
Commentationes Mathematicae Universitatis Carolinae

Konrad Pióro
On a property of neighborhood hypergraphs

Commentationes Mathematicae Universitatis Carolinae, Vol. 47 (2006), No. 1, 149--154

Persistent URL: http://dml.cz/dmlcz/119581

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119581
http://project.dml.cz


Comment.Math.Univ.Carolin. 47,1 (2006)149{154 149
On a property of neighborhood hypergraphsKonrad Pi�oroAbstrat. The aim of the paper is to show that no simple graph has a proper subgraphwith the same neighborhood hypergraph. As a simple onsequene of this result weinfer that if a lique hypergraph G and a hypergraph H have the same neighborhoodhypergraph and the neighborhood relation in G is a subrelation of suh a relation in H,then H is insribed into G (both seen as overings). In partiular, if H is also a liquehypergraph, then H = G.Keywords: graph, neighbor, neighborhood hypergraph, lique hypergraphClassi�ation: 05C99, 05C69, 05C65Reall (see e.g. [1℄) that a hypergraph G = (V, E) onsists of a �nite set V of ver-ties and a �nite sequene E of hyperedges, where eah hyperedge is a non-emptysubset of V , and the union of all hyperedges is V (note that a hypergraph mayhave multiple hyperedges). A hypergraph is simple, if no hyperedge is ontainedin another hyperedge.With an ordinary graph G at least two hypergraphs an be assoiated. The�rst onsists of all maximal liques of G and is alled the lique hypergraph.These hypergraphs form an important sublass of hypergraphs. For example,they are related with the Helly property (see [1℄), and they also appear in thelique-transversal problem (see [4℄), and onsequently in graph oloring problems(see e.g. [5℄).The seond hypergraph assoiated with G is formed by neighborhoods of ver-ties. Reall (see [1℄) that two verties of G are neighbors if they are adjaent orequal. The set of all neighbors of a vertex v is denoted by NG(v) and alled theneighborhood of v. Next, we take all pairwise di�erent neighborhoods in G toobtain a new hypergraph N (G) on the vertex set of G, alled the neighborhoodhypergraph of G. N (G) has no multiple hyperedges, but, in general, N (G) isnot simple. Of ourse, hypergraphs N (H)max (onsisting of all maximal hyper-edges of N (G) with respet to inlusion) and N (G)min (onsisting of all minimalhyperedges of N (G)) are simple, but they play no important role here.Theorem 1. Let G be a simple graph and H its subgraph. If N (H) = N (G),then H = G.



150 K.Pi�oroProof: Take a vertex v of H suh that NH(v) is maximal up to inlusion. Let
XH be the set of all verties w of H suh that NH(w) = NH(v), and XG be theset of all verties w of G suh that NG(w) = NH(v).Sine NH(v) orresponds to a maximal (up to inlusion) hyperedge of N (H) =
N (G) and H is a subgraph of G, we infer that

XH ⊆ XG,in partiular NH(v) = NG(v).Assume that there is a vertex w ∈ XG \ XH . Sine NG(w) = NH(v) and
w ∈ NG(w) (by the de�nition), the verties v and w are adjaent in H , thus alsoin G.Sine NH(w) ⊆ NG(w) = NH(v) and NH(w) 6= NH(v) (by the assumption),there exists a vertex u suh that

u ∈ NH(v) = NG(w) and u /∈ NH(w).Then
NH(u) 6= NG(u).Hene and by the equality N (H) = N (G), there is a vertex u′ suh that
NH(u) = NG(u′).Then v ∈ NH(u) = NG(u′), i.e. the verties v and u′ are adjaent in G.On the other hand,

w /∈ NH(u) = NG(u′),so
u′ /∈ NG(w) = NH(v) = NG(v),i.e. the verties u′ and v are not adjaent in G. This ontradition implies

