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�-produ
ts of para
ompa
t �Ce
h-s
attered spa
esHidenori TanakaAbstra
t. In this paper, we shall dis
uss �-produ
ts of para
ompa
t �Ce
h-s
atteredspa
es and show the following: (1) Let � be a �-produ
t of para
ompa
t �Ce
h-s
atteredspa
es. If � has 
ountable tightness, then it is 
olle
tionwise normal. (2) If � is a �-produ
t of �rst 
ountable, para
ompa
t (subpara
ompa
t) �Ce
h-s
attered spa
es, thenit is shrinking (subshrinking).Keywords: �-produ
t, C-s
attered, �Ce
h-s
attered, para
ompa
t, subpara
ompa
t, 
ol-le
tionwise normal, shrinking, subshrinking, 
ountable tightnessClassi�
ation: Primary 54B10, 54D15, 54D20, 54G121. Introdu
tionSin
e the 
on
ept of �-produ
ts was introdu
ed by Corson [Co℄, the normalityof �-produ
ts has been studied by several authors. In parti
ular, the normal-ity of �-produ
ts of metri
 spa
es was proved by Gul'ko [Gu℄ and Rudin [R1℄.Furthermore, Rudin [R2℄ proved the shrinking property of �-produ
ts of metri
spa
es. So, the shrinking property of �-produ
ts has been another interestingsubje
t (Yajima [Y2℄).Telg�arsky [Te℄ de�ned C-s
attered spa
es, whi
h is a generalization of s
atteredspa
es and lo
ally 
ompa
t spa
es. As the spa
es 
onsisting of ordinals (with theusual order topology) are s
attered, many important examples using ordinals ares
attered. The author and Yajima [TY℄ showed the following (
f. Hanaoka andthe author [HaT℄):(A) Let � be a �-produ
t of para
ompa
t C-s
attered spa
es. If � has 
ountabletightness, then it is 
olle
tionwise normal.(B) If � is a �-produ
t of �rst 
ountable, para
ompa
t (subpara
ompa
t) C-s
attered spa
es, then it is shrinking (subshrinking).On the other hand, Kombarov [1℄ proved the following.(C) Let � be a �-produ
t of para
ompa
t �Ce
h-
omplete spa
es. If � has 
ount-able tightness, then it is 
olle
tionwise normal.Furthermore Kombarov [2℄ also proved the following.



128 H.Tanaka(D) Let � be a �-produ
t of para
ompa
t p-spa
es. Then the following areequivalent:(a) � has 
ountable tightness,(b) � is 
olle
tionwise normal,(
) � is normal.Hohti and Ziqiu [HZ℄ introdu
ed the 
on
ept of �Ce
h-s
attered spa
es, whi
h isa generalization of C-s
attered spa
es. Aoki, Mori and the author [AMT℄, Higu
hiand the author [HiT℄ proved that if Y is a perfe
t para
ompa
t (hereditarily Lin-del�of, perfe
t subpara
ompa
t) spa
e and {Xn : n ∈ ω} is a 
ountable 
olle
tion ofpara
ompa
t (Lindel�of, subpara
ompa
t) �Ce
h-s
attered spa
es, then the produ
t
Y ×

∏
n∈ω Xn is para
ompa
t (Lindel�of, subpara
ompa
t).It seems to be natural to 
onsider �-produ
ts of para
ompa
t �Ce
h-s
atteredspa
es. So, we shall dis
uss normality and shrinking property of �-produ
ts ofpara
ompa
t �Ce
h-s
attered spa
es and obtain generalizations of (A), (B) and (C)as follows: (1) Let � be a �-produ
t of para
ompa
t �Ce
h-s
attered spa
es. If �has 
ountable tightness, then it is 
olle
tionwise normal. (2) If � is a �-produ
tof �rst 
ountable, para
ompa
t (subpara
ompa
t) �Ce
h-s
attered spa
es, then itis shrinking (subshrinking).All spa
es are assumed to be Ty
hono� spa
es. Let ω denote the set of naturalnumbers and |A| denote the 
ardinality of a set A. Unde�ned terminology 
an befound in Engelking [E℄.2. PreliminariesA spa
e X is said to be s
attered if every nonempty (
losed) subset A of X hasan isolated point in A. A spa
e X is said to be C-s
attered if for every nonempty
losed subset A of X , there is an x ∈ A whi
h has a 
ompa
t neighborhood in

A. Then s
attered spa
es and lo
ally 
ompa
t spa
es are C-s
attered. A spa
e
X is said to be �Ce
h-s
attered if for every nonempty 
losed subset A of X , thereis an x ∈ A whi
h has a �Ce
h-
omplete neighborhood in A. It is well knownthat the spa
e of irrational numbers P = ωω is not C-s
attered. However, it is�Ce
h-
omplete and hen
e, is �Ce
h-s
attered.Let X be a spa
e. For a 
losed subset A of X , let

A∗ = {x ∈ A : x has no �Ce
h-
omplete neighborhood in A}.Let A(0) = A, A(α+1) = (A(α))∗ and A(α) = ⋂
β<α A(β) for a limit ordinal α.Note that every A(α) is a 
losed subset of X and X is �Ce
h-s
attered if and onlyif X(α) = ∅ for some ordinal α.Let X be a �Ce
h-s
attered spa
e. A subset A of X is said to be topped if thereis an ordinal α(A) su
h that A ∩ X(α(A)) is a nonempty �Ce
h-
omplete subsetand A ∩X(α(A)+1) = ∅. Let Top(A) = A ∩X(α(A)). It is 
lear that if X and Yare �Ce
h-s
attered spa
es, then the produ
t X × Y is �Ce
h-s
attered.
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es 129Lemma 1 (Engelking [E℄). A spa
e X is �Ce
h-
omplete if and only if there is asequen
e (An) of open 
overs of X satisfying that if F is a 
olle
tion of 
losedsubsets of X , with the �nite interse
tion property, su
h that for ea
h n ∈ ω, thereare Fn ∈ F and An ∈ An with Fn ⊂ An, then the interse
tion ⋂
F is nonempty.(An) is said to be a 
omplete sequen
e of open 
overs of X . It is well knownthat if F satis�es the 
ondition, then ⋂

