −

fiτ∑

j=1Xij | i = 1, . . . , n, j, k = 1, . . . , fiτ, j 6= k〉.Proof: The rings are alulated as follows. First onsider the variety Pj1j2...jn ofprojetion algebras with ji-th projetions as the basi operations fiji . Note thatwe an equate oeÆients in eah projetion identity separately, so to simplifyalulations assume that we onsider i-th operation whih is a projetion on j-thoordinate. Let Xik, for k = 1, . . . , fiτ be the indeterminates pertaining to theoperations fij . Equating oeÆients in
x1Xi1 + x2Xi2 + · · · + xfiτXifiτ = x1x2 . . . xfiτfij = xj



28 A. Zamojska-Dzienioshows that xjXij = xj and xkXik = 0 for k 6= j and k = 1, . . . , fiτ . Byidempoteny ∑fiτ
k=1Xik = 1. Whene the ring R(Pj1j2...jn) is a quotient of

Z
[
X11, . . . , X1f1τ , . . . , Xn1, . . . , Xnfnτ

]
/

〈Xi1, . . . , 1 −Xiji , . . . , Xifiτ , 1 −

fiτ∑

j=1Xij | i = 1, . . . , n〉.Conversely, taking an aÆne spae over the ring R(Pj1j2...jn) for ji ∈
{1, . . . , fiτ}, we obtain a projetion algebra in Pj1j2...jn under the operations

x1 . . . xωijτωij := x1Xi1 + · · · + xωijτXi(ωijτ) = xj .It follows that R(Pj1j2...jn) = Z
[
X11, . . . , X1f1τ , . . . , Xn1, . . . , Xnfnτ

]
/

〈Xi1, . . . , 1 −Xiji , . . . , Xifiτ , 1 −
∑fiτ
j=1Xij | i = 1, . . . , n〉.Now onsider the variety Re of retangular algebras. The indeterminates arede�ned as before. Again, we an equate oeÆients in diagonal identity for eahoperation separately. We obtain that xjjX2

ij = xjjXij and xjkXijXik = 0 for
k 6= j. Then the ring R(Re) is a quotient of

Z
[
X11, . . . , X1f1τ , . . . , Xn1, . . . , Xnfnτ

]
/

〈XijXik, Xij(1 −Xij), 1 −

fiτ∑

j=1Xij | i = 1, . . . , n, j, k = 1, . . . , fiτ, j 6= k〉.Similarly as in the ase of projetion algebras one shows that eah aÆne spaeover the ring R(Re) is a retangular algebra. As the orresponding operation ωione takes the same operation as for projetion algebras. �Lemma 4.2. Eah retangular algebra (R,
) embeds as a subredut into a mo-dule over the ring R(Re).Proof: By Theorem 2.7, (R,
) = ∏N
s=1(Ps,
) where eah (Pj ,
) is a projetionalgebra. Sine the struture of projetion algebras is very simple we an onsidereah Ps as the set of free generators of a free module M(Ps) over the appropriateaÆnization ring R(Pj1j2...jn) (as well as over the ring R(Re)). In this way oneobtains embedding of the retangular algebra R into the R(Re)-module M(R) :=∏N

s=1M(Ps). �Proposition 4.3. The P lonka sum of retangular algebras (Ri,
) over an 
-semilattie (I,
) embeds as a subredut into a semimodule over the ring R(Re).Proof: Let (Ri,
) = ∏N
s=1(Ps,i,
) for i ∈ I. Eah sum homomorphism fi,j :

Ri → Rj is uniquely determined by an N -tuple of funtions fsi,j : Ps,i → Ps,j



Medial modes and retangular algebras 29for s = 1, . . . , N . By universality property for free modules eah mapping fsi,jextends to a (uniquely de�ned) module homomorphism f
s
i,j : M(Ps,i) →M(Ps,j)suh that fsi,j |Ps,i

= fsi,j .Note that eah free module obtained in the proof of the previous lemma, underthe operations
x1 · · ·xfiτfi = fiτ∑

j=1xjXij ,for i = 1, · · · , n, is a retangular algebra, so Ri embeds into the retangularalgebra M(Ri).There exists a unique module homomorphism f i,j : M(Ri) →M(Rj), for i ≤ j,determined by the N -tuple fsi,j , uniquely extending the sum homomorphism fi,j .The homomorphisms f i,j are funtorial (i.e. f i,jfj,k = f i,k for all i ≤ j ≤ k in(I,
)) and determine a P lonka sum struture on the disjoint union of the modules
M(Ri), eah of them over the same ring R(Re). Now the P lonka sum of thesemodules is a semimodule over the ring R(Re). �Lemma 4.4. The aÆnization rings for the varieties of projetion algebras areisomorphi to the ring Z. The aÆnization ringR(Re) is isomorphi to the ring Z

