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Comment.Math.Univ.Carolin. 47,1 (2006)159{173 159
On sequent aluli for intuitionisti propositional logiV��t�ezslav �SvejdarAbstrat. The well-known Dyko�'s 1992 alulus/proedure for intuitionisti proposi-tional logi is onsidered and analyzed. It is shown that the alulus is Kripke ompleteand the proedure in fat works in polynomial spae. Then a multi-onlusion intuition-isti alulus is introdued, obtained by adding one new rule to known aluli. A simpleproof of Kripke ompleteness and polynomial-spae deidability of this alulus is given.An upper bound on the depth of a Kripke ounter-model is obtained.Keywords: intuitionisti logi, polynomial-spae, sequent alulus, Kripke semantisClassi�ation: 03B20, 03B35, 03F051. IntrodutionA non-lassial logi often is or an be de�ned by means of itsKripke semantis :a propositional formula A may or may not be satis�ed in a node of a Kripkemodel K, if it is not satis�ed in some node of K then K is a ounter-model for A,and a tautology of the given logi is de�ned as a formula having no ounter-modelin the lass C of models hosen to represent that logi. R. Ladner in [7℄ onstrutsdeision proedures for the most ommon modal logis like S4 or T based purelyon Kripke semantis. When attempting to deide whether a given formula A hasa ounter-model in the lass C one often faes the need to onstrut a Kripkemodel with a node a suh that all formulas from a ertain �nite set � are satis�edand simultaneously all formulas from another �nite set � are not satis�ed in a.Sequent aluli are not mentioned in [7℄, but a model K with a node a suhthat a satis�es all formulas in � and violates all formulas in � is the same as aKripke ounter-model for the sequent 〈� ⇒ � 〉. So there exists a natural linkfrom Kripke semantis to sequent (Gentzen) aluli: when onstruting a deisionproedure one is sometimes able to simultaneously design a sequent alulus forthe logi in question.A deision proedure an also be based on a sequent alulus itself. It worksso that it onstruts the proof of the given sequent by using the rules of thealulus in reverse, i.e. by starting from a given sequent and using the rules ofthe alulus in bakward diretion, with a hope to arrive at axioms (i.e. initialThis work is a part of the researh plan MSM 0021620839 that is �naned by the Ministryof Eduation of the Czeh Republi.



160 V. �Svejdarsequents). Then it may be a problem to ensure termination of the proedure.For example the ontration rule, if used in reverse, allows one to dupliate anyformula of the given sequent. So an unorganized use of the ontration rule mayause the proedure to yle. It is known that the presene of the ontration ruleis essential for many aluli met in the literature. If, as in this paper, sequentsonsist of sets rather than sequenes of formulas then there is no ontrationrule, but the option to dupliate a formula is still there beause the rules allow aprinipal formula to simultaneously be a side formula.R. Dyko� in [4℄ found a terminating alulus for intuitionisti propositionallogi. However the paper [4℄ does not mention Kripke semantis and is not spei�about the omputational omplexity of the proedure obtained. We analyze thepaper [4℄ and show that a Kripke ompleteness theorem is in fat impliit in it.Thus this paper o�ers a better insight into [4℄, espeially to those who primarilythink about Kripke semantis. We also show that if some improvements areimplemented then it an be shown that the deision proedure works in polynomialspae. Then we onsider a seond alulus for intuitionisti logi, now a multi-on-lusion one, allowing any number of formulas in suedent. We again show, inthis ase by a muh simpler proof, that the alulus in question is omplete w.r.t.Kripke semantis and yields a polynomial-spae deision proedure. We alsoobtain an upper bound on the depth of Kripke ounter-model. The advantage ofour multi-onlusion alulus is that it di�ers from aluli known e.g. from [11℄and [6℄ in only one simple additional rule.This paper pays more attention to the question whether deision proeduresan be derived from known aluli than to the question how to onstrut the mosteÆient deision proedure. I believe that it is of some interest to have relativelysimple proofs that simultaneously show Kripke ompleteness, ut eliminability andpolynomial-spae deidability for aluli more or less traditional. Note howeverthat J. Hudelmaier [5℄ onstruted a alulus and a deision proedure with muhlower spae requirements than ours.2. Kripke semantis and sequent aluliWe hoose {&,∨,→,⊥} as the base set of logial onnetives . So propositionalformulas are built up from (propositional) atoms and the symbol ⊥ for falsityusing onjuntion, disjuntion, and impliation. We treat ¬A as a shorthandfor A → ⊥. In syntax analysis, impliation → has lower priority than onjun-tion & and disjuntion ∨. So e.g. p ∨ q → r is a shorthand for (p ∨ q) → r.A sequent is a pair of �nite sets of formulas; we write 〈� ⇒ � 〉 for a sequentonsisting of sets � and �. The sets � and � are alled anteedent and sue-dent of the sequent 〈� ⇒ � 〉. When writing down sequents we use the usualnotational onventions and omit urly braes and symbols for set union and theempty set. So e.g. 〈�, C ⇒ 〉 is a shorthand for 〈� ∪ {C} ⇒ ∅ 〉, et.A Kripke frame for intuitionisti logi is a pair 〈W,≤〉 where W 6= ∅ and



