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Diret limit of matriially Riesz normed spaesJ.V. Ramani, Anil K. Karn, Sunil YadavAbstrat. In this paper, the F-Riesz norm for ordered F-bimodules is introdued andharaterized in terms of order theoreti and geometri onepts. Using this notion,

F-Riesz normed bimodules are introdued and haraterized as the indutive limits ofmatriially Riesz normed spaes.Keywords: Riesz norm, matriially Riesz normed spae, positively bounded, absolutely
F-onvex, F-Riesz normClassi�ation: Primary 46L071. IntrodutionE�ros and Ruan, as suggested by B.E. Johnson, initiated a study of normed F-bimodules as diret limits of matrix normed spaes [2℄. In [6℄ the authors studiedthe diret limit of matrix ordered spaes. Continuing this line, in this paper wedisuss the diret limits of matriially Riesz normed spaes (studied by [4℄, [5℄).As a onsequene we introdue the notion of F-Riesz normed bimodules.We reall the following notions disussed in [6℄ (see also [2℄).Matriial notions.Let V be a omplex vetor spae. Let Mn(V ) denote the set of all n×n matrieswith entries from V . For V = C, we denote Mn(C) by Mn. For α = [αij

]

∈ Mnand v = [vij
]

∈ Mn(V ) we de�ne
αv =  n

∑

j=1αijvjk



 , vα =  n
∑

j=1 vijαjk



 .Then Mn (V ) is a Mn-bimodule for all n ∈ N. In partiular Mn(V ) is a omplexvetor spae for all n ∈ N. For v ∈ Mn(V ), w ∈ Mm(V ), we de�ne
v ⊕ w = [ v 00 w

]

∈ Mn+m(V ).Next, we onsider the family {Mn}. For eah n, m ∈ N de�ne σn,n+m : Mn −→
Mn+m by σn,n+m(α) = α⊕0m. Then σn,n+m is a vetor spae isomorphism with

σn,n+m(αβ) = σn,n+m(α)σn,n+m(β).



56 J.V.Ramani, A.K.Karn, S. YadavThus we may \identify" Mn in Mn+m as a subalgebra for every m ∈ N. Moregenerally, we may identify Mn in the set F of ∞×∞ omplex matries, havingentries zero after �rst n rows and �rst n olumns. Then F may be onsidered asthe diret or indutive limit of the family {Mn}. In this sense
F = ∞

⋃

n=1Mn.Let eij denote the ∞ × ∞ matrix with 1 at the (i, j)th entry and 0 elsewhere.Then the olletion {eij
} is alled the set of matrix units in F . We write 1n for

∑n
i=1 eii.For i, j, k, l ∈ N, we have eijekl = δjkeil. Note that for any α ∈ F , there existomplex numbers αij suh that

α =∑
i,j

αijeij (a �nite sum).Thus F is an algebra.For α = ∑

i,j αijeij ∈ F , we de�ne α∗ = ∑

i,j �αjieij ∈ F . Then α 7−→ α∗ isan involution. In other words, F is a ∗-algebra.De�nition 1.1. Let V be a omplex vetor spae. Consider the family {Mn(V )}.For eah n, m ∈ N, de�ne Tn,n+m : Mn(V ) −→ Mn+m(V ) by Tn,n+m(v) =
v ⊕ 0m, 0m ∈ Mm(V ). Then Tn,n+m is an injetive homomorphism. Let V bethe indutive limit of the direted family {Mn(V ), Tn,n+m

}. We shall all V thematriial indutive limit or diret limit of V .The matriial indutive limit of a omplex vetor spae V may be haraterizedin the following sense:Theorem 1.2. Let W be a non-degenerate F-bimodule. Put W = e11We11.Then W is a omplex vetor spae and W is its matriial indutive limit ([2℄).De�nition 1.3 (Matrix normed spae). Let V be a omplex vetor spae. Then
Mn(V ), the spae of n × n matries with entries from V , is an Mn-bimodule forall n ∈ N. A matrix norm on V is a sequene {‖·‖n} suh that ‖·‖n is a normon Mn(V ) for all n ∈ N. We say that (V, {‖·‖n}) is a matrix normed spae if
‖v ⊕ 0m‖n+m = ‖v‖n and ‖αvβ‖n ≤ ‖α‖ ‖v‖n ‖β‖ for all v ∈ Mn(V ), α, β ∈ Mnand n, m ∈ N ([7℄).De�nition 1.4 (F-bimodule norm). Let V be a non-degenerate F-bimodule. Let
‖·‖ be a norm on V . Then we say ‖·‖ is an F-bimodule norm on V if ‖αvβ‖ ≤
‖α‖ ‖v‖ ‖β‖, for any α, β ∈ F , v ∈ V . In this ase we say that V is a non-degenerate normed F-bimodule.