XH = XG.Observe now that the verties of X = XH = XG form a lique in both the graphs
H and G and the sets of neighbors of every vertex of X in the rest of the graphs Hand G are the same. Thus to end the proof it is suÆient to apply the indution(on the order of graph) to the pair of graphs H \ X and G \ X (note that theymay have isolated verties, but it is not a problem). �Reall that a simple hypergraph G is said to be a lique hypergraph, if it is thelique hypergraph of some graph G. Observe that neighborhoods of eah vertex
v in G and G are the same, in partiular N (G) = N (G) (where neighbors ina hypergraph are de�ned analogously as for a graph). Moreover, G is uniquely



On a property of neighborhood hypergraphs 151determined (therefore it will be sometimes denoted by GG). Beause two di�erentverties of G are adjaent if and only if they are both ontained in a hyperedgeof G. Hene it also easy follows (see [1℄) that a simple hypergraph G = (V, E) isa lique hypergraph if and only if for eah subset A of V , the following onditionholds:(C2) if every pair of verties of A belongs to some hyperedge of G, then A isontained in a hyperedge of G.(Hypergraphs satisfying (C2), not neessarily simple, were alled onformal byBerge in [1℄. However, today the onept of onformality has a slightly di�erentmeaning (see e.g. [6℄).)(C2) is related with the Helly property (see [1℄). More preisely, a hypergraph
G = (V, E) has the Helly property (i.e. for any F ⊆ E , if any two hyperedges in
F have a non-empty intersetion, then the intersetion of F is also non-empty)if and only if its dual G∗ satis�es (C2). G∗ = (E , V ∗) is the hypergraph whoseverties are hyperedges of G and the set of hyperedges is V ∗ = {G(v): v ∈ V },where G(v) = {E ∈ E : v ∈ E}. Gilmore's Theorem (see Chapter 1, §7 in [1℄) givesthe following neessary and suÆient ondition for a hypergraph G to satisfy (C2):for every three hyperedges E1, E2, E3 of G, there is a hyperedge of G ontainingthe set (E1 ∩E2)∪ (E2 ∩E3)∪ (E3 ∩E1). The ondition an be easily translatedinto the Helly property (see [1℄). This result have been generalized by Berge andDuhet in [3℄ (see also [1℄) to hypergraphs with the k-Helly property (i.e. for anyfamily F of hyperedges of G, if every subfamily of F with at most k elements has anon-empty intersetion, then F also has a non-empty intersetion). The k-Hellyproperty orresponds with the ondition (Ck) obtained from (C2) by replaing\every pair" with \every subset with at most k verties".We say that a hypergraph H is insribed into a hypergraph G if for any hy-peredge F of H there is a hyperedge E of G suh that F ⊆ E. It is just areformulation of the well-known notion for overing in the ase of hypergraphs.Theorem 2. Let G be a lique hypergraph and H be an arbitrary hypergraphwith the same vertex set suh that(∗) NG(v) ⊆ NH(v) for eah vertex v,(∗∗) N (G) = N (H).Then H is insribed into G.Proof: Take an auxiliary graph H with the same vertex set as H suh that twodi�erent verties of H are adjaent if and only if they are ontained in a ommonhyperedge of H. Then NH(v) = NH(v) for any vertex v. Hene and by (∗) we�rst infer that the graph GG is a subgraph of H . Seondly, N (GG) = N (H)by (∗∗). Thus by Theorem 1 we obtain GG = H , i.e. G is the lique hypergraphof H . It easily implies that H is insribed into G. �By the above proof we obtain in partiular that for any hypergraph H thereexists exatly one lique hypergraph H′ with the same vertex set suh that H is



