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How non-symmetri
 
an a 
opula be?Eri
h Peter Klement, Radko MesiarAbstra
t. A two-pla
e fun
tion measuring the degree of non-symmetry for (quasi-)
opu-las is 
onsidered. We 
onstru
t 
opulas whi
h are maximally non-symmetri
 on 
ertainsubsets of the unit square. It is shown that there is no 
opula (and no quasi-
opula)whi
h is maximally non-symmetri
 on the whole unit square.Keywords: 
opula, quasi-
opula, symmetry, opposite diagonalClassi�
ation: Primary 62H05; Se
ondary 62E101. Introdu
tionCopulas (�rst mentioned in [11℄, for an ex
ellent survey see [9℄) and quasi-
opulas (introdu
ed in [1℄ and 
onveniently 
hara
terized in [4℄) play a key rolein the analysis of bivariate distribution fun
tions with given marginals. Thebasi
 result in this 
ontext is Sklar's Theorem ([11℄, [12℄) showing that the jointdistribution of a random ve
tor and the 
orresponding marginal distributions arelinked by some 
opula: if (X, Y ) is a random ve
tor, FX , FY : [−∞,∞℄ → [0, 1℄are its marginal distribution fun
tions, then HXY : [−∞,∞℄2 → [0, 1℄ is a jointdistribution of (X, Y ) if and only if there is a two-dimensional 
opula CXY su
hthat for all (x, y) ∈ [−∞,∞℄2 we have

HXY (x, y) = CXY (FX (x), FY (y)).Moreover, if FX and FY are 
ontinuous then CXY is unique, otherwise CXY isuniquely determined only on Ran(FX )× Ran(FY ).Re
all that a (two-dimensional) 
opula is a fun
tion C: [0, 1℄2 → [0, 1℄ su
hthat C(0, x) = C(x, 0) = 0 and C(1, x) = C(x, 1) = x for all x ∈ [0, 1℄, and C is2-in
reasing, i.e., for all x1, x2, y1, y2 ∈ [0, 1℄ with x1 ≤ x2 and y1 ≤ y2 we have
C(x1, y1) + C(x2, y2) ≥ C(x1, y2) + C(x2, y1).A quasi-
opula is a fun
tion Q: [0, 1℄2 → [0, 1℄ su
h that Q(0, x) = Q(x, 0) = 0 and

Q(1, x) = Q(x, 1) = x for all x ∈ [0, 1℄, Q is non-de
reasing (in ea
h 
omponent),and Q is 1-Lips
hitz, i.e., for all x1, x2, y1, y2 ∈ [0, 1℄
|Q(x1, y1)− Q(x2, y2)| ≤ |x1 − x2|+ |y1 − y2|.Both authors were supported by COST A
tion 274 TARSKI. The se
ond author was alsosupported by the grants VEGA 1/0273/03 and GA�CR 402/04/1026.



142 E.P.KlementObviously, ea
h 
opula is a quasi-
opula, but not vi
e versa. Ea
h 
opula Csatis�es(1.1) W ≤ C ≤ M,where the Fr�e
het-Hoe�ding lower and upper bounds W and M are given by
W (x, y) = max(x+ y − 1, 0) and M(x, y) = min(x, y), respe
tively, and the sameholds for quasi-
opulas.In general, a 
opula is neither symmetri
 (
ommutative) nor asso
iative(see [8℄), and it is well-known that ea
h asso
iative 
opula is also symmetri
 and,
onsequently, a (
ontinuous) triangular norm [6℄, [10℄(again the 
onverse does notne
essarily hold).There is a 
lose relationship between symmetri
 
opulas and inter
hangeablerandom variables X and Y (where the random ve
tors (X, Y ) and (Y, X) are iden-ti
ally distributed). Clearly, two inter
hangeable random variables X and Y mustbe identi
ally distributed, i.e., have a 
ommon univariate distribution fun
tion,and for identi
ally distributed random variables X and Y their inter
hangeabilityis equivalent to the symmetry of their 
opula CXY (see [9, Theorem 2.7.4℄).As a 
onsequen
e, for ex
hangeable random variables X and Y with 
opula C,the symmetry of C implies C(y, x) = C(x, y). In general (i.e., for non-ex
hange-able random variablesX and Y ) this is no more true, but any estimate of the value
C(y, x) by means of C(x, y) will be helpful when modelling bivariate statisti
aldata, espe
ially in order to ex
lude irrelevant models.Therefore, we are interested in \how non-symmetri
" a 
opula 
an be, and we
onstru
t 
opulas whi
h are \maximally" non-symmetri
 on 
ertain distinguishedsubsets of the unit square. Finally we show that no 
opula (and no quasi-
opula)
an be \maximally" non-symmetri
 on the whole unit square.2. Degree of non-symmetryGiven a 
opula C, the fun
tion dC : [0, 1℄2 → [0, 1℄ de�ned by