Diret limit of matriially Riesz normed spaes 57Theorem 1.5. Let (V, {‖·‖n}) be a matrix normed spae. Let V be the matriialindutive limit of V . For eah v ∈ V , we de�ne ‖v‖ as follows: let n ∈ N be suhthat 1nv1n = v. Write ‖v‖ = ‖v‖n. Then this de�nition is independent of thehoie of n and introdues an F-bimodule norm on V suh that (V , ‖·‖) is anon-degenerate normed F-bimodule.Conversely, let (W , ‖·‖) be a non-degenerate normed F-bimodule and let W =11W11 and ‖·‖n = ‖·‖ |Mn(W ) for all n ∈ N. Then (W, {‖ ‖n}) is a matrix normedspae whose matriial indutive limit is (W , ‖·‖).Remark. This haraterization an be extended to ∗ vetor spaes as follows:Let V be a ∗ vetor spae and let V be the matriial indutive limit of V , sothat V is a non-degenerate F-bimodule ([6℄). Let (V, {‖·‖n}) be a matrix normedspae suh that for every n ∈ N and v ∈ Mn(V ), ‖v∗‖n = ‖v‖n. Let (V , ‖·‖)be the matriial indutive limit of the matrix normed spae (V, {‖·‖n}). Then
‖v∗‖ = ‖v‖ for all v ∈ V .Next, we reall the de�nition of an ordered F-bimodule and its haraterizationas a matriial indutive limit spae from [6℄:De�nition 1.6 (Ordered F-bimodule). Let V be a ∗-F-bimodule. Let V+ be abimodule one in Vsa. That is1. v1, v2 ∈ V+ ⇒ v1 + v2 ∈ V+,2. v ∈ V+, α ∈ F ⇒ α∗vα ∈ V+.Then (V ,V+) will be alled an ordered F-bimodule.The following result is obtained from [6℄.Theorem 1.7. Let (V,

{

Mn(V )+}) be a matrix ordered spae. Let V be thematriial indutive limit of V . Then (V ,V+) is a non-degenerate ordered F-bimodule, where V+ = ⋃∞
n=1 Mn(V )+. Conversely, let (W ,W+) be a non-degenerate ordered F-bimodule. Put W = 11W11 and Mn(W )+ = 1nW

+1nfor all n ∈ N. Then (W,
{

Mn(W )+}) is a matrix ordered spae with W+ =
⋃∞

n=1 Mn(W )+.2. F-Riesz normWe now haraterize F-bimodule norms.De�nition 2.1. Let V be a non-degenerate F-bimodule. Let U ⊂ V . We say
U is absolutely F-onvex if ∑k

i=1 αiuiβi ∈ U whenever u1, u2, . . . , uk ∈ U and
α1, α2, . . . , αk, β1, β2, . . . , βk ∈ F with ∑k

i=1 ‖αi‖
2 ≤ 1 and ∑k

i=1 ‖βi‖
2 ≤ 1. Ifthe property holds true only for k = 1 then we say U is F-irled .



58 J.V.Ramani, A.K.Karn, S. YadavTheorem 2.2. The open unit ball of a non-degenerate normed F-bimodule(V , ‖·‖) is absolutely F-onvex and absorbing.Proof: Let U denote the open unit ball of (V , ‖·‖). Let u1, u2, . . . , uk ∈ U and
α1, α2, . . . , αk, β1, β2, . . . , βk ∈ F with ∑k

i=1 ‖αi‖
2 ≤ 1 and ∑k

i=1 ‖βi‖
2 ≤ 1.Consider u =∑k

i=1 αiuiβi. Then
‖u‖ = ∥∥∥

∥

∥

k
∑

i=1 αiuiβi

∥

∥

∥

∥

∥

≤

k
∑

i=1 ‖αi‖ ‖ui‖ ‖βi‖ <

k
∑

i=1 ‖αi‖ ‖βi‖

≤

(

k
∑

i=1 ‖αi‖
2)1/2( k

∑

i=1 ‖βi‖
2)1/2

≤ 1.Therefore u ∈ U . Thus U is absolutely F-onvex. To show that U is absorbingonsider a v ∈ V and ǫ > 0. Put v1 = v(‖v‖+ǫ) . Then v1 ∈ U and v = v1 (‖v‖+ ǫ).Therefore U is absorbing. �The following theorem ompletes the haraterization of F-bimodule normsamong norms on V .Theorem 2.3. Let A ⊂ V be absolutely F-onvex and absorbing. Then thegauge of A,
p(v) = inf {k > 0 | v ∈ kA}determines an F-bimodule semi-norm on V .Proof: First we note that p(v) ≥ 0 for all v ∈ V . From the de�nition, we getthat p(kv) = |k|p(v) for all k ∈ C. We now show that p(v + w) ≤ p(v) + p(w)for all v, w ∈ V . Let v, w ∈ V and Sǫ > 0. Then there exist k1, k2 > 0 suh that

k1 < p(v) + ǫ2 with v ∈ k1A and k2 < p(w) + ǫ2 with w ∈ k2A. We show that
v + w ∈ (k1 + k2)A. We set α = k1