152 K.Pi�oroinsribed into H′ and NH′(v) = NH(v) for eah vertex v (it is suÆient to takethe graph H for H as above and its lique hypergraph).This fat and Theorem 2 (beause the relation \to be insribed into" is a partialorder for simple hypergraphs) imply that G is a lique hypergraph if and only iffor eah simple hypergraph H with the same vertex set, if G is insribed into Hand N (H) = N (G), then H = G. In partiularCorollary 3. Let G and H be lique hypergraphs with the same vertex set sat-isfying (∗) and (∗∗). Then G = H.By Theorem 2 we obtain also that if a lique hypergraph G is a subhypergraphof a hypergraph H and N (G) = N (H), then H is insribed into G. In partiular,if H is simple, then G = H.Now we translate the above results for hypergraphs having the Helly property.Observe that Theorem 2 holds also for hypergraphs satisfying (C2). Beause if G issuh a hypergraph, then Gmax is a lique hypergraph, and also NGmax(v) = NG(v)for any vertex v.For hypergraphs G = (V, (E1, . . . , En)) and H = (W, (E′1, . . . , E′
n)) we will\assume" in the results below that G∗ and H∗ (and also N (G∗) and N (H∗)) havethe same vertex set {E1, . . . , En}. Say more formally, we identify hyperedges

Ei and E′
i, i.e. the equality G∗ = H∗ denotes that the natural orrespondene

Ei 7−→ E′
i forms an isomorphism between these hypergraphs.Corollary 4. Let G = (V, (E1, . . . , En)) be a hypergraph with the Helly prop-erty. Let H = (W, (E′1, . . . , E′

n)) be a hypergraph satisfying(∗) for any 1 ≤ i, j ≤ n, Ei ∩ Ej 6= ∅ =⇒ E′
i ∩ E′

j 6= ∅,(∗∗) N (H∗) = N (G∗).Then for eah w ∈ W , there is v ∈ V suh that for any 1 ≤ i ≤ n,
w ∈ E′

i =⇒ v ∈ Ei.Proof: (∗) implies NG∗(Ei) ⊆ NH∗(E′
i) for eah i = 1, 2, . . . , n. Hene, H∗ isinsribed into G∗. This implies the thesis. �The impliation in the above result annot be replaed by the equivalene.Take the following two hypergraphs G = (

{1, 2, 3, 4}, ({1, 2}, {2, 3}, {3, 4})) and
H = (

{1, 2, 3, 4}, ({1, 2}, {2, 3, 5}, {3, 4})). Then G and H satisfy the onditions(∗) and (∗∗), and G has the Helly property. On the other hand,H(5) = {

{2, 3, 5}},and G(2) = {

{1, 2}, {2, 3}}, G(3) = {

{2, 3}, {3, 4}}.Take a hypergraph G = (V, (E1, . . . , En)) and note that G∗ is simple if andonly if for eah verties v, w ∈ V , the following ondition holds:(DS) {Ei: v ∈ Ei} ⊆ {Ej :w ∈ Ej} =⇒ v = w.Thus by Corollary 3 we obtain (beause (G∗)∗ = G):



On a property of neighborhood hypergraphs 153Corollary 5. Let hypergraphs with the Helly property G = (V, (E1, . . . , En))and H = (W, (E′1, . . . , E′
n)) satisfy (DS) and (∗), (∗∗) of Corollary 4. Then

G = H (stritly formally, G and H are isomorphi).Using the last orollary of Theorem 1 (i.e. its modi�ed version in whih we assumethat G satis�es (C2)) we an also show that if a hypergraph G having the Hellyproperty is a subhypergraph of a hypergraph H and N (G∗) = N (H∗), then Hhas also the Helly property. If H satis�es additionally (DS), then H = G.Observe that to a given hypergraph G = (V, (E1, . . . , En)) new verties an beadded in suh a way that the obtained hypergraph has the Helly property. Morepreisely, there is a hypergraph G′ = (V ′, (E′1, . . . , E′
n)) suh that(i) Ei ⊆ E′

i for i = 1, . . . , n,(ii) for eah 1 ≤ i, j ≤ n, E′
i ∩ E′

j 6= ∅ ⇐⇒ Ei ∩ Ej 6= ∅,(iii) G′ has the Helly property.Take the dual hypergraph G∗, and the graph G with verties E1, . . . , En suhthat Ei and Ej (i 6= j) are adjaent if and only if they both belong to a hyperedgeof G∗. Next, take the hypergraph H onsisting of all maximal liques of G and allhyperedges of G∗. Then G∗ is insribed into H, so Hmax is a lique hypergraph,whih implies that H satis�es (C2). Moreover, NH(Ei) = NG(Ei) = NG∗(Ei) foreah i = 1, . . . , n. Thus it is suÆient to take G′ = H∗.Now we show that the assumptions of Theorems 1 and 2 (thus also their orol-laries) are neessary. First, the following graphs G = (