On sequent aluli for intuitionisti propositional logi 161
≤ is a reexive and transitive relation on W . The elements of W are nodes ;if x ≤ y then the node y is said to be aessible from x. A truth relation (ora foring relation) on a Kripke frame 〈W,≤〉 is a relation ‖− between nodesand propositional formulas satisfying the persisteny ondition (if x ‖− p for anatom p and x ≤ y then y ‖− p), respeting onjuntions, disjuntions, and falsity(x ‖− A&B iff x ‖− A and x ‖− B, x ‖− A∨B iff x ‖− A or x ‖− B, and x ‖−/ ⊥)and satisfying the well-known \modal" ondition for impliation: x ‖− A → Biff for eah y aessible from x it is the ase that y ‖− B whenever y ‖− A. Itan easily be veri�ed that any relation between nodes and propositional atomssatisfying the persisteny ondition extends uniquely to a truth relation. Also, if
‖− is a truth relation on a frame 〈W,≤〉 then the persisteny ondition holds forall formulas, not just atoms. A Kripke model for intuitionisti propositional logiis a triple 〈W,≤, ‖−〉 where 〈W,≤〉 is a Kripke frame and ‖− is a truth relationon 〈W,≤〉.If K = 〈W,≤, ‖−〉 is a Kripke model then x ‖− A is read \A is satis�ed in x" or\x satis�es A". If A is satis�ed in all x ∈ W then A is valid in K. The model K isa ounter-model for a sequent 〈� ⇒ � 〉 if some element of its domain W satis�esall formulas in � and simultaneously none formula from �. A sequent 〈� ⇒ � 〉is intuitionistially tautologial if it has no ounter-model. A formula A is anintuitionisti tautology if the sequent 〈 ⇒ A 〉, with empty anteedent and A asthe only formula in suedent, is intuitionistially tautologial. It is evident that
A is an intuitionisti tautology iff A is valid in eah Kripke model.An example of a Kripke frame is the struture 〈{a, b}, {[a, a℄, [a, b℄, [b, b℄}〉 hav-ing two nodes a and b, with b aessible from a but a not aessible from b. Let atruth relation on this frame be de�ned by stipulating that p is satis�ed in b andviolated in a, while q is violated in both a and b. One an easily hek that theformula p → q is nowhere satis�ed, hene a ‖− (p → q) → p. Thus this model is aounter-model for the sequent 〈 (p → q) → p ⇒ p 〉. This model also shows thatthe formula ((p → q) → p) → p is not an intuitionisti tautology.Examples of sequents that are intuitionistially tautologial are(1) 〈�, p ⇒ p 〉, 〈�,⊥ ⇒ G 〉.Another example of an intuitionistially tautologial sequent is any sequent of theform 〈 (A → B) ∨ (B → A) → ⊥ ⇒ 〉.We all the least element (if it exists) of a Kripke model K a root of K.If K = 〈W,≤, ‖−〉 and a0 ∈ W then submodel generated by a0 is the model
K0 = 〈W0,≤0, ‖−0〉 where W0 = {x ∈ W ; a0 ≤ x} and ≤0 and ‖−0 are therestritions of ≤ and ‖− to W0. One an easily verify that if A is a propositionalformula and x ∈ W0 then x ‖− A ⇔ x ‖−0 A. So in the sequel we an assumethat if K is a ounter-model for A then K has a root a and that it is the root awhere a ‖−/ A. More about Kripke models an be found in various soures, e.g. in[2℄ or [11℄.



162 V. �SvejdarSequent aluli have unary and binary dedution rules. An example of a binaryrule (with two premises) is(4) 〈�, E ⇒ G 〉, 〈�, F ⇒ G 〉 / 〈�, E ∨ F ⇒ G 〉.The formula in whih the onnetive is introdued, whih is the formula E ∨ Fin ase of the rule (4), is alled prinipal formula, while the formulas that maydisappear by using the rule, whih are the formulas E and F in ase of the rule (4),ould be alled minor formulas of the rule in question. The formulas that are nothanged by using the rule, whih are the formulas in � ∪ {G} in ase of (4), arealled side formulas . Both minor and prinipal formulas may simultaneously beside formulas. This, in ase of the rule (4), means that eah of the formulas E, Fand E ∨ F an be an element of the set �.The rule (4) is sound in the sense that if both sequents 〈�, E ⇒ G 〉 and
〈�, F ⇒ G 〉 are intuitionistially tautologial then also the resulting sequent
〈�, E ∨ F ⇒ G 〉 is intuitionistially tautologial. The rule (4), moreover, isinvertible in the sense that 〈�, E ∨ F ⇒ G 〉 is intuitionistially tautologial ifand only if both sequents 〈�, E ⇒ G 〉 and 〈�, F ⇒ G 〉 are intuitionistiallytautologial.3. A single-onlusion deision proedureIn this setion we onsider a single-onlusion alulus for intuitionisti propo-sitional logi, where all sequents have exatly one formula in suedent. We willspeify a deision proedure for intuitionisti propositional logi based on thisalulus.Lemma 1. The following rules:

〈� ⇒ E 〉, 〈� ⇒ F 〉 / 〈� ⇒ E & F 〉(2)
〈�, E, F ⇒ G 〉 / 〈�, E & F ⇒ G 〉(3)

〈�, E ⇒ G 〉, 〈�, F ⇒ G 〉 / 〈�, E ∨ F ⇒ G 〉(4)
〈�, E ⇒ F 〉 / 〈� ⇒ E → F 〉(5)

〈�, p, D ⇒ G 〉 / 〈�, p, p → D ⇒ G 〉,(6)where D, E, F , G are formulas and p is an atom, are sound and invertible.The rules
〈� ⇒ E 〉 / 〈� ⇒ E ∨ F 〉, 〈� ⇒ F 〉 / 〈� ⇒ E ∨ F 〉(7)

〈�, C → D ⇒ C 〉, 〈�, D ⇒ G 〉 / 〈�, C → D ⇒ G 〉(8)are sound. The rule(9) 〈�, D ⇒ G 〉 / 〈�, D, C1 → (C2 → ( . . → (Ck → D). .)) ⇒ G 〉



On sequent aluli for intuitionisti propositional logi 163is sound and invertible.Proof: Look at (5). Let K = 〈W,≤, ‖−〉 be a ounter-model for 〈� ⇒ E → F 〉.Assume that K has a root a and that a satis�es all formulas in � and violatesthe impliation E → F . So there is a node a0 suh that a0 ‖− E and a0 ‖−/ F .By the persisteny ondition, a0 satis�es all formulas in �. So the submodel K0of K generated by a0 is a ounter-model for the sequent 〈�, E ⇒ F 〉. All theremaining ases are trivial. �We intend to base our deision proedure on the rules in Lemma 1 and on otherrules spei�ed below. It starts with a given sequent 〈� ⇒ H 〉 and (essentially)repeatedly applies the rules (2){(6) to it in the reverse (right to left) diretion,thus reduing the question whether a given sequent is intuitionistially tautolog-ial to same questions about one or two simpler sequents. If all paths of theomputation terminate with an initial sequent of the form (1) then the originalsequent 〈� ⇒ H 〉 is intuitionistially tautologial. If none of the rules (2){(6),still in the right to left diretion, is appliable to a sequent whih is not initial thenthe sequent is irreduible in the sense of the following de�nition. When speakingabout appliation of a rule, we will omit the words \in reverse" or \right to left"when the diretion is lear from ontext.De�nition 2. A sequent 〈� ⇒ G 〉 is irreduible if
◦ G is a disjuntion, or an atom p suh that p /∈ �, or the formula ⊥,
◦ no formula in � is a onjuntion, disjuntion, or the formula ⊥,
◦ � ontains no pair p, p → D where p is an atom.This de�nition, as well as the rule (6) above, is taken from R. Dykho�'s [4℄.Note that if 〈� ⇒ G 〉 is irreduible then � ontains only impliations and atoms.Theorem 3. An irreduible sequent 〈� ⇒ G 〉 is intuitionistially tautologialif and only if some of the following onditions is true:
◦ G has the form E ∨F and some of the sequents 〈� ⇒ E 〉 and 〈� ⇒ F 〉is intuitionistially tautologial, or
◦ there is an impliation C → D ∈ � suh that C is ompound (not anatom or ⊥) and both sequents 〈� ⇒ C 〉 and 〈�− {C → D}, D ⇒ G 〉are intuitionistially tautologial.Proof: The non-trivial diretion is ⇒. Assume that G is E ∨F ; the other ases,where G is ⊥ or an atom, are similar but simpler. Let C1 → D1, . ., Cm → Dm bethe list of all impliations C → D in � suh that C is ompound. Assume thatnone of the sequents 〈� ⇒ E 〉 and 〈� ⇒ F 〉 is intuitionistially tautologialand assume that for eah i some of the two sequents 〈�− {Ci → Di}, Di ⇒ G 〉and 〈� ⇒ Ci 〉 is not intuitionistially tautologial. It is evident that any Kripkeounter-model for 〈� − {Ci → Di}, Di ⇒ G 〉 is automatially the desiredounter-model for the sequent 〈� ⇒ G 〉. So we may assume that for eah i