k1+k2 , β = k2
k1+k2 . Then α + β = 1. Also

αv
k1 = v

k1+k2 , βw
k2 = w

k1+k2 . Thus we get αv
k1 + βw

k2 = v+w
k1+k2 . As A is absolutely

F-onvex, it is onvex. Thus v + w ∈ (k1 + k2)A. It follows that
p(v + w) ≤ k1 + k2 < p(v) + p(w) + ǫ.As ǫ > 0 is arbitrary we get that p(v + w) ≤ p(v) + p(w). Next, we show that

p(αvβ) ≤ ‖α‖ p(v) ‖β‖ for all α, β ∈ F , v ∈ V . First, let v ∈ A. Then p(v) ≤ 1.Let α, β ∈ F with ‖α‖ ≤ 1, ‖β‖ ≤ 1. Sine A is absolutely F-onvex, αvβ ∈ A.Therefore p(αvβ) ≤ 1. Now let v ∈ V and α, β ∈ F , ǫ > 0. Put v1 = v
p(v)+ǫ

.Then p(v1) = p(v)
p(v)+ǫ

< 1. That is v1 ∈ A. Without loss of generality we maytake α 6= 0, β 6= 0. Let α1 = α
‖α‖

, β1 = β
‖β‖

. Then p(α1v1β1) ≤ 1 so that
p(αvβ) ≤ ‖α‖ (p(v) + ǫ) ‖β‖ .



Diret limit of matriially Riesz normed spaes 59As ǫ > 0 is arbitrary we get
p(αvβ) ≤ ‖α‖ (p(v)) ‖β‖ .Hene p(·) is a F-semi-norm on V . �In the rest of the paper we will be dealing with non-degenerate ordered F-bimodules. We introdue some more notations.We write In = ∑n

i=1 eii, Jn = ∑n
i=1 ei,n+i for any n ∈ N. Note that ‖In‖ =

‖Jn‖ = 1 and JnIn = 0, InJn = Jn, JnJn = 0, JnJ∗
n = In. Let (V ,V+) be anon-degenerate ordered F-bimodule ([6℄). Let u1, u2 ∈ V∗ and n ∈ N suh that1nu11n = u1, 1nu21n = u2. We denote u1+ J∗

nu2Jn by (u1, u2)+n . For any v ∈ Vand an n ∈ N with 1nv1n = v we denote InvJn + J∗
nv∗In by san(v).Before we de�ne F-Riesz norm, we need the following reformulation of the oneptthat V+ is generating.Proposition 2.4. Let (V ,V+) be a non-degenerate ordered F-bimodule. Then

V+ is generating if and only if for every v ∈ V there exist u1, u2 ∈ V+ suh that(u1, u2)+n ± san(v) ∈ V+, for a suitable n ∈ N.Note. In the notation (u1, u2)+n ± san(v) ∈ V+, we say that n ∈ N is \suitable"provided 1nu11n = u1, 1nu21n = u2 and 1nv1n = v. This terminology will beused throughout the paper without any further explanation.Proof: First, let V+ be generating. Let v ∈ Vsa. Then by [6, Theorem 3.10℄there exist v1, v2 ∈ V+ suh that v = v1 − v2. Put u = v1 + v2. Then u ∈ V+and u ± v ∈ V+. Next let v ∈ V be arbitrary. Find an n ∈ N suh that1nv1n = v. Consider san(v): san(v) = InvJn + J∗
nv∗In ∈ Vsa. Then as abovethere exists a u ∈ V+ suh that u ± san(v) ∈ V+. Let u

′ = I2nuI2n ∈ V+. Then
u
′

± san(v) ∈ V+ for I2nsan(v)I2n = san(v). Set u1 = Inu
′

In, u2 = Jnu
′

J∗
n.Then (u1, u2)+n = Inu

′

In + J∗
n

(

Jnu
′

J∗
n

)

Jn. We show that (u1, u2)+n ± san(v) ∈
V+. Note that(1) Inu′In − Inu′J∗

nJn − J∗
nJnu′In + J∗

nJnu′J∗
nJn ∓ san(v)= (In − J∗

nJn)(u′

± san(v)) (In − J∗
nJn) ∈ V+.Similarly(2) Inu

′

In + Inu
′

J∗
nJn + J∗

nJnu
′

In + J∗
nJnu

′

J∗
nJn ± san(v)= (In + J∗

nJn)(u′

± san(v)) (In + J∗
nJn) ∈ V+.Adding (1) and (2) suitably, we get(u1, u2)+n ± san(v) = Inu

′

In + J∗
n

(

Jnu
′

J∗
n

)

Jn ± san(v) ∈ V+.