N .Proof: We obtain these results by using the First Isomorphism Theorem forrings. For projetion algebras in the subvariety Pj1j2...jn de�ne the ring homo-morphism hj1j2...jn : Z
[
X11, . . . , X1f1τ , . . . , Xn1, . . . Xnfnτ

]
→ Z by sending apolynomial w onto its value in Xiji = 1 for i = 1, . . . , n and Xik = 0 for all

k 6= ji. Clearly, kerhj1j2...jn is the ideal from the de�nition of R(Pj1j2...jn) andthus R(Pj1j2...jn) is isomorphi to Z.For retangular algebras we de�ne the ring homomorphism
h : Z

[
X11, . . . , X1f1τ , . . . , Xn1, . . . Xnfnτ

]
→ Z

Nin suh a way that every polynomial w maps to the N -tuple of oeÆients
whj1j2...jn for all ombinations of ji ∈ {1, . . . , fiτ}. �Corollary 4.5. Eah retangular algebra (R,
) embeds as a subredut into amodule over the ring Z

N .Corollary 4.6. The P lonka sum of retangular algebras (Ri,
) over an 
-semilattie (I,
) embeds as a subredut into a semimodule over the ring Z
N .Retangular algebras with one n-ary operation are known as diagonal modes.The varieties of n-ary diagonal modes may be desribed similarly as the varietiesof retangular semigroup modes (see e.g. [11, Setion 5.2℄). First note that analgebra with one n-ary operation of i-th projetion is a diagonal algebra. Let Dn



30 A. Zamojska-Dzieniobe the variety of n-ary diagonal algebras, and let Pi be its subvariety of projetionalgebras with i-th projetion as the basi operation. By Theorem 2.8, the lattieof subvarieties of Dn is a Boolean lattie with the subvarieties Pi being its atoms.For this speial ase we obtain the followingCorollary 4.7. The following rings are the aÆnization rings for the varieties Piand Dn:
R(Pi) = Z [X1, . . . , Xn℄ /〈X1, . . . , Xi−1, 1 −Xi, Xi+1, . . . , Xn, 1 −

n∑

j=1Xj〉,for i = 1, . . . , n,
R(Dn) = Z [X1, . . . , Xn℄ /

〈XiXj , Xi(1 −Xi), 1 −

n∑

j=1Xj | i, j = 1, . . . , n, i 6= j〉.Corollary 4.8. For eah i = 1, . . . , n, the aÆnization ring R(Pi) is isomorphito the ring Z. The aÆnization ring R(Dn) is isomorphi to the ring Z
n.To prove this result we use the same method as in the proof of Lemma 4.4.However in the ase of one n-ary operation, the whole proedure is easier todesribe and provides a good example. Let h be the ring homomorphism of thepolynomial ring Z [X1, . . . , Xn℄ onto the ring Z de�ned as follows

wh := w(0, 0, . . . , 1, 0, . . .0)(with 1 on the i-th position, for i = 1, . . . , n), where
w = a0 + n∑

i=1 aiXi + n∑

i,j=1aijXiXj + n∑

i,j,k=1aijkXiXjXk + . . .and all oeÆients ai are integers. It means that wh = a0 + ai + aii + aiii + . . . .In the ase of diagonal algebras, the ring homomorphism g of the polynomialring Z [X1, . . . , Xn℄ onto the ring Z
n is de�ned as follows

wg : = (w(1, 0, . . . 0), . . . , w(0, . . . , 0, 1))= (a0 + a1 + a11 + a111 + . . . , . . . , a0 + an + ann + . . . ).Corollary 4.9. Eah n-ary diagonal mode (D, f) embeds as a subredut into amodule over the ring Z
n.