F is 
ountably 
ompa
t. So, if X issubpara
ompa
t, then ⋂
F is 
ompa
t.Let n ∈ ω, {Xi : i ≤ n} be a �nite 
olle
tion of spa
es and X = ∏

i≤n Xi.A subset of the form A = ∏
i≤n Ai is said to be a re
tangle in X . A re
tangle

A = ∏
i≤n Ai in X is said to be open (
losed) if Ai is open (
losed) in Xi forea
h i ≤ n. An open (
losed) re
tangle A = ∏

i≤n Ai in X is said to be toppedif for ea
h i ≤ n, Ai (Ai) is topped in Xi and let Top(A) = ∏
i≤n Top(Ai)(Top(A) = ∏

i≤nTop(Ai)). A 
over A of X is said to be open (
losed) re
tangleif it 
onsists of open (
losed) re
tangles.For �Ce
h-s
attered spa
es, we have the following, whi
h is essentially provedby [AMT℄ and [HiT℄. So we omit the proofs of them.Lemma 2. (1) If {Xi : i ≤ n}, n ∈ ω, is a �nite 
olle
tion of para
ompa
t�Ce
h-s
attered spa
es, then for every open 
over U of the produ
t X = ∏
i≤n Xi,there is a σ-lo
ally �nite 
over V of X , 
onsisting of topped, open re
tangles su
hthat for ea
h V ∈ V , there is an U ∈ U with V ⊂ U .(2) If {Xi : i ≤ n}, n ∈ ω, is a �nite 
olle
tion of subpara
ompa
t �Ce
h-s
atteredspa
es, then every open 
over of the produ
t X = ∏

i≤n Xi has a σ-lo
ally �nitere�nement, 
onsisting of topped, 
losed re
tangles.Let U , V be 
olle
tions of subsets of a spa
e X and A ⊂ X . De�ne U = {U :
U ∈ U}, U ∧ V = {U ∩ V : U ∈ U and V ∈ V} and U |A = {U ∩A : U ∈ U}. Fora mapping f : X → Y of X to a spa
e Y and a 
olle
tion W of subsets of Y , let
f(U) = {f(U) : U ∈ U} and f−1(W) = {f−1(W ) : W ∈ W}.Basi
 
onstru
tions. I. Let n ∈ ω, {Xi : i ≤ n} be a �nite 
olle
tion oftopped, �Ce
h-s
attered spa
es and X = ∏

i≤n Xi. For ea
h R ⊂ {0, 1, · · · , n}, let
pR : X → XR = ∏

i∈R Xi be the proje
tion of X onto XR. Sin
e pR(Top(X)) is�Ce
h-
omplete, take a 
omplete sequen
e (A(R)j) of open (in pR(Top(X))) 
oversof pR(Top(X)). For ea
h j ∈ ω, let Uj = ∧{p−1R (A(R)j) : R ⊂ {0, 1, · · · , n}}.Then (Uj) is a sequen
e of open (in Top(X)) 
overs of Top(X) su
h that for
R ⊂ {0, 1, · · · , n} and j ∈ ω, pR(Uj) re�nes A(R)j and hen
e, (pR(Uj)) is a
omplete sequen
e of open 
overs of pR(Top(X)).II. Furthermore, assume that every Xi is para
ompa
t (subpara
ompa
t). Forea
h U ∈ U0, there is an open subset U ′ of X su
h that U ′ ∩ Top(X) = U . ByLemma 2, there is a σ-lo
ally �nite 
over A0 of X , 
onsisting of topped open(
losed) re
tangles, su
h that A0 re�nes {U ′ : U ∈ U0}∪{X−Top(X)}. For ea
h
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A ∈ A0, Top(A) is �Ce
h-
omplete. We say that {Top(A) : A ∈ A0} is a σ-lo
ally�nite 
olle
tion of �Ce
h-
omplete subsets of X , indu
ed by U0. Indu
tively, wehave a sequen
e (Aj) of σ-lo
ally �nite 
overs of X , 
onsisting of topped open(
losed) re
tangles, su
h that for ea
h j ∈ ω, Aj+1 re�nes Aj and Aj re�nes Uj .Then, for R ⊂ {0, 1, · · · , n} and j ∈ ω, pR(Aj | Top(X)) re�nes A(R)j . So, ifevery Xi is para
ompa
t, then for ea
h R ⊂ {0, 1, · · · , n}, (pR(Aj | Top(X))) isa 
omplete sequen
e of topped, open re
tangle 
overs of Top(XR). We say that(Aj | Top(X)) is a 
omplete sequen
e of topped, open re
tangle 
overs of Top(X).3. Normality of �-produ
tsLet {Xλ : λ ∈ �} be a 
olle
tion of spa
es. We may assume that the index set� is un
ountable and every Xλ 
ontains at least two points. Let X = ∏

λ∈� Xλand take a point x∗ = (x∗λ) ∈ X . The subspa
e� = {x = (xλ) ∈ X : | Supp(x)| ≤ ω}of X is 
alled a �-produ
t of spa
es Xλ, λ ∈ �, where Supp(x) = {λ ∈ � : xλ 6=
x∗λ}. The x∗ ∈ � is 
alled a base point of �. The mention of base point x∗ isoften omitted.For a set �, we denote [�℄<ω the set of all �nite subsets of �. For ea
h
R ∈ [�℄<ω, we also denote XR the �nite subprodu
t ∏

λ∈R Xλ of �, and denoteby pR the proje
tion of � onto XR. In parti
ular, p{λ} is denoted by pλ forea
h λ ∈ �. Furthermore, we denote by pR′

R the proje
tion of XR′ onto XR for
R, R′ ∈ [�℄<ω with R ⊂ R′. For ea
h R ∈ [�℄<ω, let ��−R be the �-produ
t ofspa
es Xλ, λ ∈ �−R, with the base point x∗ | (�−R) = (x∗λ)λ∈�−R