60 J.V.Ramani, A.K.Karn, S. YadavConversely assume that for every v ∈ V there exist u1, u2 ∈ V+ suh that(u1, u2)+n ± san(v) ∈ V+, for a suitable n ∈ N. We show that V+ is generat-ing. Let v ∈ V . Then there exist u1, u2 ∈ V+ suh that (u1, u2)+n ± san(v) ∈ V+,for a suitable n ∈ N. Therefore(In + Jn) ((u1, u2)+n ± san(v)) (In + J∗
n) ∈ V+.This gives u1 + u2 ± (v + v∗) ∈ V+. Similarly(In + iJn)((u1, u2)+n ± san(v)) (In − iJ∗
n) ∈ V+whih gives u1 + u2 ± i (v − v∗) ∈ V+. Put

v0 = 14 (u1 + u2 + v + v∗) ,

v1 = 14 (u1 + u2 − i(v − v∗)) ,

v2 = 14 (u1 + u2 − v − v∗) ,

v3 = 14 (u1 + u2 + i(v − v∗)) .Then v0, v1, v2, v3 ∈ V+ and we have
v0 + iv1 − v2 − iv3 = v.Hene V+ is generating. �De�nition 2.5. Let (V ,V+) be a positively generated non-degenerate ordered

F-bimodule. Let ‖·‖ be an F-bimodule norm on V . We say ‖·‖ is an F-Riesznorm on V if for any v ∈ V ,
‖v‖ = inf{max(‖u1‖ , ‖u2‖) | (u1, u2)+N ± saN (v) ∈ V+for some u1, u2 ∈ V+ and a suitable N ∈ N}.In what follows we haraterize F-Riesz norms on a non-degenerate positivelyordered F-bimodule in the lines of Theorem 2.2.De�nition 2.6. Let (V ,V+) be an ordered F-bimodule and A ⊂ V+. We de�ne

S (A) as follows:
S (A) = {v ∈ V | (u1, u2)+N ± saN (v) ∈ V+for some u1, u2 ∈ A and a suitable N ∈ N}.



Diret limit of matriially Riesz normed spaes 61Remarks.(a) A ⊂ S(A).(b) v∗ ∈ S(A) whenever v ∈ S(A).De�nition 2.7. Let A ⊂ V+. Then we say that A is order absolutely F-onvexif ∑k
i=1 α∗

i uiαi ∈ A whenever u1, u2, . . . , uk ∈ A and α1, α2, . . . , αk ∈ F with
∑k

i=1 ∥∥α∗
i αi

∥

∥ ≤ 1.If the above ondition holds only for k = 1 for some A ⊂ V+, then we say A isorder F-irled .De�nition 2.8. S ⊂ V+ is alled F-absorbing if for eah v ∈ V there exist
α, β ∈ F suh that αvβ ∈ S.De�nition 2.9. S ⊂ V+ is alled positively F-absorbing if for eah u ∈ V+ thereexists a α ∈ F suh that α∗uα ∈ S.Lemma 2.10. Let A ⊂ V+ be order absolutely F-onvex. Then S(A) is abso-lutely F-onvex.Proof: Let v1, v2, . . . , vk ∈ S(A) and let α1, α2, . . . , αk, β1, β2, . . . , βk ∈ F with
∑k

i=1 ‖αi‖
2 ≤ 1 and ∑k

i=1 ‖βi‖
2 ≤ 1. Then for eah i = 1, 2, . . . , k there ex-ist Ni ∈ N, ui1, ui2 ∈ A with 1Ni

vi1Ni
= vi, 1Ni

ui11Ni
= ui1, 1Ni

ui21Ni
= ui2with (ui1, ui2)+Ni

± saNi
(vi) ∈ V+. Now α1, α2, . . . , αk ∈ F . Therefore thereexist M1, M2, . . . , Mk ∈ N suh that 1Mi

αi1Mi
= αi, i = 1, 2, . . . , k. Also

β1, β2, . . . , βk ∈ F . Therefore there exist P1, P2, . . . , Pk ∈ N suh that 1Pi
βi1Pi

=
βi, i = 1, 2, . . . , k. Let N = max{N1, N2, . . . , Nk, M1, . . . , Mk, P1, . . . , Pk}. Thenfor eah i = 1, 2, . . . , k we have (ui1, ui2)+N ± saN (vi) ∈ V+. Now
(

(

α∗
i , βi

)+
N

)∗ ((
ui1, ui2)+N ± saN (vi))((α∗

i , βi
)+
N

)

∈ V+ for all i = 1, 2, . . . , k.This means (αiu
i1α∗

i , β
∗
i ui2βi

)+
N ± saN (αiviβi) ∈ V+ for eah i = 1, 2, . . . , k.Adding (∑k

i=1 αiu
i1α∗

i ,
∑k

i=1 β∗
i ui2βi

)+
N

± saN

(

∑k
i=1 αiviβi

)