Medial modes and retangular algebras 31Corollary 4.10. The P lonka sum of n-ary diagonal algebras (Di, f) over the
{f}-semilattie (I, f) embeds as a subredut into a semimodule over the ring Z

n.The situation desribed in Corollary 4.10 refers preisely to medial modes de-�ned by ertain additional identity.Proposition 4.11 ([6℄). A medial mode (A, f) with n-ary operation f is theP lonka sum of diagonal algebras if and only if it satis�es the identity(x1 . . . xnf)x2 . . . xnf = x1 . . . xnf.5. Embedding medial modes into semimodulesReturn to the onept of rn-algebras. By de�nition, suh algebras are redutsof abelian groups in the variety de�ned by the identity (n− 1)x = 0. This varietyis equivalent to the variety of modules over the ring Zn−1. Note that modulesover Zn−1 an also be onsidered as modules over the ring Z or the ring Z
n.Example 5.1. It is known (see [5℄) that eah symmetri medial mode (A, f)is the P lonka sum of rn-algebras. Reall that a medial mode is symmetri if itsatis�es the additional identity

x1 . . . xnf = xi1 . . . xinf,for eah permutation {i1, . . . , in} of the set {1, . . . , n}. As a redut of a P lonkasum of modules, (A, f) is a redut of a semimodule over the ring Zn−1. In thisway we obtain another example of a lass of modes embeddable into semimodulesover a ring.In what follows we will show that eah medial mode embeds as a subredutinto a semimodule over the ring Z
n.Proposition 5.2. Let (M, f) be a medial mode. Then (M, f) embeds into asemimodule over the ring Z

n.Proof: By Theorem 2.5, M = ∑
i∈I(Di × Ri), where Di is a diagonal algebra,

Ri is an rn-algebra and I is an {f}-semilattie. Eah summand an be onsideredas a funtorial sum ∑
r∈Ri

Dr of pairwise isomorphi Dr = Di × {r}. Note thatif in Theorem 3.6 we �rst assume that the algebra E is equal to the right handside of the equality (3.6.1) instead of left one, then one an easily show, that theequality remains true, and the following holds
M = ∑

i∈I

(Di ×Ri) = ∑

i∈I

( ∑

r∈Ri

Dr) = ∑(Dr | r ∈ ∑

i∈I

Ri).It follows that there exist sum homomorphisms ψi,j : Ri → Rj for eah pair(i, j) with i � j and ϕr,s : Dr → Ds for eah pair (r, s) with r � s. (Note that



32 A. Zamojska-Dzieniofor r, s ∈ Ri ϕr,s is simply isomorphism.) Now the sum homomorphisms hi,j :∑
r∈Ri

Dr →
∑
s∈Rj

Ds an be de�ned as xhi,j := xϕr,rψi,j
for eah r ∈ Ri and

x ∈ Dr. By Corollary 4.9, eah diagonal algebraDi embeds as a subredut into themodule M(Di) over the ring Z
n. Similarly, eah rn-algebra Ri is a redut of themodule Ri over the same ring. It follows that their produt embeds as a subredutinto the Z

n-module M(Di) × Ri. Now we need to extend the homomorphisms
hi,j to funtorial module homomorphisms hi,j . Again, we onsider eah diretprodut M(Di) × Ri as a funtorial sum ∑

r∈Ri
M(Dr). Similarly, as in theproof of Proposition 4.3 eah homomorphism ϕr,s extends to a unique modulehomomorphism ϕr,s : M(Dr) →M(Ds) that satis�es the funtoriality ondition.Eah homomorphism of rn-algebras is also a module homomorphism. So takea (module) homomorphism xhi,j := xϕr,rψi,j

for eah r ∈ Ri and x ∈ M(Dr).Sine both homomorphisms ϕr,s and ψi,j are funtorial, so is hi,j . It follows that∑
i∈I(M(Di) × Ri) is a P lonka sum of modules over the ring Z

n and hene asemimodule over the same ring. And the medial mode (M, f) embeds into thissemimodule. �6. Lallement sums of anellative modes over medial modes and overretangular algebrasIn this setion we onsider an embedding of a Lallement sum of anellativemodes (Am, f) over a medial mode (M, f) as a subredut into a semimodule overthe ring R(Mτ) = Z
[
X1, . . . , Xfτ ] /〈1 −