dC (x, y) = |C(x, y)− C(y, x)|provides a \measure" of its non-symmetry at ea
h point of the unit square [0, 1℄2,and its Chebyshev norm ‖dC‖∞ given by
‖dC‖∞ = sup{dC(x, y) | (x, y) ∈ [0, 1℄2}
an be viewed as the degree of non-symmetry of C. Obviously, for ea
h 
opula Cthe fun
tion dC vanishes on the boundary as well as on the diagonal {(x, x) | x ∈[0, 1℄} of [0, 1℄2. Also, a 
opula C is symmetri
 if and only if ‖dC‖∞ = 0.



How non-symmetri
 
an a 
opula be? 143Example 2.1. The 
opula C given by C(x, y) = xy − x3y(1 − x)(1 − y) isnon-symmetri
, and we obtain dC (x, y) = xy(1 − x)(1 − y)|x2 − y2|. A simple
omputation then yields ‖dC‖∞ = dC(0.3418922, 0.7768102) = 0.0189801.In order to �nd out the maximal degree of non-symmetry of 
opulas 
onsiderthe fun
tion d ∗: [0, 1℄2 → [0, 1℄ de�ned by
d ∗ = sup{dC | C is a 
opula}.
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d∗ d∗−dC1/3 d∗−dC3/13Figure 1: Maximal non-symmetryWe now 
ompute the fun
tion d ∗ (see Figure 1 left) and show that for ea
hpoint (x0, y0) ∈ [0, 1℄2 we 
an �nd a 
opula C su
h that dC and d ∗ 
oin
ide ontwo straight line segments 
ontaining the points (x0, y0) and (y0, x0).Proposition 2.2.(i) For all (x, y) ∈ [0, 1℄2 we have d ∗(x, y) = min(|x − y|, x, y, 1− x, 1− y).(ii) For ea
h λ ∈ [0, 1℄ the fun
tion Cλ: [0, 1℄2 → [0, 1℄ given by
Cλ(x, y) = max(M(x, y − λ), W (x, y))is a 
opula su
h that we have dCλ

(x, y) = d ∗(x, y) for all (x, y) ∈ [0, 1℄2with |x − y| = λ.Proof: Let C be a 
opula and assume, without loss of generality, x ≤ y and
C(x, y) ≤ C(y, x). Then the monotoni
ity of C yields C(x, y) ≤ C(y, x) ≤ C(y, y)whi
h, together with (1.1) and the fa
t that C is 1-Lips
hitz, implies dC(x, y) ≤min(|x − y|, M(x, y) − W (x, y)). A simple 
omputation shows that the latterexpression 
oin
ides with min(|x− y|, x, y, 1− x, 1− y), i.e., for all (x, y) ∈ [0, 1℄2

dC(x, y) ≤ min(|x − y|, x, y, 1− x, 1− y).



144 E.P.KlementNow �x an arbitrary point (x0, y0) ∈ [0, 1℄2 and put λ = |x0− y0|. If we 
an showthat Cλ in (ii) is a 
opula satisfying(2.1) dCλ
(x0, y0) = min(λ, x0, y0, 1− x0, 1− y0)this will 
omplete the proof of (i).Sin
e Cλ is a shu�e of M it is a 
opula (see [9℄). Note that for ea
h (x, y) ∈[0, 1℄2

dCλ
(x, y) = min(max(min(x − λ, y, 1− x, 1− λ − y),min(y − λ, x, 1− y, 1− λ − x), 0), |x − y|, λ).Then the veri�
ation of (2.1) is a matter of simple but tedious 
he
king of allpossible 
ases. Sin
e λ only depends on |x0 − y0|, the proof of (ii) is 
omplete,too. �An immediate 
onsequen
e of Proposition 2.2 is the following:Corollary 2.3. For ea
h 
opula C and ea
h (x, y) ∈ [0, 1℄2 we have:

C(y, x) ∈ [max(W (y, x), C(x, y) − |x − y|),min(M(y, x), C(x, y) + |x − y|)℄ .Observe that the estimate for C(y, x) in Corollary 2.3 is better than the es-timate derived from the Fr�e
het-Hoe�ding bounds W and M : if for a 
opula Cwe have C(0.5, 0.6) = 0.3 then the Fr�e
het-Hoe�ding bounds imply C(0.6, 0.5) ∈[0.1, 0.5℄, whereas Corollary 2.3 tells us C(0.6, 0.5) ∈ [0.2, 0.4℄.Although 
opulas form a proper sub
lass of the 
lass of quasi-
opulas, the fa
tthat we did not need the 2-in
reasingness of 
opulas implies:Corollary 2.4. We also have d ∗ = sup{dQ | Q is a quasi-
opula}.
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smallest: Q
ω∗

arbitrary greatest: C1/3Figure 2: Copulas with opposite diagonal ω∗Some straightforward 
al
ulations show that the maximal value of d ∗ equals13 and that there is indeed a 
opula, namely, C1/3 (see Figure 2 right) su
h that
dC1/3 attains this maximal value in the points (13 , 23 ) and (23 , 13 ) (see Figure 1
enter):