.Let � be an index set su
h that θ, γ ∈ � assign Rθ, Rγ ∈ [�℄<ω . Then XRγ
,

XRθ
, XRθ−Rγ

, ��−Rγ
, pRγ

, pRθ
and pRθ

Rγ
are abbreviated by Xγ , Xθ, Xθ−γ ,��−γ , pγ , pθ and pθ

γ respe
tively.Let R ∈ [�℄<ω. A subset H is said to be R-
ylindri
ally open (
losed) in �if H = ∏
λ∈R Hλ × ��−R, where ∏

λ∈R Hλ is an open (
losed) re
tangle in XRand H is said to be 
ylindri
ally open (
losed) in � if H is R-
ylindri
ally open(
losed) in � for some R ∈ [�℄<ω. The set of all 
ylindri
ally open subsets in �is a base in �. Noti
e that for every R-
ylindri
ally open (
losed) set H in �, His homeomorphi
 to p−1R pR(H). Let R ∈ [�℄<ω. An R-
ylindri
ally open (
losed)subset H = ∏
λ∈R Hλ × ��−R in � is said to be topped if pR(H) = ∏

λ∈R Hλ istopped in XR. Let Top(H) = Top(pR(H)). Then Top(H) is �Ce
h-
omplete.Let X be a spa
e and D be a 
olle
tion of subset of X . We say that Dis dis
rete at x ∈ X if there is an open neighborhood U of x in X su
h that
|{D ∈ D : D ∩ U 6= ∅}| ≤ 1. D is said to be dis
rete in X if for ea
h x in X , Dis dis
rete at x. A spa
e X is said to be 
olle
tionwise normal if every dis
rete
olle
tion of 
losed subsets of X 
an be separated by disjoint open subsets.
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t �Ce
h-s
attered spa
es 131A spa
e X has 
ountable tightness if for ea
h A ⊂ X and x ∈ A, there isa 
ountable subset B ⊂ A su
h that x ∈ B. Every �rst 
ountable spa
e has
ountable tightness. Kombarov and Malykhin [KM℄ proved that a �-produ
t �has 
ountable tightness if and only if every �nite subprodu
t of � has 
ountabletightness.Lemma 3 (Yajima [Y1℄). Let X be a spa
e whi
h has 
ountable tightness, B bea 
olle
tion of subsets of Y and p : Y → X be a 
ontinuous mapping from Yinto X . If p(B) is not dis
rete at x ∈ X , then there is a 
ountable subset M of⋃
B su
h that p(B |M) is not dis
rete at x.Let � = ⋃

n∈ω �n be an index set, 
onstru
ted indu
tively. If θ ∈ �n, n ≥ 1,is 
onstru
ted by µ ∈ �n−1, then we denote θ− = µ.Theorem 1. Let � be a �-produ
t of para
ompa
t �Ce
h-s
attered spa
es. If �has 
ountable tightness, then it is 
olle
tionwise normal.Proof: Let � be a �-produ
t of para
ompa
t �Ce
h-s
attered spa
es Xλ, λ ∈ �,with a base point x∗ = (x∗λ) ∈ �. For ea
h x ∈ �, we denote Supp(x) = {λx,i :
i ∈ ω} and for ea
h n ∈ ω, let 〈Supp(x)〉n = {λx,0, λx,1, λx,2, . . . , λx,n}.Let D be a dis
rete 
olle
tion of 
losed subsets in �. A subset F of � is saidto satisfy (*) if there are a �nite 
olle
tion {B(i) : i ≤ n} of 
ylindri
ally opensubsets in � su
h that F ⊂

⋃
i≤n B(i) and for ea
h i ≤ n, B(i) meets at mostone member of D.To 
onstru
t sequen
es of σ-lo
ally �nite 
olle
tions of 
ylindri
ally open sub-sets in �, de�ne the following: (H, CH , (A(H)j), xH ) ∈ B if(1) (a) H is a topped, RH -
ylindri
ally open subset in � and CH = Top(H),(b) (A(H)j) is a 
omplete sequen
e of topped, open (in CH) re
tangle 
oversof CH ,(
) xH ∈ XRH

.Indu
tively, for ea
h n ∈ ω, we obtain 
olle
tions Gn, Hn of topped, 
ylindri-
ally open subsets of � and an index set �n = �+
n ∪ �−

n of n-th level of a treewith the height ω and index sets �θ = �+
θ
⊕ �−

θ
su
h that θ ∈ �−

n , γ ∈ �θ assign�nite subsets Rγ , Rθ, Pθ ∈ [�℄<ω and an index set �γ = �+γ ⊕�−
γ , �Ce
h-
ompletesets Cγ , Cθ , a point xθ, a 
ountable subset Yθ ⊂ � (if possible), satisfying thefollowing 
onditions (2){(5): for ea
h n ∈ ω,(2) Gn = {Gθ : θ ∈ �+

n } is σ-lo
ally �nite in � su
h that G meets at most onemember of D for ea
h G ∈ Gn,(3) Hn = {Hθ : θ ∈ �−
n } is σ-lo
ally �nite in �,(4) for n ≥ 1,(a) for ea
h θ− ∈ �n−1, {Cγ : γ ∈ �θ−} is a σ-lo
ally �nite 
olle
tion of �Ce
h-
omplete 
losed subsets of Hθ− , indu
ed by A(θ−)0 and �+θ− = {γ ∈ �θ− :

Cγ ∩Cθ− 6= ∅ and Cγ×
∏

λ∈�−Rγ
{x∗λ} satis�es (*)} and �−θ− = �θ−−�+θ− ,
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h γ ∈ �θ− , �γ = �+γ ⊕ �−
γ is de�ned and �+

n = {θ = (γ, ξ) : γ ∈�+
θ−

, ξ ∈ �+γ , θ− ∈ �−
n−1}, �−

n = {θ = (γ, ξ) : γ ∈ �θ− , ξ ∈ �−
γ , θ− ∈�−

n−1} and �n = �+
n ⊕�−

n ,(
) θ− < θ,(d) Rθ− ⊂ Rγ .(5) for θ ∈ �−
n and θ− ∈ �−

n−1, n ≥ 1,(a) Hθ− is a topped, Rγ− -
ylindri
ally open subset in � su
h that(Hθ− , Cθ− , (A(θ−)j), xθ−) ∈ B, where Hθ− = ∏
λ∈Rγ