164 V. �Svejdarit is the sequent 〈� ⇒ Ci 〉 whih is not intuitionistially tautologial. Let
K1, . ., Km be ounter-models for 〈� ⇒ C1 〉 to 〈� ⇒ Cm 〉 respetively, andlet Km+1 and Km+2 be ounter-models for 〈� ⇒ E 〉 and 〈� ⇒ F 〉. We mayassume that the models K1, . ., Km+2 have roots a1, . ., am+2, all nodes ai satisfyall formulas in �, the node ai for i ≤ m violates Ci, and am+1 and am+2 violate
E and F respetively.
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������������1Figure 1: Amalgamation of Kripke modelsLet K be the model depited in Figure 1, with a new root a. To �nish thede�nition of the model K we have to speify the truth relation ‖−, i.e. to statethe truth values of atoms in a. Let all atoms p ∈ � be evaluated positively in aand all remaining atoms negatively in a. Note that this hoie does not violatethe persisteny ondition, sine all atoms in � are positive in all nodes of allsubmodels Kj . Eah of the formulas Ci may be satis�ed in various nodes of thesubmodels Kj , but the fat that Ci is violated in ai is suÆient for a onlusionthat a ‖−/ Ci. Similarly a ‖−/ E and a ‖−/ F . We have to hek that all formulasin � are satis�ed in a. The set � ontains only atoms and impliations, and atomsare satis�ed in a by de�nition. An impliation with a ompound premise mustbe one of Ci → Di. To verify a ‖− Ci → Di we have to hek that x ‖− Di foreah x aessible from a suh that x ‖− Ci. If x is a node of some Kj then thisis true beause all formulas in � are valid in Kj . If x is a then this is also truesine x ‖−/ Ci. Note that a similar argument applies also to impliations of theform ⊥ → D and p → D. If p → D ∈ � then, by the de�nition of irreduiblesequent, p is not in � and as suh is evaluated negatively in a. �So if 〈� ⇒ G 〉 is an intuitionistially tautologial sequent then the rules(7) and (8) may be not appliable (in reverse) to any formula we hoose; butif 〈� ⇒ G 〉 is irreduible then Theorem 3 guarantees that some of these rulesis appliable to some formula. Theorem 3 an be viewed as a generalization ofHarrop's theorem. A similar theorem appears also in [1℄ and is impliit in [5℄.Unfortunately Theorem 3 is still not suÆient for a deision proedure to bebased on: it is not sure that the sequent 〈� ⇒ Ci 〉 is shorter than 〈� ⇒ G 〉,and thus it is not guaranteed that using the left impliation rule (8) in reverseyields two simpler sequents. The solution is | when proessing an impliation



On sequent aluli for intuitionisti propositional logi 165in anteedent | to loser look at the form of its premise. This is one of theimportant ideas in [4℄.Lemma 4. The following rules are sound and invertible:
〈�, A → (B → D) ⇒ G 〉 / 〈�, A &B → D ⇒ G 〉,(10)
〈�, A → D, B → D ⇒ G 〉 / 〈�, A ∨ B → D ⇒ G 〉,(11)

〈�, A, B → D ⇒ B 〉 / 〈�, (A → B) → D ⇒ A → B 〉.(12)Proof: is obvious. �Now we are able to speify the deision proedure for sequents with one for-mula in suedent, and prove its properties. The heart of the proedure is aBoolean funtion S whih deides about a given sequent whether it is intuition-istially tautologial. The funtion S reursively alls itself in some ases. Thedeision proedure (main program) reads the input sequent 〈� ⇒ H 〉 and sim-ply alls the funtion S with a parameter 〈� ⇒ H 〉. The funtion S denotes itsparameter 〈� ⇒ G 〉 and works as follows:(a) If G is E & F then all S on 〈� ⇒ E 〉 and then on 〈� ⇒ F 〉. Return trueif both alls return true, return false otherwise.If G is E → F then use the rule (5), i.e. all S on 〈�, E ⇒ F 〉 and returnwhatever it returns.If � ontains a formula of the form E & F , E ∨ F , A& B → D, or A ∨ B → D,then proeed analogially, i.e. use the rule (3), (4), (10), or (11), respetively.(b) If � ontains a pair p, p → D then: replae p → D by D (i.e. use the rule (6)),remove all formulas of the form C1 → ( . . → (Ck → D). .) from � (i.e. use therule (9) repeatedly), all S on the resulting sequent and return whatever it returns.() If ⊥ ∈ � or if G is an atom suh that G ∈ � then return true.(d) If G is E ∨ F then all S on 〈� ⇒ E 〉 and on 〈� ⇒ F 〉. If some of thealls returns true then return true.(e) Create a list (A1 → B1) → D1, . ., (Am → Bm) → Dm of all impliationsin � with a ompound premise. Denote �i the set � − {(Ai → Bi) → Di}and denote �−i the set resulting from �i by removing all impliations of the form
C1 → ( . . → (Ck → Di). .). For i := 1 to m all S on 〈�i, Ai, Bi → Di ⇒ Bi 〉and on 〈�−i , Di ⇒ G 〉. If for some i both alls return true then return true.Otherwise return false.If the funtion S reahes the instrution (e) then the sequent 〈� ⇒ G 〉 is ir-reduible, and moreover, ompound premises of impliations in � must again beimpliations. If the number of suh impliations is zero then the funtion S re-turns false. Further explanation about the instrution (e) is in the �nal part ofproof of Theorem 5.