How non-symmetri
 
an a 
opula be? 145Corollary 2.5.(i) For ea
h λ ∈
[0, 13] we have

‖dCλ
‖∞ = dCλ

(λ, 1− λ) = λ.(ii) In parti
ular, we have
‖d ∗‖∞ = d ∗(13 , 23 ) = 13 = dC1/3 (13 , 23 ) = ‖dC1/3‖∞.Example 2.6. From the proof of Proposition 2.2 it follows that in the 
lass SMof shu�es of M (see [9℄) for ea
h (x0, y0) ∈ [0, 1℄2 we 
an �nd a 
opula C ∈ SMsu
h that dC (x0, y0) = d ∗(x0, y0). For other well-known 
lasses of 
opulas thisdoes not hold:(i) Evidently, for ea
h asso
iative (and, 
onsequently, for ea
h Ar
himedean)
opula C the fun
tion dC vanishes on the whole unit square [0, 1℄2.(ii) In the 
lass A of maximum attra
tors [2℄ (
ompare also [3℄, [7℄) we obtainsup{‖dC‖∞ | C ∈ A} = 15 · (45 )4.This extremal value is attained in the points (13 , 23 ) and (23 , 13 ) by thefun
tion dCA

, where the maximum attra
tor CA is given by
CA(x, y) = (xy)A( log xlog(xy) )and the dependen
e fun
tion A: [0, 1℄ → [0, 1℄ by

A(x) = { 1− x if x ∈
[0, 13]

,

x+12 otherwise.Example 2.7. Although for the 
opula C1/3 we know that dC1/3 attains themaximal value of d ∗ in (13 , 23 ), there are other members of the family (Cλ)λ∈[0,1℄su
h that the area of the subset of [0, 1℄2 on whi
h dCλ
and d ∗ 
oin
ide is greater.In general, for λ ∈ [0, 1℄ the area of the subset of [0, 1℄2 on whi
h dCλ

and d ∗
oin
ide equals (1 − λ)2 + (max(1 − 2λ, 0))2 − 2(max(1 − 3λ, 0))2, assuming itsmaximal value 913 for λ = 313 (see Figure 1 right).



146 E.P.Klement3. Non-symmetry and opposite diagonal se
tionA 
loser look at the 
opula C1/3 shows that the fun
tions dC1/3 and d ∗ 
oin
ideon [13 , 23]2
∪ {(x, y) ∈ [0, 1℄2 | |x − y| ≥ 13} (see Figure 1 
enter). This means, inparti
ular, that we have dC1/3 (x, 1−x) = d ∗(x, 1−x) for all x ∈ [0, 1℄, i.e., C1/3 is\maximally non-symmetri
" on the whole opposite diagonal {(x, 1−x) | x ∈ [0, 1℄}of the unit square [0, 1℄2 (note that C1/3 is the only 
opula in the family (Cλ)λ∈[0,1℄with this property).From [5℄ we know that, for a given 
opula C, its opposite diagonal se
tion

ωC : [0, 1℄ → [0, 1℄ de�ned by ωC(x) = C(x, 1− x) must be a 1-Lips
hitz fun
tionsatisfying ωC(0) = ωC(1) = 0.Therefore, if for some 
opula C we require dC (x, 1 − x) = d ∗(x, 1 − x) forall x ∈ [0, 1℄, the only possibilities are either ωC = ω∗ or ωC = ω1, where thefun
tions ω∗, ω1: [0, 1℄ → [0, 1℄ are given by
ω∗(x) = max(min(x, 23 − x), 0),
ω1(x) = max(min(1− x, x − 13 ), 0).However, if for some (ne
essarily non-symmetri
) 
opula C we have ωC = ω∗ thenfor the 
opula C1 de�ned by C1(x, y) = C(y, x) we have ωC1 = ω1. This meansthat we 
an restri
t our 
onsiderations to 
opulas C satisfying ωC = ω∗.From [5, Proposition 7.3℄ it follows that C1/3 is just the greatest 
opula withopposite diagonal se
tion ω∗. Moreover, be
ause of [5, Proposition 6.5(ii)℄ thesmallest quasi-
opula Q
ω∗

with opposite diagonal se
tion ω∗ is given by
Q

ω∗
(x, y) = 












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
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

















x if (x, y) ∈ [0, 13]