∈ V+. Sine A isabsolutely onvex and ∑k
i=1 ‖αi‖

2 ≤ 1 and ∑k
i=1 ‖βi‖

2 ≤ 1 we have
∑k

i=1 αiu
i1α∗

i ∈ A and∑k
i=1 β∗

i ui2βi ∈ A. Therefore∑k
i=1 αiviβi ∈ S(A). There-fore S(A) is absolutely F-onvex. �Lemma 2.11. Let V+ be generating. Then S(A) is F-absorbing if A ⊂ V+ ispositively F-absorbing.Proof: Let A ⊂ V+ be positively F-absorbing. Let v ∈ V . Sine V+ isgenerating, by Proposition 2.4, there exist u1, u2 ∈ V+ and a suitable N ∈ Nsuh that (u1, u2)+N ± saN (v) ∈ V+. Sine A is positively F-absorbing and

u1, u2 ∈ V+ there exist α, β ∈ F suh that α∗u1α ∈ A, β∗u2β ∈ A. Find
M ∈ N suh that 1Mu11M = u1, 1Mu21M = u2, 1Mv1M = v, 1Mα1M = α,



62 J.V.Ramani, A.K.Karn, S. Yadav1Mβ1M = β. Then ((α, β)+M)∗ ((u1, u2)+M ± saM (v)) (α, β)+M ∈ V+. This gives(α∗u1α, β∗u2β)+M ± saM (α∗vβ) ∈ V+. Sine α∗u1α ∈ A and β∗u2β ∈ A, we get
α∗vβ ∈ S(A). Hene S(A) is F-absorbing. �Some more onepts will be needed in the sequel.De�nition 2.12. Let A ⊂ V+. A is alled positively bounded if for any v ∈ Vsa,
v + knan ∈ V+ for all n ∈ N implies v ∈ V+, where {an} is a sequene in A and
{kn} is a sequene in (0,∞) with inf kn = 0.De�nition 2.13. Let A ⊂ V+. A is alled almost positively bounded if
(

knun1 , knun2 )+Nn
± saNn

(v) ∈ V+ for all n ∈ N implies v = 0 where {un1}, {un2}are sequenes in A and {kn} is a sequene in (0,∞) with inf kn = 0, {Nn} is asequene in N.Lemma 2.14. Let V+ be proper. Let A ⊂ V+ be order absolutely F-onvexand positively bounded. Then A is almost positively bounded.Proof: Let v ∈ V , sequenes {un1}, {un2} be in A, {kn} be a sequene in (0,∞)with inf kn = 0 and {Nn} be a sequene in N suh that
ZNn

= (knun1 , knun2 )+Nn
± saNn

(v) ∈ V+for all n ∈ N. Then(1) (INn
+ JNn

)ZNn
(INn

+ JNn
)∗ = knun1 + knun2 ± (v + v∗)and(2) (INn

+ iJNn
)ZNn

(INn
+ iJNn

)∗ = knun1 + knun2 ± i (v − v∗) .Put un1 + un2 = 2un for all n ∈ N. From (1) and (2) we get(3) knun ± Re(v), knun ± Im(v) ∈ V+.Sine A is onvex as it is order absolutely F-onvex, un ∈ A for all n ∈ N. As
A is positively bounded, from (3) we get ±Re v,± Im v ∈ V+. Finally as V+ isproper, we have Re v = 0, Im v = 0. That is v = 0. Hene A is almost positivelybounded. �Remark. It may be noted that the notion of (almost-)positively bounded sets isintrodued to generalize the notion of (almost-)Arhimedean property of the one([5℄).Now we are in a position to haraterize F-Riesz norms.



Diret limit of matriially Riesz normed spaes 63Theorem 2.15. Let (V ,V+) be a non-degenerate positively generated ordered
F-bimodule. LetA⊂V+ be order absolutely F-onvex, almost positively boundedand positively F-absorbing. Also assume that S(A) ∩ V+ = A. Let p(·) be thegauge of S(A). Then p(·) is an F-Riesz norm on V .Conversely, let ‖·‖ be an F-Riesz norm on V where (V ,V+) is a positivelygenerated ordered F-bimodule. Also let U+ = {v ∈ V+ | ‖v‖ < 1} = U ∩ V+,where U is the open unit ball of (V , ‖·‖). Then U+ is order absolutely F-onvex,almost positively bounded and positively F-absorbing.Proof: First assume that (V ,V+) is a non-degenerate positively generated or-dered F-bimodule. Let A ⊂ V+ be order absolutely F-onvex, almost positivelybounded and positively F-absorbing. Also assume that S(A) ∩V+ = A. Let p(·)be the gauge of S(A). We show that p(·) is an F-Riesz norm on V . In the lightof Theorem 2.3, Lemmas 2.10 and 2.11 we note that p(·) is a F-semi-norm on V .Let v ∈ V . We show that

p(v) = inf{max(p(u1), p(u2)) | (u1, u2)+N ± saN (v) ∈ V+for some u1, u2 ∈ V+ and a suitable N ∈ N}.Sine S(A) is F-absorbing there exists some λ > 0 suh that λv ∈ S(A). Thisgives some u1, u2 ∈ A and a N ∈ N suh that (u1, u2)+N ± saN (λv) ∈ V+. That is
(