−

Hθ−,λ × ��−γ− ,(b) Hθ− −
⋃
Gn ⊂

⋃
{Hµ : µ ∈ �n with θ− < µ} ⊂ Hθ− ,(
) Pθ = {λ ∈ Rθ− : α(Hθ,λ) < α(Hθ−,λ)},(d) if γ ∈ �+

θ−
, then(d-1) xθ = (xθ,λ) ∈ Hθ− ,(d-2) Yθ = {yθ,i : i ∈ ω} is a 
ountable subset of ⋃

D su
h that pγ(D |Yθ)is not dis
rete at xθ in Xγ ,(d-3) if λ ∈ Rθ− and xθ,λ /∈ pλ(Cθ−), then λ ∈ Pθ,(d-4) Rθ = ⋃
{〈Supp(yµ,j)〉k : µ ≤ θ and j, k ≤ n} ∪ Rγ ,and if γ ∈ �−

θ−
, then(d-5) Rθ = Rγ = Rθ− ,(d-6) xθ = xθ− ,(e) Cθ = Top(Hθ) and (A(θ)j) is a 
omplete sequen
e of topped, open (in Cθ)re
tangle 
overs of Cθ su
h that for R ⊂ Rθ− with R∩Pθ = ∅, p

γ
R(A(θ)j)re�nes p

γ−
R (A(θ−)j+1) for ea
h j ∈ ω,(f) (Hθ, Cθ , (A(θ)j), xθ) ∈ B.Let G0 = �+0 = {∅}. Take an arbitrary λ0 ∈ � and a σ-lo
ally �nite open
over H′ = {H ′

θ : θ ∈ �−0 } of Xλ0 su
h that for ea
h θ ∈ �−0 , H ′
θ
is topped. Let

Hθ = p−1
λ0 (H ′

θ) for ea
h θ ∈ �−0 and H0 = {Hθ : θ ∈ �−0 }. Then H0 is a σ-lo
ally�nite 
olle
tion of topped, 
ylindri
ally open subsets in �. For ea
h θ ∈ �−0 , let
Cθ = Top(Hθ) and take a 
omplete sequen
e (A(θ)j) of open (in Cθ) 
overs of
Cθ and a xθ ∈ Cθ. Then, for ea
h θ ∈ �−0 , (Hθ, Cθ , (A(θ)j), xθ) ∈ B.Let n ∈ ω and assume that for ea
h k ≤ n, we have already obtained 
olle
tions
Gn,Hn and other 
olle
tions, satisfying the 
onditions (2){(5). Take a θ− ∈ �−

n .Let (Hθ− , Cθ− , (A(θ−)j), xθ−) ∈ B and Hθ− = ∏
λ∈γ−

Hλ × ��−γ− . For ea
h
A ∈ A(θ−)0, take an open subset BA of ∏

λ∈Rγ
−

Hλ = ∏
λ∈Rγ

−

Hλ su
h that
BA ∩ Cθ− = A. By Lemma 2(1), there is a σ-lo
ally �nite 
olle
tion W ′(θ−) =
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{W ′

γ : γ ∈ �θ−} of topped, open re
tangles of Xγ− su
h that ∏
λ∈Rγ

−

Hλ =
⋃
W ′(θ−) and for ea
h element W ′ ∈ W ′(θ−), W ′ is 
ontained in some memberof {BA : A ∈ A(θ−)0} ∪ {∏λ∈Rγ

−

Hλ − Cθ−}.For ea
h γ ∈ �θ− , let Cγ = Top(W ′
γ × ��−γ−) and �+θ− = {γ ∈ �θ− : Cγ ∩

Cθ− 6= ∅ and Cγ ×
∏

λ∈�−Rγ
−

{x∗λ} satis�es (*)} and �−θ− = �θ− − �+θ− .Let γ ∈ �+
θ−
. Then there are a �nite 
olle
tion {B(i) : i ≤ n} of R(i)-
ylindri
ally open subsets in �, i ≤ n, su
h that Cγ×

∏
λ∈�−γ−

{x∗λ} ⊂
⋃

i≤n B(i)and for ea
h i ≤ n, B(i) meets at most one member of D. Put Rγ = Rγ− ∪(⋃i≤n R(i)) and Wγ = W ′
γ ×Xγ−θ− . Put� = {x ∈ Wγ : pγ(D) is not dis
rete at x in Xγ}.Then � is a 
losed subset of Wγ and pγ(Cγ ×

∏
λ∈�−Rγ

−

{x∗λ}) ∩ � = ∅. Forea
h x ∈ Wγ − � − ⋃n
i=0 pγ(B(i)), take an open re
tangle neighborhood U(x)of x in Xγ su
h that U(x) meets at most one member of D and for ea
h x =(xλ) ∈ �, take an open re
tangle neighborhood U(x) = ∏

λ∈Rγ
U(xλ) of x in

Xγ , su
h that if xλ /∈ pλ(Cγ ×
∏

λ∈�−Rθ
−

{x∗λ}), λ ∈ Rγ , then U(xλ) ∩ pλ(Cγ ×∏
λ∈�−Rθ

−

{x∗λ}) = ∅. By Lemma 2(1), there is a σ-lo
ally �nite (in Xγ) 
olle
tion
Vγ = {Vξ : ξ ∈ �γ}, Vξ = ∏

λ∈Rγ
Vξ,λ for ea
h ξ ∈ �γ , of topped, open re
tanglesin Wγ su
h that Wγ = ⋃

Vγ = ⋃
{Vξ : ξ ∈ �γ} and {Vξ : ξ ∈ �γ} re�nes

{U(x) : x ∈ Wγ −
⋃n

i=0 pγ(B(i))} ∪ {pγ(B(0)), · · · , pγ(B(n))}. Put�+γ = {ξ ∈ �γ : Vξ meets at most one member of pγ(D)}and �−
γ = �γ − �+γ . Let�+