166 V. �SvejdarTheorem 5. The proedure spei�ed above works in polynomial spae and or-retly deides whether a given sequent is intuitionistially tautologial.Proof: The omputation of a funtion like S, alling reursively itself in someases, an be viewed as a tree T with verties labeled by parameters of the alls.If S has to proess a sequent 〈� ⇒ G 〉, and when doing so it reursively allsitself with parameters 〈�1 ⇒ G1 〉 to 〈�m ⇒ Gm 〉, then the tree T ontains avertex labeled by 〈� ⇒ G 〉, with m immediate suessors labeled by 〈�1 ⇒ G1 〉to 〈�m ⇒ Gm 〉. The root of T is labeled by the input sequent 〈� ⇒ H 〉. Wehave to show that eah path in T terminates, i.e. ends with a vertex labeled by asequent proessed without reursive alls.We assoiate weights with onnetives and sequents. As in [4℄, the weight ofonjuntion & is 2 while the weight of ∨ and → is 1. The weight of an atom isalso 1. A weight of a sequent depends on the way how the sequent appeared in thedata of the funtion S. To de�ne it we think of some ourrenes of impliations ashighlighted . It will be lear from what is said below that a highlighted impliationnever ours in the sope of a onjuntion or a disjuntion or in the \left sope"of an impliation. It also never ours in a suedent of a sequent. Highlightedimpliations and the notion of suÆx de�ned below are meant to trae how aformula ourred in an anteedent of a sequent.Initially no impliation is highlighted. If the funtion S uses the rule (10),replaing some formula A & B → D ∈ � by A → (B → D), then if the for-mula A → (B → D) is new , i.e. not an element of �, all impliations insideor (immediately) before the subformula D are preserved , i.e. highlighted or notaording to whether they were highlighted in the original formula A & B → D.The new impliation, whih is the main onnetive in A → (B → D), is not high-lighted. If S uses the rule (11) and replaes a formula A∨B → D by two formulas
A → D and B → D, then for eah of these two formulas, if the formula is new,all impliations inside the subformula D are preserved, and the main impliation,before the formula D, beomes highlighted. When S applies instrution (e) ithooses a formula (A → B) → D in � and replaes it by the pair A, B → D inone embedded all and by the formula D in the assoiated embedded all. In the�rst ase, if B → D is new then impliations inside and immediately before thesubformula D are preserved. In the seond ase, if D is new then impliationsinside it are preserved. In the remaining ases nothing happens with highlightedimpliations: in instrutions (b) and (e) some impliations, highlighted or not,merely disappear, and if S uses any of the rules (2){(5) or (7), in instrutions(a) or (d), then it proesses a formula ontaining no highlighted impliations.In any stage of the omputation, eah formula E ∈ � an be written in theform C1 → ( . . → (Ck → D). .) where none of the formulas Ci and D ontainhighlighted impliations. The number k an be zero and D an still be an implia-tion. The part → (Ci → ( . . → (Ck → D). .)) of the formula E, together with aninformation whih impliations are highlighted in it, is a suÆx of E provided its



On sequent aluli for intuitionisti propositional logi 167leftmost symbol is a highlighted impliation. So the number of di�erent suÆxesof E equals the number of highlighted impliations in E. Weight of a sequent
〈� ⇒ G 〉 is de�ned as the sum of weights of all ourrenes of onnetives andatoms in � ∪ {G}, with the following exeption. If a formula E ∈ � has a suf-�x → D then the symbols in this suÆx ount only one for eah formula in �that also has → D as a suÆx.
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〈Γ, t ∨ q → (w → r), ((u ∨ v) & w) ∨ s → r ⇒ G 〉Figure 2: Weights and highlighted impliationsAn example of how the weights are determined is given in Figure 2. The �vesequents an be viewed as both a fragment of a proof or loal data of the fun-tion S, where higher sequents orrespond to deeper reursive alls. Highlightedimpliations are marked with dots. In the formulas shown in the topmost sequentwe have a suÆx →. (w → r) whih ours twie, then a suÆx →. (w →. r) whihalso ours twie, and a suÆx →. r whih ours three times. Numbers abovesymbols show how the weight is omputed. If � ontains no highlighted implia-tions then the weight of the topmost sequent is 13 plus the number of symbolsin � ∪ {G} plus the number of onjuntions in � ∪ {G}.Let the input sequent 〈� ⇒ H 〉 have n symbols. Then its weight an bebounded by 2n. We would like to laim that whenever S alls itself while pro-essing a sequent 〈� ⇒ G 〉, the weight of the parameter(s) of the embedded allis lower than the weight of the urrent parameter 〈� ⇒ G 〉. In most ases itis true. For example, if S uses the rule (11), replaing a formula A ∨ B → Dby two formulas A → D and B → D, then the onnetives inside D and theimpliation next to D do not ount twie, and the pro�t is the removal of onedisjuntion. If S uses the rule (6), replaing a formula p → D by D, then itis quite possible that only the atom p in p → D ounts, while in the embed-ded all more symbols in D ount. This happens if the outermost impliationis highlighted, i.e. if the formula p → D has a suÆx → D, and there are moreformulas in � with the same suÆx. Note however that when the funtion S ap-plies instrution (b) it simultaneously removes all other formulas having the samesuÆx → D. So the minimal possible pro�t of replaing the formula p → D by Dand removing all formulas of the form C1 → ( . . → (Ck → D). .) is a dereasein weight by 1, the weight of the atom p. The same phenomenon ours in in-strution (e), when (A → B) → D is replaed by D. The only exeption whenthe weight may not derease is that all in instrution (e) where the funtion S



