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On sequent 
al
uli for intuitionisti
 propositional logi
V��t�ezslav �SvejdarAbstra
t. The well-known Dy
ko�'s 1992 
al
ulus/pro
edure for intuitionisti
 proposi-tional logi
 is 
onsidered and analyzed. It is shown that the 
al
ulus is Kripke 
ompleteand the pro
edure in fa
t works in polynomial spa
e. Then a multi-
on
lusion intuition-isti
 
al
ulus is introdu
ed, obtained by adding one new rule to known 
al
uli. A simpleproof of Kripke 
ompleteness and polynomial-spa
e de
idability of this 
al
ulus is given.An upper bound on the depth of a Kripke 
ounter-model is obtained.Keywords: intuitionisti
 logi
, polynomial-spa
e, sequent 
al
ulus, Kripke semanti
sClassi�
ation: 03B20, 03B35, 03F051. Introdu
tionA non-
lassi
al logi
 often is or 
an be de�ned by means of itsKripke semanti
s :a propositional formula A may or may not be satis�ed in a node of a Kripkemodel K, if it is not satis�ed in some node of K then K is a 
ounter-model for A,and a tautology of the given logi
 is de�ned as a formula having no 
ounter-modelin the 
lass C of models 
hosen to represent that logi
. R. Ladner in [7℄ 
onstru
tsde
ision pro
edures for the most 
ommon modal logi
s like S4 or T based purelyon Kripke semanti
s. When attempting to de
ide whether a given formula A hasa 
ounter-model in the 
lass C one often fa
es the need to 
onstru
t a Kripkemodel with a node a su
h that all formulas from a 
ertain �nite set � are satis�edand simultaneously all formulas from another �nite set � are not satis�ed in a.Sequent 
al
uli are not mentioned in [7℄, but a model K with a node a su
hthat a satis�es all formulas in � and violates all formulas in � is the same as aKripke 
ounter-model for the sequent 〈� ⇒ � 〉. So there exists a natural linkfrom Kripke semanti
s to sequent (Gentzen) 
al
uli: when 
onstru
ting a de
isionpro
edure one is sometimes able to simultaneously design a sequent 
al
ulus forthe logi
 in question.A de
ision pro
edure 
an also be based on a sequent 
al
ulus itself. It worksso that it 
onstru
ts the proof of the given sequent by using the rules of the
al
ulus in reverse, i.e. by starting from a given sequent and using the rules ofthe 
al
ulus in ba
kward dire
tion, with a hope to arrive at axioms (i.e. initialThis work is a part of the resear
h plan MSM 0021620839 that is �nan
ed by the Ministryof Edu
ation of the Cze
h Republi
.



160 V. �Svejdarsequents). Then it may be a problem to ensure termination of the pro
edure.For example the 
ontra
tion rule, if used in reverse, allows one to dupli
ate anyformula of the given sequent. So an unorganized use of the 
ontra
tion rule may
ause the pro
edure to 
y
le. It is known that the presen
e of the 
ontra
tion ruleis essential for many 
al
uli met in the literature. If, as in this paper, sequents
onsist of sets rather than sequen
es of formulas then there is no 
ontra
tionrule, but the option to dupli
ate a formula is still there be
ause the rules allow aprin
ipal formula to simultaneously be a side formula.R. Dy
ko� in [4℄ found a terminating 
al
ulus for intuitionisti
 propositionallogi
. However the paper [4℄ does not mention Kripke semanti
s and is not spe
i�
about the 
omputational 
omplexity of the pro
edure obtained. We analyze thepaper [4℄ and show that a Kripke 
ompleteness theorem is in fa
t impli
it in it.Thus this paper o�ers a better insight into [4℄, espe
ially to those who primarilythink about Kripke semanti
s. We also show that if some improvements areimplemented then it 
an be shown that the de
ision pro
edure works in polynomialspa
e. Then we 
onsider a se
ond 
al
ulus for intuitionisti
 logi
, now a multi-
on-
lusion one, allowing any number of formulas in su