γ = {(γ, ξ) : ξ ∈ �+γ } and �−
γ = {(γ, ξ) : ξ ∈ �−

γ }.For ea
h θ = (γ, ξ) ∈ �+
γ , let Gθ = p−1γ (Vξ). For ea
h θ = (γ, ξ) ∈ �−

γ ,
Hθ = p−1γ (Vξ) = ∏

λ∈Rγ
Hθ,λ × ��−γ is a topped, Rγ -
ylindri
ally open subsetof �. Take an xθ = (xθ,λ) ∈ � su
h that Vξ ⊂ U(xθ). Sin
e Xγ has 
ountabletightness, it follows from Lemma 3 that there is a 
ountable subset Yθ = {yθ,i :

i ∈ ω} of ⋃
D su
h that pγ(D |Yθ) is not dis
rete at xθ in Xγ . Let Pθ = {λ ∈

Rθ− : pλ(Hθ) ∩ pλ(Cθ−) = Hθ,λ ∩ pλ(Cθ−) = ∅}. Then it is easy to prove thefollowing.
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γ and λ ∈ Rθ− . Then(1) α(Hθ,λ) ≤ α(Hθ−,λ) and λ ∈ Pθ if and only if α(Hθ,λ) < α(Hθ−,λ),(2) if xθ,λ /∈ pλ(Cθ−), then λ ∈ Pθ.Let Cθ = Top(Hθ). If λ ∈ Rθ− − Pθ, then pλ(Cθ) = pλ(Hθ) ∩ pλ(Cθ−). Takea 
omplete sequen
e (A(θ)j) of topped, open (in Cθ) re
tangle 
overs of Cθ su
hthat if R ⊂ Rθ− with R ∩ Pθ = ∅, pγ

R(A(θ)j) re�nes p
θ−
R (A(θ−)j+1) for ea
h

j ∈ ω. Then (Hθ, Cθ , (A(θ)j), xθ) ∈ B.Assume that γ ∈ �−
θ−
. Let Rγ = Rθ− , Wγ = W ′

γ , �+γ = �+
γ = Gγ = {∅},�−

γ = {ξγ}, Vξγ
= Wγ , �−

γ = {(γ, ξγ)}. For θ = (γ, ξγ), Hθ = p−1γ (Wγ) and
Cθ = Top(Hθ). De�ne Pθ as before and let xθ = xθ− . Take a 
omplete sequen
e(A(θ)j) of open (in Cθ) re
tangle 
overs of Cθ, satisfying the same 
ondition forea
h R ⊂ Rθ− with R ∩ Pθ = ∅. For θ ∈ �−

γ , γ ∈ �θ− , (Hθ, Cθ, (A(θ)j), xθ) ∈ B.Let �+
n+1 = ⋃

{�+
γ : γ ∈ �+

θ−
, θ− ∈ �−

n }, �−
n+1 = ⋃

{�−
γ : γ ∈ �θ− , θ− ∈ �−

n }and �n+1 = �+
n+1 ⊕ �−

n+1. For θ ∈ �−
n+1 and µ ∈ �−

n , µ < θ if θ− = µ andthere are γ ∈ �θ− and ξ ∈ �−
γ su
h that θ = (γ, ξ). Let Gn+1 = {Gθ : θ ∈ �+

n+1}and Hn+1 = {Hθ : θ ∈ �−
n+1}. Then Gn+1 and Hn+1 satisfy (2) and (3). Otherproperties are satis�ed by the above 
onstru
tion.Let G = ⋃

n∈ω Gn. By (2), it suÆ
es to prove that G 
overs �. Assumethat G does not 
over �. Take an x = (xλ) ∈ � − ⋃
G. Then, by (5)(b), we
an indu
tively 
hoose a sequen
e {θn: n ∈ ω} su
h that θn = (γn, ξn) ∈ �−

n ,
γn ∈ �θn−1 , ξn ∈ �−

γn
, θn−1 < θn, n ≥ 1 and x ∈ Hθn

for ea
h n ∈ ω.Claim 2. {n ≥ 1 : γn ∈ �+θn−1} is in�nite.Proof: Assume that {n ≥ 1 : γn ∈ �+
θn−1} is �nite. Then there is an n0 ≥ 1su
h that if n ≥ n0, then γn /∈ �+

θn−1 , that is, γn ∈ �−
θn−1 . Then for ea
h

n ≥ n0, Rγn = Rθn
= Rγn0 = Rθn0 . Let λ ∈ Rθn0 and n > n0. If λ ∈ Pθn

,then by (5)(
), we have α(pλ(Cθn+1)) < α(pλ(Cθn
)). So, there is an nλ ≥ n0su
h that if n > nλ, then λ /∈ Pθn

and hen
e, α(pλ(Cθn
)) = α(pλ(Cθnλ

)) and
pλ(Cθn

) ⊂ pλ(Cθnλ
). Take an ~n ∈ ω su
h that ~n > nλ for λ ∈ Rθn0 . Thus,if n > ~n, then Rθn0 ∩ Pθn

= ∅ and hen
e, Pθn
= ∅. Then {Cθn

: n > ~n} is ade
reasing sequen
e of nonempty 
losed subsets of Cθ~n . For ea
h n > ~n, thereis an An ∈ A(θn)0 su
h that Cθn
⊂ An. By (5)(e), there is an A′

n ∈ A(θ~n)n−~nsu
h that An ⊂ A′
n. Then C′ = ⋂

n≥~n Cθn
is nonempty and 
ompa
t. Let

C = C′ ×
∏

λ∈�−Rθ~n {x∗λ}. Then C is 
ompa
t. There is a �nite 
olle
tion
{B(i) : i ≤ k} of 
ylindri
ally open subsets in � su
h that C ⊂

⋃
i≤k B(i) andfor ea
h i ≤ k, B(i) meets at most one member of D. Then, by Lemma 1, thereis an m > ~n su
h that Cγm ×