168 V. �Svejdarreplaes a sequent 〈�, (A → B) → D ⇒ G 〉 by 〈�, A, B → D ⇒ B 〉: theformula B appears twie in the embedded all and it an be of higher weight thanthe removed formula G. However, this happens at most one for eah (ourreneof a) subformula B of the original sequent 〈� ⇒ H 〉. Thus we an laim thatwhenever the funtion S reursively alls itself, the weight of the parameter of theembedded all is lower, exept that at most n times the weight is inreased by atmost 2n. This means that eah path in the tree T of embedded alls has lengthat most quadrati in the length of the input sequent 〈� ⇒ H 〉, and our deisionproedure terminates on any input 〈� ⇒ H 〉. It is known ([3℄, [8℄, . . .) that thespae requirements of a funtion like S, alling reursively itself, is determinedby the sum of sizes of loal data of instanes of S along any path in the treeof reursive alls. When S is alled with parameter 〈� ⇒ G 〉 its loal data isessentially the sequent 〈� ⇒ G 〉 itself, and one an hek that its size is alsoquadrati in n. So our proedure works in polynomial spae.Let us say that a vertex in the tree T labeled by 〈� ⇒ G 〉 is positive ornegative aording to whether S returns true or false when proessing it. Letthe depth of a vertex v be the length of the longest path starting at v, wherethe length of a one-element path is zero. Consider the following laim. Let thedepth of a vertex v ∈ T labeled by 〈� ⇒ G 〉 be k. Then v is positive ifand only if 〈� ⇒ G 〉 is intuitionistially tautologial. This laim is provedby indution on k. Let, for example, v be a vertex of depth k labeled by a se-quent 〈� ⇒ G 〉 whih is intuitionistially tautologial and suh that none ofinstrutions (a){() in S is appliable. Assume that G is not a disjuntion. Then
G must be ⊥ or an atom p suh that p /∈ �, and � ontains, besides the impli-ations (A1 → B1) → D1, . ., (Am → Bm) → Dm reated in instrution (e), onlysome atoms and some impliations p → D where p /∈ �. Theorem 3 says that forsome i both sequents 〈�i, (Ai → Bi) → Di ⇒ Ai → Bi 〉 and 〈�i, Di ⇒ G 〉 areintuitionistially tautologial. It follows from invertibility of rules (12) and (9)that both sequents 〈�i, Ai, Bi → Di ⇒ Bi 〉 and 〈�−i , Di ⇒ G 〉, whih atas parameters of the embedded alls, are intuitionistially tautologial. The im-mediate suessors of v labeled by these two sequents have depth lower than k.So, by the indution hypothesis, S returns true when alled on them. Hene theresult of the omputation in instrution (e) is true, i.e. v is positive. We leave theremaining ases to the reader. �A orollary of our onsiderations is that the single-onlusion alulus withinitial sequents (1) and rules (2){(7) and (9){(12), or (2){(9), is sound and om-plete with respet to Kripke semantis of intuitionisti logi. Note that as totermination of the deision proedure the paper [4℄ refers the reader to [3℄ whihgives a general and widely appliable method for proving termination but saysnothing about polynomial-spae. Note also that J. Hudelmaier [5℄ onstruts aalulus and a deision proedure muh more eÆient than ours: it works inspae O(n log n).



On sequent aluli for intuitionisti propositional logi 1694. A multi-onlusion deision proedureThe left impliation rule (8) from the previous setion is inherently non-inver-tible beause if it is used in reverse and the formula B replaes the formula G, theformula G disappears without a refund. The multi-onlusion alulus, allowingany number of formulas in suedent, is more onvenient in this respet beausethe usual multi-onlusion left impliation rule(∗) 〈� ⇒ �, A 〉, 〈�, B ⇒ � 〉 / 〈�, A → B ⇒ � 〉,while still non-invertible, an be replaed by the following \non-extending" variant(20) 〈�, A → B ⇒ �, A 〉, 〈�, A → B, B ⇒ � 〉 / 〈�, A → B ⇒ � 〉whih is invertible. Note that (20) an be simulated by (∗) by taking �∪{A → B}for the set � in (∗). The rule (20) is a restrited variant of (∗): while the rule (∗)allows the prinipal formula A → B to simultaneously be a side formula, therule (20) requires it. To simplify (thinking about) the deision proedure spei�edbelow, we formulate also the rules for onjuntion and disjuntion as non-extend-ing. So our multi-onlusion alulus has initial sequents(13) 〈�, p ⇒ �, p 〉, 〈�,⊥ ⇒ � 〉,and the following rules:
〈� ⇒ �, A &B, A 〉, 〈� ⇒ �, A &B, B 〉 / 〈� ⇒ �, A &B 〉(14)

〈� ⇒ �, A ∨ B, A, B 〉 / 〈� ⇒ �, A ∨ B 〉(15)
〈�, A ⇒ B 〉 / 〈� ⇒ �, A → B 〉(16)

〈� ⇒ �, A → B, B 〉 / 〈� ⇒ �, A → B 〉(17)
〈�, A &B, A, B ⇒ � 〉 / 〈�, A &B ⇒ � 〉(18)