×
[23 , 1] ,max(x + y − 23 , 0) if (x, y) ∈ [0, 13]

×
[13 , 23[

,max(x + y − 1, 13 ) if (x, y) ∈ ]13 , 23]

×
[23 , 1] ,

y − 13 if (x, y) ∈ ]13 , 23]

×
[13 , 23[

,

W (x, y) otherwise.For our spe
ial opposite diagonal se
tion ω∗, the quasi-
opula Q
ω∗

turns out tobe a 
opula sin
e it is again a shu�e of M (see Figure 2 left).With these preliminary 
onsiderations, we are able to show:Proposition 3.1. There is no 
opula C su
h that dC = d ∗.Proof: Suppose that C is a 
opula su
h that dC = d ∗. Then, in parti
ular, dCand d ∗ must 
oin
ide on the opposite diagonal, i.e., we must have either ωC = ω∗or ωC = ω1. Assume without loss of generality that ωC = ω∗. Sin
e Q
ω∗

and
C1/3 are the smallest and greatest 
opula with opposite diagonal se
tion ω∗, it



How non-symmetri
 
an a 
opula be? 147follows immediately that ea
h 
opula C with ωC = ω∗ 
oin
ides with Q
ω∗

and
C1/3 on [0, 1℄2 \ (

( ]0, 13[

×
]13 , 23 [) ∪ (]13 , 23[

×
]23 , 1[ )

)(see Figure 2 
enter | the question marks indi
ate the regions where C is notuniquely determined by the lower and upper bounds Q
ω∗

and C1/3). As a 
on-sequen
e, C 
oin
ides with the symmetri
 
opula W on the set [0, 13]2
∪

[23 , 1]2,implying that dC vanishes on this set. Sin
e d ∗ vanishes only on the boundaryand the diagonal of [0, 1℄2 this shows that for no 
opula C the equality dC = d ∗
an hold. �Sin
e again the 2-in
reasingness of 
opulas was not used in our argument, wealso have shown:Corollary 3.2. There is no quasi-
opula Q su
h that dQ = d ∗.Example 3.3. Clearly, for ea
h symmetri
 (quasi-)
opula C the value ‖d ∗ −

dC‖∞ attains its maximum 13 . For the family (Cλ)λ∈[0,1℄ of 
opulas 
onsidered inProposition 2.2(ii) we obtain ‖d ∗ − dCλ
‖∞ = min(max(13 − λ, λ2 ), 13 ). This valueis minimal for λ = 29 , and we get ‖d ∗ − dC2/9‖∞ = 19 . Observe, however, thatalso for λ ∈

[23 , 1[ we get the maximal value ‖d ∗ − dCλ
‖∞ = 13 , although the
orresponding 
opulas Cλ are non-symmetri
.Note added in proof: Similar results were obtained independently by R.B. Nel-sen (Extremes of nonex
hangeability, Statist. Papers, to appear).Referen
es[1℄ Alsina C., Nelsen R.B., S
hweizer B.,On the 
hara
terization of a 
lass of binary operationson distribution fun
tions, Statist. Probab. Lett. 17 (1993), 85{89.[2℄ Cap�era�a P., Foug�eres A.-L., Genest C., A nonparametri
 estimation pro
edure for bivariateextreme value 
opulas, Biometrika 84 (1997), 567{577.[3℄ Cap�era�a P., Foug�eres A.-L., Genest C., Bivariate distributions with given extreme valueattra
tor, J. Multivariate Anal. 72 (2000), 30{49.[4℄ Genest C., Quesada Molina J.J., Rodr��guez Lallena J.A., Sempi C., A 
hara
terization ofquasi-
opulas, J. Multivariate Anal. 69 (1999), 193{205.[5℄ Klement E.P., Koles�arov�a A., Extension to 
opulas and quasi-
opulas as spe
ial 1-Lips
hitzaggregation operators, Kybernetika (Prague) 41 (2005), 329{348.[6℄ Klement E.P., Mesiar R., Pap E., Triangular Norms, Kluwer A
ademi
 Publishers, Dor-dre
ht, 2000.[7℄ Klement E.P., Mesiar R., Pap E., Ar
himax 
opulas and invarian
e under transformations,C.R. Math. A
ad. S
i. Paris 340 (2005), 755-758.[8℄ Mikusi�nski P., Taylor M.D., A remark on asso
iative 
opulas, Comment. Math. Univ. Ca-rolinae 40 (1999), 789{793.[9℄ Nelsen R.B., An introdu
tion to 
opulas, Le
ture Notes in Statisti
s 139, Springer, NewYork, 1999.[10℄ S
hweizer B., Sklar A., Probabilisti
 Metri
 Spa
es, North-Holland, New York, 1983.
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