edent. We again show, inthis 
ase by a mu
h simpler proof, that the 
al
ulus in question is 
omplete w.r.t.Kripke semanti
s and yields a polynomial-spa
e de
ision pro
edure. We alsoobtain an upper bound on the depth of Kripke 
ounter-model. The advantage ofour multi-
on
lusion 
al
ulus is that it di�ers from 
al
uli known e.g. from [11℄and [6℄ in only one simple additional rule.This paper pays more attention to the question whether de
ision pro
edures
an be derived from known 
al
uli than to the question how to 
onstru
t the mosteÆ
ient de
ision pro
edure. I believe that it is of some interest to have relativelysimple proofs that simultaneously show Kripke 
ompleteness, 
ut eliminability andpolynomial-spa
e de
idability for 
al
uli more or less traditional. Note howeverthat J. Hudelmaier [5℄ 
onstru
ted a 
al
ulus and a de
ision pro
edure with mu
hlower spa
e requirements than ours.2. Kripke semanti
s and sequent 
al
uliWe 
hoose {&,∨,→,⊥} as the base set of logi
al 
onne
tives . So propositionalformulas are built up from (propositional) atoms and the symbol ⊥ for falsityusing 
onjun
tion, disjun
tion, and impli
ation. We treat ¬A as a shorthandfor A → ⊥. In syntax analysis, impli
ation → has lower priority than 
onjun
-tion & and disjun
tion ∨. So e.g. p ∨ q → r is a shorthand for (p ∨ q) → r.A sequent is a pair of �nite sets of formulas; we write 〈� ⇒ � 〉 for a sequent
onsisting of sets � and �. The sets � and � are 
alled ante
edent and su

e-dent of the sequent 〈� ⇒ � 〉. When writing down sequents we use the usualnotational 
onventions and omit 
urly bra
es and symbols for set union and theempty set. So e.g. 〈�, C ⇒ 〉 is a shorthand for 〈� ∪ {C} ⇒ ∅ 〉, et
.A Kripke frame for intuitionisti
 logi
 is a pair 〈W,≤〉 where W 6= ∅ and
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≤ is a re
exive and transitive relation on W . The elements of W are nodes ;if x ≤ y then the node y is said to be a

essible from x. A truth relation (ora for
ing relation) on a Kripke frame 〈W,≤〉 is a relation ‖− between nodesand propositional formulas satisfying the persisten
y 
ondition (if x ‖− p for anatom p and x ≤ y then y ‖− p), respe
ting 
onjun
tions, disjun
tions, and falsity(x ‖− A&B iff x ‖− A and x ‖− B, x ‖− A∨B iff x ‖− A or x ‖− B, and x ‖−/ ⊥)and satisfying the well-known \modal" 
ondition for impli
ation: x ‖− A → Biff for ea
h y a

essible from x it is the 
ase that y ‖− B whenever y ‖− A. It
an easily be veri�ed that any relation between nodes and propositional atomssatisfying the persisten
y 
ondition extends uniquely to a truth relation. Also, if
‖− is a truth relation on a frame 〈W,≤〉 then the persisten
y 
ondition holds forall formulas, not just atoms. A Kripke model for intuitionisti
 propositional logi
is a triple 〈W,≤, ‖−〉 where 〈W,≤〉 is a Kripke frame and ‖− is a truth relationon 〈W,≤〉.If K = 〈W,≤, ‖−〉 is a Kripke model then x ‖− A is read \A is satis�ed in x" or\x satis�es A". If A is satis�ed in all x ∈ W then A is valid in K. The model K isa 
ounter-model for a sequent 〈� ⇒ � 〉 if some element of its domain W satis�esall formulas in � and simultaneously none formula from �. A sequent 〈� ⇒ � 〉is intuitionisti
ally tautologi
al if it has no 
ounter-model. A formula A is anintuitionisti
 tautology if the sequent 〈 ⇒ A 〉, with empty ante
edent and A asthe only formula in su

edent, is intuitionisti
ally tautologi
al. It is evident that
A is an intuitionisti
 tautology iff A is valid in ea
h Kripke model.An example of a Kripke frame is the stru
ture 〈{a, b}, {[a, a℄, [a, b℄, [b, b℄}〉 hav-ing two nodes a and b, with b a