λ−1u1, λ−1u2)+N ± saN (v) ∈ V+. Also p(λ−1u1) = λ−1p(u1). Sine p(·) is thegauge of S(A) and S(A) ∩ V+ = A, we have p(u1) ≤ 1 and p(u2) ≤ 1. Therefore
p(λ−1u1) ≤ λ−1, p(λ−1u2) ≤ λ−1. That is max{p(λ−1u1), p(λ−1u2)} ≤ λ−1.Let ǫ > 0. Then (p(v) + ǫ)−1v ∈ S(A). Replaing λ by (p(v) + ǫ) in the abovedisussion, there exist u1, u2 ∈ V+ and some N ∈ N suh that (u1, u2)+N ±

saN (λv) ∈ V+ and max{p(u1), p(u2)} ≤ (p(v) + ǫ). That is,
p(v) ≥ inf{max(p(u1), p(u2)) | (u1, u2)+N ± saN (v) ∈ V+for some u1, u2 ∈ V+ and a suitable N ∈ N}.Let u1, u2 ∈ V+ and (u1, u2)+N ± saN (v) ∈ V+ for some N ∈ N. Find a λ > 0suh that λu1, λu2 ∈ S(A). This gives (λu1, λu2)+N ± saN (λv) ∈ V+. Sine

S(A)∩V+ = A, we get λu1, λu2 ∈ A. That is λv ∈ S(A). Therefore p(v) ≤ λ−1.Let ǫ > 0. Put λ = (max{p(u1), p(u2)} + ǫ)−1. Then λu1, λu2 ∈ S(A) so that
p(v) ≤ max{p(u1), p(u2)}+ ǫ. This gives

p(v) ≤ inf{max(p(u1), p(u2)) | (u1, u2)+N ± saN (v) ∈ V+for some u1, u2 ∈ V+ and a suitable N ∈ N}.Therefore p(·) is F-Riesz semi-norm on V . Now let v ∈ V be suh that p(v) = 0.Then there is a sequene {kn} in (0,∞) with inf kn = 0 suh that k−1n v ∈ S(A).



64 J.V.Ramani, A.K.Karn, S. YadavThus for every n ∈ N, there exist un1 , un2 ∈ A suh that (un1 , un2 )+Nn
±saNn

(k−1n v) ∈
V+ for suitable Nn ∈ N. This means that (knun1 , knun2)+Nn

±saNn
(v) ∈ V+. Sine

A is almost positively bounded, we get v = 0. Hene p(·) is an F-Riesz normon V .Conversely, let ‖·‖ be an F-Riesz norm on V where (V ,V+) is a positivelygenerated ordered F-bimodule. Also let U+ = {v ∈ V+ | ‖v‖ < 1} = U ∩ V+,where U is the open unit ball of (V , ‖·‖). We show that U+ is order absolutely
F-onvex, almost positively bounded and positively F-absorbing.Let u ∈ U . Find an ǫ > 0 suh that ‖u‖+ ǫ < 1. Sine ‖·‖ is an F-Riesz normthere exist u1, u2 ∈ V+, a suitable N ∈ N suh that (u1, u2)+N ± saN (u) ∈ V+and max{‖u1‖ , ‖u2‖} < ‖u‖ + ǫ < 1. That is ‖u1‖ < 1, ‖u2‖ < 1. This means
u1, u2 ∈ U+. That is u ∈ S(A). Thus U ⊂ S(U+). Let v ∈ S(U+). Then thereexist u1, u2 ∈ U+ and a suitable N ∈ N suh that (u1, u2, )+N ± saN (v) ∈ V+.Sine ‖·‖ is an F-Riesz norm, we have ‖v‖ ≤ max{‖u1‖ , ‖u2‖} < 1. Therefore
v ∈ U or S(U+) ⊂ U . Therefore S(U+) = U . Next, let u1, u2, . . . , uk ∈ U+ and
α1, α2, . . . , αk ∈ F with ∑k

i=1 ∥∥α∗
i αi

∥

∥ ≤ 1. Put u = ∑k
i=1 α∗

i uiαi. Then u ∈ Vand
‖u‖ ≤

k
∑

i=1 ‖αi‖
2 ‖ui‖ <

k
∑

i=1 ‖αi‖
2 ≤ 1.It follows U+ is order absolutely F-onvex. We now prove that U+ is almostpositively bounded. Let v ∈ V and sequenes {un1}, {un2} be in U+ and {kn} in(0,∞) with inf kn = 0 and {Nn} a sequene in N suh that (knun1 , knun2 )+Nn

±

saNn
(v) ∈ V+ for all n ∈ N. We show that ‖v‖ = 0. Let ǫ > 0. Sine inf kn = 0there exists a n0 ∈ N suh that kn0 < ǫ. As ‖·‖ is an F-Riesz norm and ∥∥un01 ∥∥ < 1,