〈�, A ∨ B, A ⇒ � 〉, 〈�, A ∨ B, B ⇒ � 〉 / 〈�, A ∨ B ⇒ � 〉(19)
〈�, A → B ⇒ �, A 〉, 〈�, A → B, B ⇒ � 〉 / 〈�, A → B ⇒ � 〉.(20)Note that the alulus is very similar to aluli de�ned e.g. in [6℄ and [11℄. Themain di�erene is the additional rule (17) whih an be alled weak impliationrule. It an easily be heked that all rules (14){(20) are sound with respetto Kripke semantis, and that all rules exept (16) are invertible. The rightimpliation rule (16) is now the only rule whih is inherently non-invertible. Notealso that the rule (16) is the only rule whih an bring new formulas: any formulanot introdued as a member of the set � in (16) must ome from initial sequents.The rule (16) is appliable only to a sequent with exatly one formula in suedent.Without this restrition, the rule would not be sound.



170 V. �SvejdarLet us think about a deision proedure based on our multi-onlusion alulus.As in the previous setion, the proedure reads the input sequent 〈� ⇒ 
 〉 andalls a Boolean funtion, now named M , on it. The funtion M denotes itsparameter 〈� ⇒ � 〉, and in some ases reursively alls itself. It works asfollows:(a) If � ontains a formula A & B suh that A /∈ � and B /∈ � then all Mon 〈� ⇒ �, A 〉 and on 〈� ⇒ �, B 〉. Return true if both alls return true,return false if some returns false.Otherwise, use one of the rules (15) and (17){(20) aordingly, but only if pro�-table, i.e. if the embedded all or both embedded alls has or have parameter(s)di�erent from 〈� ⇒ � 〉.(b) If instrution (a) is not appliable then return true if ⊥ ∈ � or if � and � havean atom in ommon.If instrution (a) is not appliable, i.e. if none of the rules (14), (15), (17){(20)an be pro�tably used, then the sequent 〈� ⇒ � 〉 is saturated in the followingsense.De�nition 6. A sequent 〈� ⇒ � 〉 is saturated if the following onditions aresatis�ed:
◦ if A & B ∈ � (or A ∨ B ∈ �) then both formulas A and B are in � (orin �, respetively),
◦ if A ∨ B ∈ � (or A & B ∈ �) then at least one of the formulas A and Bis in � (or in �, respetively),
◦ if A → B ∈ � then A ∈ � or B ∈ �,
◦ if A → B ∈ � then B ∈ �.Theorem 7. A saturated sequent 〈� ⇒ � 〉 is intuitionistially tautologial ifand only if it is initial or if there is a formula A → B ∈ � suh that A /∈ � andthe sequent 〈�, A ⇒ B 〉 is intuitionistially tautologial.Proof: Again the nontrivial impliation is ⇒. So let 〈� ⇒ � 〉 be saturated,intuitionistially tautologial and not initial. Let A1 → B1, . ., Am → Bm be alist of all impliations A → B ∈ � suh that A /∈ �. Assume that none of thesequents 〈�, Ai ⇒ Bi 〉 is intuitionistially tautologial. Let K1, . ., Km be oun-ter-models for 〈�, Ai ⇒ Bi 〉. Assume that a1, . ., am are roots of K1, . ., Km.Let K be the model onstruted from K1, . ., Km as in the proof of Theorem 3,i.e. by stipulating that a1, . ., am are the only immediate suessors of a newroot a. Again, we evaluate all atoms in � positively and all the remaining atomsnegatively in a. Now the following laim an be proved by indution on omplexityof a formula D: if D ∈ � then a ‖− D, and if D ∈ � then a ‖−/ D. If D isan atom in � then a ‖− D by de�nition. If D is an atom in � then, sine thesequent 〈� ⇒ � 〉 is not initial, we have D /∈ � and thus a ‖−/ D. So the laim istrue if D is an atom. It is evidently true also if D is ⊥. If D is A&B and D ∈ �



On sequent aluli for intuitionisti propositional logi 171then, by the de�nition of saturated sequent, A ∈ � or B ∈ �. The indutionhypothesis says a ‖−/ A or a ‖−/ B. So indeed a ‖−/ A & B. The remainingases when D is a onjuntion or a disjuntion in � or in � are similar. Solet D be A → B. First assume that D ∈ �. We have to verify that x ‖− Bwhenever a ≤ x and x ‖− A. If x is an element of some submodel Ki of K thenthere is nothing to do sine ai ‖− D. If x = a then, beause 〈� ⇒ � 〉 is saturated,we have A ∈ � or B ∈ �, so x ‖−/ A or x ‖− B. Finally assume that D ∈ �. If
D is some of the formulas A1 → B1, . ., Am → Bm, say Ai → Bi, then for x = aiwe have x ‖− A and x ‖−/ B. If D is di�erent from all A1 → B1, . ., Am → Bmthen A ∈ �. The fat that 〈� ⇒ � 〉 is saturated yields B ∈ �. Note thatthis is the plae where the weak impliation rule (17) is helpful. By the indutionhypothesis, for x = a we have x ‖− A and x ‖−/ B. So in all ases when A → B ∈ �there is an x aessible from a suh that x ‖− A and x ‖−/ B. So a ‖−/ A → B.