∏
λ∈�−Rγm

{x∗λ} ⊂
⋃

i≤k B(i). Thus γm ∈ �+
θm−1 ,whi
h is a 
ontradi
tion. �



�-produ
ts of para
ompa
t �Ce
h-s
attered spa
es 135By Claim 2, {n ≥ 1 : γn ∈ �+θn−1} is in�nite. So there is a mapping φ : ω → ωsu
h that 1 ≤ φ(0) and for ea
h n ∈ ω, φ(n) < φ(n + 1), γφ(n) ∈ �+
θφ(n)−1 ,

pγφ(n)(D |Yθφ(n)) is not dis
rete at xθφ(n) and for ea
h k (φ(n) < k < φ(n + 1)),
γk ∈ �−θk−1 . Let Q = ⋃

n∈ω Rθn
= ⋃

n∈ω Rθφ(n) . ThenClaim 3. (1) Rθφ(n) ⊂ Rγφ(n+1) ⊂ Rθφ(n+1) for ea
h n ∈ ω and hen
e, for ea
h�nite subset F ⊂ Q, there is an n ≥ 1 su
h that F ⊂ Rγφ(n) ,(2) ⋃
{Supp(y) : y ∈ Yθφ(n) , n ∈ ω} ⊂ Q.After this in proof, we omit the index letter θ, γ and φ for simpli
ity. That is,

xθφ(n) , Hθφ(n) , Rγφ(n) , p
γφ(n)
γφ(k) , pγφ(k) , Pθφ(n) , Cθφ(n) and A(θφ(n))j are abbreviatedby xn, Hn, Rn, pn

k , pk, Pn, Cn and A(n)j respe
tively.Claim 4. For ea
h λ ∈ Q, there is an mλ ∈ ω su
h that for n > mλ, λ ∈
Rn−1 − Pn and xn,λ ∈ pλ(Cn) ⊂ pλ(Cn−1).Proof: For ea
h λ ∈ Q, by Claim 3(1), take an m ∈ ω su
h that if n > m, then
λ ∈ Rn−1. By the similar proof of Claim 2, there is an mλ ∈ ω with mλ ≥ msu
h that if n > mλ, then λ /∈ Pn. If there is an n > mλ su
h that xn,λ /∈ pλ(Cn),then by (5)(d-3), λ ∈ Pn, whi
h is a 
ontradi
tion. Thus for ea
h n > mλ,
xn,λ ∈ pλ(Cn) ⊂ pλ(Cn−1). �For m, k ≥ 1 with m > k, let Em

k = {pn
k(xn) : n ≥ m}. Then, for ea
h m > k,

Em+1
k ⊂ Em

k . Noti
e that for ea
h n ≥ m, pn
k : Xγφ(n) → Xγφ(k) . Choose an

mk > k with mk > max{mλ : λ ∈ Rk}. It follows from Claim 4 that for ea
h
n > mk, Rk ∩ Pn = ∅. Thus pn

k(xn)λ = xn,λ ∈ pλ(Cmk
) for λ ∈ Rk and n ≥ mk.Thus {Em

k : m ≥ mk} is a de
reasing sequen
e of 
losed subsets of pmk

k (Cmk
). Let

m > mk. Then we obtain Am ∈ A(Hm)0 and A′
m ∈ pmk

k (A(Hmk
)m−mk

) su
hthat Em
k
⊂ pm

k (Cm) ⊂ pm
k (Am) ⊂ A′

m. Thus Kk = ⋂
m≥k Em

k
(= ⋂

m≥mk
Em

k
)is nonempty and 
ompa
t. Sin
e pk+1

k
(Kk+1) ⊂ Kk for ea
h k ∈ ω, {Kk, pk+1

k
}is an inverse sequen
e of nonempty 
ompa
t spa
es. Hen
e there is a point (zk) ∈lim←−{Kk, pk+1

k
}. De�ne a point z = (zλ) ∈ � su
h that pk(z) = zk for ea
h k ≥ 1and zλ = x∗λ otherwise.We 
an show that D is not dis
rete at z. However, by Claim 4 and (5)(d-2),this is veri�ed in the same manner as the proof of [K1, Theorem 1℄. �4. Shrinking property of �-produ
tsA spa
e X is said to be shrinking if for every open 
over {Uλ : λ ∈ �} of X ,there is a 
losed 
over {Fλ : λ ∈ �} of X su
h that Fλ ⊂ Uλ for ea
h λ ∈ �.A spa
e X is said to be subshrinking if for every open 
over {Uλ : λ ∈ �} of X ,there is a 
losed 
over {Fλ,n : λ ∈ � and n ∈ ω} of X su
h that Fλ,n ⊂ Uλ for
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h λ ∈ � and n ∈ ω. It is well known that a spa
e X is shrinking if and only ifit is normal and subshrinking.Let {Xλ : λ ∈ �} be a 
olle
tion of spa
es and � be a �-produ
t of them.We may take a point yλ ∈ Xλ di�erent from x∗λ for ea
h λ ∈ �. For ea
h
s ∈ [�− R℄<ω, an open neighborhood Ws of x∗ | (� − R) in ��−R is said to bes-basi
 if Ws = ∏

λ∈s Wλ × ��−(R∪s), where Wλ is an open neighborhood of x∗λin Xλ with yλ /∈Wλ for ea
h λ ∈ s.Let G = {Gυ : υ ∈ �} be an open 
over of �. For R ∈ [�℄<ω and a subset Fin XR, let
M(F ) = {s ∈ [�−R℄<ω : there is an s-basi
 open neighborhood
Ws of x∗ | (�−R) su
h that F ×Ws ⊂ Gυ for some υ ∈ �}.Lemma 4 (Tanaka and Yajima [TY℄). Let � be a �-produ
t of spa
es Xλ, λ ∈ �,and let G = {Gυ : υ ∈ �} be an open 
over of �. If there is a σ-lo
ally �nite
losed 
over {Eθ : θ ∈ �+} of � su
h that ea
h Eθ, θ = (γ, ξ) ∈ �+, γ ∈ �θ− ,