∥

∥un02 ∥∥ < 1, we have ‖v‖ ≤ max{∥∥kn0un01 ∥∥ ,
∥

∥kn0un02 ∥∥} < kn0 < ǫ. Sine ǫ > 0is arbitrary, ‖v‖ = 0. Sine ‖·‖ is a norm, v = 0. Hene U+ is almost-positivelybounded. Finally, let v ∈ V+ and ǫ > 0. Put α = (‖v‖+ǫ)− 12 1n where 1nv1n = v.Then α∗vα = 1(‖v‖+ǫ)1nv1n = v(‖v‖+ǫ) ∈ U+. Therefore U+ is positively F-absorbing. �Theorem 2.16. Let (V ,V+) be a non-degenerate ordered F-bimodule. Let V+be proper and generating. Let A ⊂ V+ be order absolutely F-onvex, positivelybounded and F-absorbing. Assume that S(A) ∩ V+ = A. Let p(·) be the gaugeof S(A). Then p(·) is an F-Riesz norm on V suh that V+ is p-losed.Conversely, let (V ,V+) be an ordered F-bimodule and V+ be generating. Let
‖·‖ be an F-Riesz norm on V suh that V+ is losed. Let U+ = {v ∈ V+ | ‖v‖ <1}. Then U+ is order absolutely F-onvex, positively bounded and positively
F-absorbing suh that S(U+) ∩ V+ = U+. Moreover V+ is proper.Proof: First assume that V+ is proper and generating. Let A ⊂ V+ be orderabsolutely F-onvex, positively bounded and F-absorbing. Assume that S(A) ∩
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V+ = A. Let p(·) be the gauge of S(A). We show that p(·) is an F-Riesz normon V+ suh that V+ is p-losed. In the light of Lemma 2.14 and Theorem 2.15it suÆes to prove that V+ is p-losed. We shall show that Vsa\V

+ is p-open.De�ne for v ∈ Vsa,
r(v) = inf{α ∈ R | v + αa ∈ V+ for some a ∈ A}.We �rst show that r(v) ≤ 0 if and only if v ∈ V+. Let v ∈ V+. Then v+0a ∈ V+for all a ∈ A. That is r(v) ≤ 0. To show the other way let r(v) ≤ 0. Thenfor every n ∈ N there exists an an ∈ A suh that v + (r(v) + 1

n )an ∈ V+.Also v + (r(v) + 1
n )an ≤ v + ( 1n )an as r(v) ≤ 0. That is v + ( 1n )an ∈ V+for every n ∈ N. As A is positively bounded, v ∈ V+. We now show that

p(v) − r(v) ≥ 0 for all v ∈ Vsa. Suppose p(v) − r(v) < 0 for some v ∈ Vsa.Put ǫ = 12 (r(v) − p(v)) > 0. Sine p(·) is F-Riesz norm on V , there exists an
a ∈ A suh that (p(v) + ǫ)a ± v ∈ V+. Then (r(v) − ǫ)a ± v ∈ V+. In partiular(r(v) − ǫ)a + v ∈ V+. This ontradits the de�nition of r(v). Thus p(v) ≥ r(v)for all v ∈ Vsa. Finally we show that Vsa\V

+ is p-open. Let v ∈ Vsa, v /∈ V+.Sine v /∈ V+, r(v) > 0. Let δ = 12r(v). Let D = {w ∈ Vsa | p(v − w) < δ}.Let w ∈ D. Then δ > p(v − w) ≥ r(v − w). So there exists an a ∈ A suh that
δa+ (v −w) ∈ V+. If w ∈ V+, then δa+ v ∈ V+. Thus r(v) ≤ δ = r(v)2 , whih isa ontradition. Therefore w /∈ V+. That is Vsa\V

+ is p-open.For the onverse it suÆes to prove that U+ is positively bounded and that
V+ is proper in light of Theorem 2.15. We show that U+ is positively bounded.Let v ∈ V+ and wn = v + knun ∈ V+ for all n ∈ N, where {un} is a sequene in
U+ and {kn} is a sequene in (0,∞) with inf kn = 0. Without loss of generalitywe an take {kn} to be dereasing. Now {wn} is a onvergent sequene beause
‖v − wn‖ = ‖knun‖ < kn −→ 0. Therefore wn −→ v. Sine V+ is losed, v ∈ V+.Therefore U+ is positively bounded.Finally we show that V+ is proper. Let ±v ∈ V+. Then as v is self-adjoint,
‖v‖ = inf{‖u‖ | u ∈ V+, u ± v ∈ V+}. Also 0 ∈ V+ and 0 ± v ∈ V+. That is
‖v‖ ≤ ‖0‖ = 0. That is v = 0. Therefore V+ is proper. �Now we move to the �nal result of the paper.De�nition 2.17 (F-Riesz normed bimodule). Let (V ,V+) be a non-degenerateordered F-bimodule suh that V+ is proper and generating. Assume that ‖·‖ isan F-Riesz norm on V suh that V+ is norm losed. Then the triple (V ,V+, ‖·‖

)is alled an F-Riesz normed bimodule.De�nition 2.18 (Matriially Riesz normed spae). Let (V, {Mn(V )+}) be a po-sitively generated matrix ordered spae and suppose that {‖·‖n} is a matrix normon V . Then the triplet (V, {‖·‖n}, {Mn(V )+}) is alled a matriially normedspae if for eah n ∈ N, ‖·‖n is a Riesz norm on Mn(V ) and Mn(V )+ is losed.