essible from a but a not a

essible from b. Let atruth relation on this frame be de�ned by stipulating that p is satis�ed in b andviolated in a, while q is violated in both a and b. One 
an easily 
he
k that theformula p → q is nowhere satis�ed, hen
e a ‖− (p → q) → p. Thus this model is a
ounter-model for the sequent 〈 (p → q) → p ⇒ p 〉. This model also shows thatthe formula ((p → q) → p) → p is not an intuitionisti
 tautology.Examples of sequents that are intuitionisti
ally tautologi
al are(1) 〈�, p ⇒ p 〉, 〈�,⊥ ⇒ G 〉.Another example of an intuitionisti
ally tautologi
al sequent is any sequent of theform 〈 (A → B) ∨ (B → A) → ⊥ ⇒ 〉.We 
all the least element (if it exists) of a Kripke model K a root of K.If K = 〈W,≤, ‖−〉 and a0 ∈ W then submodel generated by a0 is the model
K0 = 〈W0,≤0, ‖−0〉 where W0 = {x ∈ W ; a0 ≤ x} and ≤0 and ‖−0 are therestri
tions of ≤ and ‖− to W0. One 
an easily verify that if A is a propositionalformula and x ∈ W0 then x ‖− A ⇔ x ‖−0 A. So in the sequel we 
an assumethat if K is a 
ounter-model for A then K has a root a and that it is the root awhere a ‖−/ A. More about Kripke models 
an be found in various sour
es, e.g. in[2℄ or [11℄.



162 V. �SvejdarSequent 
al
uli have unary and binary dedu
tion rules. An example of a binaryrule (with two premises) is(4) 〈�, E ⇒ G 〉, 〈�, F ⇒ G 〉 / 〈�, E ∨ F ⇒ G 〉.The formula in whi
h the 
onne
tive is introdu
ed, whi
h is the formula E ∨ Fin 
ase of the rule (4), is 
alled prin
ipal formula, while the formulas that maydisappear by using the rule, whi
h are the formulas E and F in 
ase of the rule (4),
ould be 
alled minor formulas of the rule in question. The formulas that are not
hanged by using the rule, whi
h are the formulas in � ∪ {G} in 
ase of (4), are
alled side formulas . Both minor and prin
ipal formulas may simultaneously beside formulas. This, in 
ase of the rule (4), means that ea
h of the formulas E, Fand E ∨ F 
an be an element of the set �.The rule (4) is sound in the sense that if both sequents 〈�, E ⇒ G 〉 and
〈�, F ⇒ G 〉 are intuitionisti
ally tautologi
al then also the resulting sequent
〈�, E ∨ F ⇒ G 〉 is intuitionisti
ally tautologi
al. The rule (4), moreover, isinvertible in the sense that 〈�, E ∨ F ⇒ G 〉 is intuitionisti
ally tautologi
al ifand only if both sequents 〈�, E ⇒ G 〉 and 〈�, F ⇒ G 〉 are intuitionisti
allytautologi
al.3. A single-
on
lusion de
ision pro
edureIn this se
tion we 
onsider a single-
on
lusion 
al
ulus for intuitionisti
 propo-sitional logi
, where all sequents have exa
tly one formula in su

edent. We willspe
ify a de
ision pro
edure for intuitionisti
 propositional logi
 based on this
al
ulus.Lemma 1. The following rules:

〈� ⇒ E 〉, 〈� ⇒ F 〉 / 〈� ⇒ E & F 〉(2)
〈�, E, F ⇒ G 〉 / 〈�, E & F ⇒ G 〉(3)

〈�, E ⇒ G 〉, 〈�, F ⇒ G 〉 / 〈�, E ∨ F ⇒ G 〉(4)
〈�, E ⇒ F 〉 / 〈� ⇒ E → F 〉(5)

〈�, p, D ⇒ G 〉 / 〈�, p, p → D ⇒ G 〉,(6)where D, E, F , G are formulas and p is an atom, are sound and invertible.The rules
〈� ⇒ E 〉 / 〈� ⇒ E ∨ F 〉, 〈� ⇒ F 〉 / 〈� ⇒ E ∨ F 〉(7)

〈�, C → D ⇒ C 〉, 〈�, D ⇒ G 〉 / 〈�, C → D ⇒ G 〉(8)are sound. The rule(9) 〈�, D ⇒ G 〉 / 〈�, D, C1 → (C2 → ( . . → (Ck → D). .)) ⇒ G 〉