ξ ∈ �−
γ , θ− ∈ �, is an Rγ-
ylindri
ally 
losed set in �, satisfying

Eθ ⊂
⋃
{p−1�−γ

(Ws) : s ∈M(pγ(Eθ))},where Rγ ∈ [�℄<ω and p�−γ denotes the proje
tion of � onto ��−γ , then thereis a 
losed 
over {Fυ,n : υ ∈ � and n ∈ ω} of � su
h that Fυ,n ⊂ Gυ for ea
h
υ ∈ � and n ∈ ω.Theorem 2. If � is a �-produ
t of �rst 
ountable, subpara
ompa
t �Ce
h-s
attered spa
es, then it is subshrinking.Proof: Let � be a �-produ
t of �rst 
ountable, subpara
ompa
t DC-like spa
es
Xλ, λ ∈ �, with a base point x∗ = (x∗λ) ∈ �. Let G = {Gυ : υ ∈ �} be an open
over of �. A subset A of � is said to satisfy (**) if there is a �nite 
olle
tion Bof 
ylindri
ally open subsets in � su
h that A ⊂

⋃
B and for ea
h B ∈ B, thereis a G ∈ G su
h that B ⊂ G.De�ne a 
olle
tion B similarly: (E, CE , (A(E)j), xE) ∈ B if(1) (a) E = ∏

λ∈RE
Eλ × ��−RE

is a topped, RE-
ylindri
ally 
losed subset in� and CE = Top(E),(b) (A(E)j) is a sequen
e of open (in CE) 
overs of CE su
h that for ea
h
R ⊂ RE , (pRE

R (A(E)j)) is a 
omplete sequen
e of open 
overs of pRE

R (CE),(
) xE ∈ XRE
.Indu
tively, for ea
h n ∈ ω, we shall obtain an index set �n = �+

n ⊕�−
n of n-thlevel of a tree with height ω su
h that θ ∈ �n and γ ∈ �θ assign 
ylindri
ally 
losedsubset Eθ, index sets �θ and �γ = �+γ ⊕ �−

γ , �nite subsets Rγ , Rθ, Pθ ∈ [�℄<ω,
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es 137�Ce
h-
omplete subsets Cγ , Cθ, points xθ ∈ Xγ , yγ,k ∈ �, basi
 open subsets
Uγ(·), Uγ(·, k) ⊂ Xγ , satisfying the following 
onditions (2){(5): for n ∈ ω,(2) {Eθ : θ ∈ �n} is σ-lo
ally �nite in �,(3) for n ≥ 1,(a) for ea
h θ− ∈ �n−1, {Cγ : γ ∈ �θ−} is a σ-lo
ally �nite 
olle
tion of �Ce
h-
omplete 
losed subsets of Eθ− , indu
ed by A(θ−)0 and �+θ− = {γ ∈ �θ− :

Cγ ∩Cθ− 6= ∅ and Cγ×
∏

λ∈�−Rγ
{x∗λ} satisfy (**)} and �−θ− = �θ−−�+θ− ,(b) for ea
h γ ∈ �θ− , �γ = �+γ ⊕ �−
γ is de�ned and �+

n = {θ = (γ, ξ) : γ ∈�+θ− , ξ ∈ �+γ , θ− ∈ �−
n−1}, �−

n = {θ = (γ, ξ) : γ ∈ �θ− , ξ ∈ �−
γ , θ− ∈�−

n−1}, �n = �+
n ⊕�−

nand for ea
h θ = (γ, ξ) ∈ �n,(
) θ− < θ,(d) Rθ− ⊂ Rγ ,(4) for ea
h θ ∈ �+
n , Eθ ⊂

⋃
{p−1�−γ

(Ws) : s ∈M(pγ(Eθ))},(5) for ea
h θ = (γ, ξ) ∈ �−
n , γ ∈ �θ− , ξ ∈ �−

γ , θ− ∈ �−
n−1,(a) Eθ− is a topped, Rγ−-
ylindri
ally 
losed set in �, where

Eθ− = ∏
λ∈Rγ

−

Eθ,λ × ��−γ− su
h that (Eθ− , Cθ− , (A(θ−)j), xθ−) ∈ B,(b) Eθ− = ⋃
{Eµ : µ ∈ �n with θ− < µ},(
) for ea
h x ∈ Xγ , {Uγ(x, k) : k ∈ ω} is a neighborhood base at x, 
onsistingof basi
 open subsets in Xγ , su
h that Uγ(x) = Uγ(x, 0) and Uγ(x, k+1) ⊂

Uγ(x, k) for ea
h k ∈ ω,(d) Pθ = {λ ∈ Rθ− : α(Eθ,λ) < α(Eθ−,λ)},(e) if γ ∈ �+
θ−
, then(e-1) xθ = (xθ,λ) ∈ pγ(Eθ−),(e-2) pγ(Eθ) ⊂ Uγ(xθ),(e-3) pγ

γ−(Uγ(xθ)) ⊂ Uγ−(xθ−), where n ≥ 2 and θ = (γ, ξ) and θ− =(γ−, ξ′) for γ− ∈ �µ, ξ ∈ �−
γ , µ ∈ �−

n−2 and ξ′ ∈ �−
µ ,(e-4) yθ,k ∈ p−1γ (Uγ(xθ , k)) − ⋃

{p−1�−γ
(Ws) : s ∈ M(Uγ(xθ , k))} for ea
h

k ∈ ω,(e-5) if λ ∈ Rθ− with xθ,λ /∈ pλ(Cθ−), then λ ∈ Pθ,(e-6) Rθ = ⋃
{〈Supp(yµ,j)〉k : µ ≤ θ and j, k ≤ n} ∪Rγand if γ ∈ �−

θ−
, then(e-6) Rθ = Rγ = Rθ− ,(e-7) xθ = xθ− ,



138 H.Tanaka(f) Cθ = Top(Eθ) and (A(θ)j) is a sequen
e of open (in Cθ) 
overs of Cθ su
hthat for R ⊂ Rγ ,(f-1) p
γ
R(A(θ)j) is a 
omplete sequen
e of open (in p