66 J.V.Ramani, A.K.Karn, S. YadavTheorem 2.19. Let (V,
{

Mn(V )+} , {‖·‖n}
) be a matriially Riesz normedspae. Let (V ,V+) be the matriial indutive limit of the matrix ordered spae

(

V,
{

Mn(V )+}) and let (V , ‖·‖) be the matriial indutive limit of matrix normedspae (V, {‖·‖n}). Then (V ,V+, ‖·‖
) is a non-degenerate F-Riesz normed bimod-ule. Conversely, let (W ,W+, ‖·‖

) be a non-degenerate F-Riesz normed bimodule.Let W = 11W11 and Mn(W )+ = 1nW
+1n and ‖·‖n = ‖·‖ |Mn(W ) for all n ∈ N.Then (W,

{

Mn(W )+} , {‖·‖n}
) is a matriially Riesz normed spae whose indu-tive limit is (W ,W+, ‖·‖

).Proof: Let (V,
{

Mn(V )+} , {‖·‖n}
) be a matriially Riesz normed spae. Weshow that ‖·‖ is an F-Riesz norm on V . Let v ∈ V . Then there exists a smallest

n ∈ N suh that 1nv1n = v. Then
‖v‖ = ‖v‖n = inf{max(‖u1‖n , ‖u2‖n) | (u1, u2)+n ± san(v) ∈ M2n(V )+for some u1, u2 ∈ Mn(V )+}.Let
p(v) = inf{max(‖u1‖ , ‖u2‖) | (u1, u2)+N ± saN (v) ∈ V+for some u1, u2 ∈ V+ and a suitable N ∈ N}.Then p(v) ≤ ‖v‖. Let ǫ > 0. Then there exist u1, u2 ∈ V+, N ∈ N suh that(u1, u2)+N ± saN (v) ∈ V+ and max(‖u1‖ , ‖u2‖) < p(v) + ǫ. In this ase N ≥ n.Put u

′1 = 1nu11n, u
′2 = 1nu21n. Then u

′1, u′2 ∈ Mn(V )+. Also
((1n, 1n)+n )∗ [(u1, u2)+N ± saN (v)] ((1n, 1n)+n ) = (u′1, u′2)+n ± san(v) ∈ M2n(V )+as 1nv1n = v. Next ∥∥

∥
u
′1∥∥∥n

≤ ‖u1‖, ∥∥∥u′2∥∥∥n
≤ ‖u2‖ so that

‖v‖ = ‖v‖n ≤ max(∥∥
∥
u
′1∥∥∥

n
,
∥

∥

∥
u
′2∥∥∥

n
) ≤ max(‖u1‖ , ‖u2‖) < p(v) + ǫ.Sine ǫ > 0 is arbitrary, ‖v‖ ≤ p(v). Therefore p(v) = ‖v‖. Hene ‖·‖ is an

F-Riesz norm on V . We show that V+ is ‖·‖ losed. Let v ∈ �V+. Then thereexists a sequene {vk} ⊂ V+ suh that vk −→ v in ‖·‖. Hene v ∈ Vsa. Find an
n ∈ N suh that 1nv1n = v. Then v

′

k = 1nvk1n −→ 1nv1n = v in ‖·‖n. Sine
Mn(V )+ is losed, we have v ∈ Mn(V )+ ⊂ V+. Therefore V+ is losed.For the onverse it is enough to show that ‖·‖n is a Riesz norm on Mn(W ) forall n ∈ N. Fix an n ∈ N and w ∈ Mn(W ). Let

r(w) = inf{max(‖u1‖n , ‖u2‖n) | (u1, u2)+n ± san(w) ∈ M2n(W )+for some u1, u2 ∈ Mn(W )+}.



Diret limit of matriially Riesz normed spaes 67Reall that
‖w‖n = ‖w‖ = inf{max(‖u1‖ , ‖u2‖) | (u1, u2)+N ± saN (w) ∈ W+for some u1, u2 ∈ W+ and a suitable N ∈ N}.Then ‖w‖n ≤ r(w). Let ǫ > 0. Then as above using (1n, 1n)+n , we may onludethat r(w) ≤ ‖w‖n + ǫ. Therefore r(w) = ‖w‖n. That is ‖·‖n is a Riesz norm on
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