�Having Theorem 7 we an omplete our deision proedure for multi-onlusionalulus:() If none of (a), (b) is appliable then reate a list A1 → B1, . ., Am → Bmof all impliations in � whose premise is not in �. Call M on 〈�, A1 ⇒ B1 〉to 〈�, Am ⇒ Bm 〉. Return true if some of the alls returns true, return falseotherwise.In the formulation of the following Theorem 8 we need the notion of positiveand negative ourrenes of formulas in a sequent 〈� ⇒ � 〉. All members of �are positive, all members of � are negative. If a formula A & B or A ∨ B ispositive (negative) then both subformulas A and B are positive (or negative,respetively). If a formula A → B is positive then the subformula A is negativeand the subformula B is positive. If a formula A → B is negative then thesubformula A is positive and the subformula B is negative. For example, in thesequent 〈 ¬¬p → p ⇒ p∨¬p 〉, the formula ¬p (i.e. p → ⊥) ours twie: positivelyas a part of the impliation ¬¬p, and negatively as a part of the disjuntion p∨¬p.Theorem 8. The proedure spei�ed above works in polynomial spae and or-retly deides whether a given sequent 〈� ⇒ 
 〉 is intuitionistially tautologial.If the sequent 〈� ⇒ 
 〉 ontains n logial onnetives and r negative impliationsthen it either has a proof of depth O(n2) in the alulus with initial sequents (13)and rules (14){(20), or it has a Kripke ounter-model of depth at most r, in whihevery node has at most r immediate suessors.Proof: Let T be the tree of all alls of the funtion M , whih our when theproedure proesses a sequent 〈� ⇒ 
 〉 with n logial onnetives and r negativeimpliations E1 → F1, . ., Er → Fr, where obviously r ≤ n. Eah vertex v of T islabeled by a sequent 〈� ⇒ � 〉, the parameter of the all of M orresponding tothe vertex v. If M uses instrution 1 then v has one or two immediate suessors



172 V. �Svejdaraording to whether M uses (in reverse) a unary or a binary rule. If M usesinstrution 2 then v has no suessors, i.e. is a leaf in T . In both ases M returnstrue if and only if all of the embedded alls return true. If M uses instrution 3then the sequent 〈� ⇒ � 〉 is saturated and non-initial and has m immediatesuessors where m is the number of impliations A → B in � suh that A /∈ �.The number m an be zero in whih ase the vertex v is a leaf.A step made from a vertex v labeled by a saturated sequent to one of theimmediate suessors of v orresponds to the situation where M proesses animpliation A → B ∈ � by alling itself on 〈�, A ⇒ B 〉. Note that in this asethe impliation A → B must be a member of the set {Ei → Fi; 1 ≤ i ≤ r} ofall negative impliations. Also note that the same impliation is never proessedagain on a path in T . From this it follow that eah path in T ontains at most r+1saturated sequents. The distane from one saturated sequent to another saturatedsequent on a path is bounded by 2n + 1, the number of all subformulas of asequent with n logial onnetives. This is beause eah use of an invertible ruleadds at least one new formula to �∪�. Thus eah path in T terminates and haslength O(n2). The size of loal data of any instane of M is quadrati in n. Sothe proedure works in polynomial spae.As in Theorem 5, let us say that a vertex in T labeled by 〈� ⇒ � 〉 is posi-tive or negative aording to whether M returns true or false when proessing it.Consider the following laim. Let a vertex v of T labeled by 〈� ⇒ � 〉 be suhthat the depth of the subtree of T generated by v is k and suh that on any pathfrom v to some leaf there are at most m+1 saturated sequents. Then if v is pos-itive it has a proof of depth at most k, and if v is negative it has a ounter-modelof depth at most m in whih every node has at most r immediate suessors.This laim is proved by an indution on k. Indeed, if k = 0 then either M appliesinstrution (b), in whih ase v is positive and the sequent 〈� ⇒ � 〉 is initial,i.e. having a proof of depth 0, or M applies instrution () with no embeddedalls, in whih ase v is negative and 〈� ⇒ � 〉 has a one-element, i.e. of depth 0,Kripke ounter-model. The indution step and the remaining onsiderations areleft to the reader. �To know that intuitionisti propositional logi is deidable in polynomial spaeis interesting in onnetion with the fat that it is polynomial-spae hard. Thatis proved in [9℄; a relatively easy semantial proof an also be found in my [10℄.Let me remark that the preise role of the additional impliation rule (17) is notquite lear. It is redundant in the sense that it an be simulated by uts andthe alulus without this rule allows ut-elimination. However, I do not knowwhether the alulus with rules (14){(16) and (18){(20) diretly (polynomially)simulates the alulus with all rules (14){(20). Our treatment of multi-onlusionalulus, where the deision proedure never removes a formula from a sequent,an be viewed as showing that avoiding ontration is not the only way how toensure termination.
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