{1, 2}, {2, 3}, {3, 4}, {1, 4})and H = (

{1, 3}, {3, 4}, {2, 4}, {1, 2}) are di�erent, but they have the same neigh-borhood hypergraph (beauseN (G) andN (H) onsist of all three-element subsetsof {1, 2, 3, 4}). Further, the lique hypergraphs of G and H are equal to G and H ,respetively.Seondly, take the following hypergraphs G=({1, 5, 6, 7}, {1, 4, 5, 7}, {2, 3, 4, 7})and H = ({1, 5, 6, 7}, {1, 2, 4, 5, 7}, {2, 3, 4, 7}). It is easy to see that they arelique hypergraphs. G and H satisfy (∗) of Theorem 2, and (∗∗) does not hold,sine NG(1) = {1, 4, 5, 6, 7} /∈ N (H). On the other hand, N (G)max = N (H)max(beause they have exatly one hyperedge NG(7) = NH(7) = {1, 2, . . . , 7})and N (G)min = N (H)min (beause they have exatly two hyperedges NG(3) =
NH(3) = {2, 3, 4, 7} and NG(6) = NH(6) = {1, 5, 6, 7}). Observe also that GG isa proper subgraph of GH (where GG and GH are the graphs orresponding to Gand H), although N (GH)max = N (GG)max and N (GH)min = N (GG)min.Finally observe that our results are not true for in�nite graphs and hypergraphs.Let A = {ai: i ∈ Z} and B = {bi: i ∈ Z} be two in�nite disjoint sets (where Z isthe set of all integers), and take

G1 = {

{ai, aj}: i 6= j
}

∪
{

{bi, bj}: i 6= j
}

∪
{

{ai, bj}: j ≤ i
}

,

G2 = {

{ai, aj}: i 6= j
}

∪
{

{bi, bj}: i 6= j
}

∪
{

{ai, bj}: j ≤ i − 1}.



154 K.Pi�oroThen �rst G2 is a proper subgraph of G1. Seondly, for eah i ∈ Z,
NG1(ai) = A ∪ {bj : j ≤ i}, NG1(bi) = B ∪ {aj : j ≥ i},

NG2(ai) = A ∪ {bj : j ≤ i − 1}, NG2(bi) = B ∪ {aj : j ≥ i + 1}.Hene, NG2(ai) = NG1(ai−1) ⊆ NG1(ai) and NG2(bi) = NG1(bi+1) ⊆ NG1(bi).In partiular, N (G1) = N (G2).By the above fats we have also that the lique hypergraphs G1 and G2 of thegraphs G1 and G2 satisfy assumptions of Theorem 2. But they are not equal,beause G1 6= G2.Aknowledgments. The author is indebted to the referee for suggestions thathelped to improve the paper and simplify the proofs of the main results.Referenes[1℄ Berge C., Hypergraphs, North-Holland, Amsterdam, 1989.[2℄ Berge C., Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.[3℄ Berge C., Duhet P., A generalization of Gilmore's theorem, Reent Advanes in GraphTheory, (Fiedler M., ed.), Aademia, Prague, 1975, pp. 49{55.[4℄ Erd�os P., Gallai T., Tuze Z., Covering the liques of a graph with verties, Disrete Math.108 (1992), 279{289.[5℄ Jensen T.R., Toft B., Graph Coloring Problems, Wiley Intersiene, New York, 1995.[6℄ Prisner E., Intersetion multigraphs of uniform hypergraphs, Graphs Combin. 14 (1998),no. 4, 363{375.
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