γ
R(Cθ)) 
overs of

pγ
R(Cθ),(f-2) if R ⊂ Rθ− with R ∩ Pθ = ∅, then pγ

R
(A(θ)j) re�nes p

θ−
R
(A(θ−)j+1)for ea
h j ∈ ω,(g) (Eθ, Cθ , (A(θ)j), xθ) ∈ B.Take an arbitrary λ0 ∈ � and a σ-lo
ally �nite 
losed 
over E ′ = {E′

θ : θ ∈�−0 } of Xλ0 su
h that for ea
h θ ∈ �−0 , E′
θ is topped. Put �+0 = {∅} and�0 = �+0 ⊕ �−0 = �−0 . For ea
h θ ∈ �−0 , let Eθ = p−1

λ0 (E′
θ) and let Cθ =Top(Eθ). Take a 
omplete sequen
e (A(θ)j) of open (in Cθ) 
overs of Cθ and a

xθ ∈ Cθ . Let (Uλ0(xθ , k)) be a 
ountable, open neighborhood base at xθ in Xλ0su
h that Uλ0(xθ, k + 1) ⊂ Uλ0(xθ, k) for ea
h k ∈ ω. Then, for ea
h θ ∈ �−0 ,(Eθ , Cθ, (A(θ)j), xθ) ∈ B.Let n ∈ ω and assume that for ea
h k ≤ n, we have already obtained a
olle
tion {Eθ : θ ∈ �k} and other 
olle
tions, satisfying (2){(5). Take a θ− ∈ �−
n .Let (Eθ− , Cθ− ,A(θ−)j , xθ−) ∈ B, where E = ∏

λ∈Rγ
−

Eλ × ��−Rγ
−

. For ea
h
A ∈ A(θ−)0, take an open subset BA in ∏

λ∈Rγ
−

Eλ su
h that BA ∩ CE = A.By Lemma 2(2), there is a σ-lo
ally �nite 
olle
tion H(E) = {H ′
γ : γ ∈ �θ−} oftopped, 
losed re
tangle subsets of ∏

λ∈Rγ
−

Eλ su
h that ∏
λ∈Rγ

−

Eλ = ⋃
H(E)and for ea
h γ ∈ �θ− , H ′

γ is 
ontained in some member of {BA : A ∈ A(θ−)0} ∪
{
∏

λ∈Rγ
−

Eλ − Cθ−}.For ea
h γ ∈ �θ− , let Cγ = Top(H ′
γ × ��−γ−) and �+θ− = {γ ∈ �θ− : Cγ ∩

Cθ− 6= ∅ and Cγ ×
∏�−Rγ

−

{x∗λ} satisfy (**)} and �−θ− = �θ− − �+θ− .Let γ ∈ �+
θ−
. Then there is a �nite 
olle
tion B of 
ylindri
ally open subsetsin � su
h that Cγ ×

∏
λ∈�−γ−

{x∗λ} ⊂
⋃
B and for ea
h B ∈ B, there is a G ∈ Gsu
h that B ⊂ G. De�ne Rγ as before and Hγ = H ′

γ ×Xγ−γ− . Let
 = {V : V is an open subset in Xγ meeting Hγ su
h that
p−1γ (V ) ⊂⋃

{p−1�−γ(Ws) : s ∈M(V )}} and�γ = Hγ −
⋃
.It is 
lear that pγ(Cγ×

∏
λ∈�−Rγ

−

{x∗λ})∩�γ = ∅. By Lemma 2(2), every open
over of Hγ has a σ-lo
ally �nite re�nement, 
onsisting of topped, 
losed re
tan-gles. The rest of the 
onstru
tion is similar to that in the proofs of Theorem 1,[TY, Theorem 4.2℄ and [Y2, Theorem 4℄.
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es 139Let � = ⋃
n∈ω �n, �+ = ⋃

n≥1�+
n and E = {Eθ : θ ∈ �+}. It follows from(2) and (5) that E is a σ-lo
ally �nite 
olle
tion of 
ylindri
ally 
losed sets in �and for ea
h θ ∈ �+, Eθ ⊂

⋃
{p−1�−γ

(Ws) : s ∈ M(pγ(Eθ))}. By Lemma 4, itsuÆ
es to prove that E is a 
over of �. Assume that there is a point x = (xλ) ∈�−⋃
E . By (5)(b), we 
an indu
tively 
hoose a sequen
e {θn : n ∈ ω} su
h that

θn = (γn, ξn) ∈ �n, γn ∈ �θn−1 , ξn ∈ �−
γn
, θn−1 < θn, n ≥ 1 and x ∈ Eθn

forea
h n ∈ ω. By the same proof of Claim 2 in Theorem 1, {n ∈ ω : γn ∈ �+
θn−1}is in�nite. Then there is also a mapping φ : ω → ω su
h that for ea
h n ∈ ω,

φ(n) < φ(n + 1), γφ(n) ∈ �+
θφ(n)−1 and for ea
h k (φ(n) < k < φ(n + 1)),

γk ∈ �−k−1.As the proof of Theorem 1, we also omit the index letter θ, γ and φ forsimpli
ity. Let Q = ⋃
n∈ω Rn. As the same way as Claim 4 in Theorem 1, forea
h λ ∈ Q, there is an mλ ≥ 1 su
h that for ea
h n > mλ, λ ∈ Rn−1 − Pn,

xn,λ ∈ pλ(Cn) ⊂ pλ(Cn−1). (We similarly use Cn.) Let us de�ne Fm
k (we use Em

kin the proof of Theorem 1) and Kk for ea
h k, m ≥ 1 with m > k as before. Thenthere is a point (zk) ∈ lim←−{Kk, pk+1
k
}. De�ne a point z = (zλ) ∈ � su
h that

pk(z) = zk for ea
h k ∈ ω and zλ = x∗λ otherwise. Then we have a 
ontradi
tionin the same argument as [Y2, Lemma 7℄. �By Theorem 1, 2, we haveTheorem 3. If � is a �-produ
t of �rst 
ountable, para
ompa
t �Ce
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