∑fτ
i=1Xi〉 = Z

[
X1, . . . , Xfτ−1]. Firstwe will show that eah medial mode (M, f) is naturally quasi-ordered so it satis�esthe assumptions of Theorem 3.3. By Corollary 3.2 it is enough to show that eahsummand Mi = Di × Ri has the full algebrai quasi-order. Indeed, it is easy tohek that eah diagonal algebra (D, f) satis�es the identities

x = xx . . . xyfx . . . xf = x(xx . . . xyf)x . . . xf = . . . = x . . . x(x . . . yxf)f,and that eah rn-algebra (R, f) satis�es the identity
x = xy . . . yf.Now for any two elements (x1, y1) and (x2, y2) in Mi we have the following(x2, y2) = (x2(x2 . . . x2x1f)x2 . . . x2f, y2(y1 . . . y1f)y1 . . . y1f)= (x2, y2)(x2 . . . x2x1f, y1 . . . y1f)(x2, y1) . . . (x2, y1)f= (x2, y2)((x2, y1)(x2, y1) . . . (x2, y1)(x1, y1)f) . . . (x2, y1)f.This shows that (x1, y1) � (x2, y2). Hene � is a full algebrai quasi-order onthe summand Mi. It follows that eah medial mode (M, f) is naturally quasi-ordered. The ongruene α de�ned in Setion 3 provides the deomposition of(M, f) into algebras (Mi, f), and the quotient Mα is an {f}-semilattie. (SeeProposition 3.1.)



Medial modes and retangular algebras 33Proposition 6.1. Let (A, f) be a Lallement sum of anellative modes (Am, f)over a medial mode (M, f). Then (A, f) embeds as a subredut into a semimoduleover the ring Z
[
X1, . . . , Xfτ ] /〈1 −

∑fτ
i=1Xi〉.Proof: By Theorem 3.3, the algebra A is a subalgebra of a funtorial sum E ofanellative envelopes Em of Am over M with sum homomorphisms gm,n. Let

M = ∑
i∈IMi, where Mi = Di × Ri as de�ned above, with sum homomor-phisms hi,j . By Theorem 3.6 and the formula (3.5.1)

∑ (Em | m ∈
∑

i∈I

Mi) = ∑

i∈I

(Em ×Mi).By Theorem 2.1, eah algebra Em embeds as a subredut into an R(Mτ)-module
Gm. In this ase R(Mτ) = Z

[
X1, . . . , Xfτ ] /〈1−

∑fτ
i=1 Xi〉. Eah mode (Mi, f)embeds as a subredut into an Z

fτ -module M(Mi) = M(Di) × Ri whih anbe onsidered as an R(Mτ)-module sine Z
fτ is a homomorphi image of R(Mτ)(see Corollary 4.8). In this way one obtains an embedding of the algebra Em×Mias a subredut of the R(Mτ)-module Gm ×M(Mi). Eah homomorphism gm,n :

Em → En extends to a homomorphism gm,n : Gm → Gn and eah homomorphism
hi,j : Mi → Mj extends to a homomorphism hi,j : M(Mi) → M(Mj). And all
gm,n and hi,j are funtorial module homomorphisms. Now we onsider eahdiret produt Gm ×M(Mi) as a funtorial sum ∑

mi∈M(Mi)Gmi
, and for eah

mi ∈M(Mi) and x ∈ Gmi
we de�ne the mapping f i,j as xf i,j = xg

mi,mihi,j
. Themappings f i,j are module homomorphisms satisfying the funtoriality onditionso they de�ne the P lonka sum of R(Mτ)-modules Gm ×M(Mi) over the {f}-semilattie I. In this way we obtain the semimodule over the ring R(Mτ) andthe algebra A is its subredut. �Note that the variety Re is an idempotent irregular variety and hene the lassof P lonka sums of algebras in Re oinides with the regularization R̃e of Re. (SeeP lonka's Theorem in [7℄ or [11℄.) It follows also that eah retangular algebra hasa full algebrai quasi-order. As a result we obtain the followingProposition 6.2. Let (A,
) be a Lallement sum of anellative modes (Ar,
)over a retangular algebra (R,
). Then (A,
) embeds as a subredut into amodule over an appropriate ring R(Mτ).Proof: By Theorem 3.3 and the formula (3.5.1)

Lr∈R(Ar,
) ≤ ∑

r∈R

(Er ,
) ∼= (Er,
) × (R,
).By Corollary 4.5, (R,
) embeds as a subredut into a Z
N -module whih anbe onsidered as an R(Mτ)-module. Together with Theorem 2.1 it gives an
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