On sequent 
al
uli for intuitionisti
 propositional logi
 163is sound and invertible.Proof: Look at (5). Let K = 〈W,≤, ‖−〉 be a 
ounter-model for 〈� ⇒ E → F 〉.Assume that K has a root a and that a satis�es all formulas in � and violatesthe impli
ation E → F . So there is a node a0 su
h that a0 ‖− E and a0 ‖−/ F .By the persisten
y 
ondition, a0 satis�es all formulas in �. So the submodel K0of K generated by a0 is a 
ounter-model for the sequent 〈�, E ⇒ F 〉. All theremaining 
ases are trivial. �We intend to base our de
ision pro
edure on the rules in Lemma 1 and on otherrules spe
i�ed below. It starts with a given sequent 〈� ⇒ H 〉 and (essentially)repeatedly applies the rules (2){(6) to it in the reverse (right to left) dire
tion,thus redu
ing the question whether a given sequent is intuitionisti
ally tautolog-i
al to same questions about one or two simpler sequents. If all paths of the
omputation terminate with an initial sequent of the form (1) then the originalsequent 〈� ⇒ H 〉 is intuitionisti
ally tautologi
al. If none of the rules (2){(6),still in the right to left dire
tion, is appli
able to a sequent whi
h is not initial thenthe sequent is irredu
ible in the sense of the following de�nition. When speakingabout appli
ation of a rule, we will omit the words \in reverse" or \right to left"when the dire
tion is 
lear from 
ontext.De�nition 2. A sequent 〈� ⇒ G 〉 is irredu
ible if
◦ G is a disjun
tion, or an atom p su
h that p /∈ �, or the formula ⊥,
◦ no formula in � is a 
onjun
tion, disjun
tion, or the formula ⊥,
◦ � 
ontains no pair p, p → D where p is an atom.This de�nition, as well as the rule (6) above, is taken from R. Dy
kho�'s [4℄.Note that if 〈� ⇒ G 〉 is irredu
ible then � 
ontains only impli
ations and atoms.Theorem 3. An irredu
ible sequent 〈� ⇒ G 〉 is intuitionisti
ally tautologi
alif and only if some of the following 
onditions is true:
◦ G has the form E ∨F and some of the sequents 〈� ⇒ E 〉 and 〈� ⇒ F 〉is intuitionisti
ally tautologi
al, or
◦ there is an impli
ation C → D ∈ � su
h that C is 
ompound (not anatom or ⊥) and both sequents 〈� ⇒ C 〉 and 〈�− {C → D}, D ⇒ G 〉are intuitionisti
ally tautologi
al.Proof: The non-trivial dire
tion is ⇒. Assume that G is E ∨F ; the other 
ases,where G is ⊥ or an atom, are similar but simpler. Let C1 → D1, . ., Cm → Dm bethe list of all impli
ations C → D in � su
h that C is 
ompound. Assume thatnone of the sequents 〈� ⇒ E 〉 and 〈� ⇒ F 〉 is intuitionisti
ally tautologi
aland assume that for ea
h i some of the two sequents 〈�− {Ci → Di}, Di ⇒ G 〉and 〈� ⇒ Ci 〉 is not intuitionisti
ally tautologi
al. It is evident that any Kripke
ounter-model for 〈� − {Ci → Di}, Di ⇒ G 〉 is automati
ally the desired
ounter-model for the sequent 〈� ⇒ G 〉. So we may assume that for ea
h i



164 V. �Svejdarit is the sequent 〈� ⇒ Ci 〉 whi
h is not intuitionisti
ally tautologi
al. Let
K1, . ., Km be 
ounter-models for 〈� ⇒ C1 〉 to 〈� ⇒ Cm 〉 respe
tively, andlet Km+1 and Km+2 be 
ounter-models for 〈� ⇒ E 〉 and 〈� ⇒ F 〉. We mayassume that the models K1, . ., Km+2 have roots a1, . ., am+2, all nodes ai satisfyall formulas in �, the node ai for i ≤ m violates Ci, and am+1 and am+2 violate
E and F respe
tively.
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������������1Figure 1: Amalgamation of Kripke modelsLet K be the model depi
ted in Figure 1, with a new root a. To �nish thede�nition of the model K we have to spe
ify the truth relation ‖−, i.e. to statethe truth values of atoms in a. Let all atoms p ∈ � be evaluated positively in aand all remaining atoms negatively in a. Note that this 
hoi
e does not violatethe persisten
y 
ondition, sin
e all atoms in � are positive in all nodes of allsubmodels Kj . Ea
h of the formulas Ci may be satis�ed in various nodes of thesubmodels Kj , but the fa
t that Ci is violated in ai is suÆ
ient for a 
on
lusionthat a ‖−/ Ci. Similarly a ‖−/ E and a ‖−/ F . We have to 
he
k that all formulasin � are satis�ed in a. The set � 
ontains only atoms and impli
ations, and atomsare satis�ed in a by de�nition. An impli
ation with a 
ompound premise mustbe one of Ci → Di. To verify a ‖− Ci → Di we have to 
he
k that x ‖− Di forea
h x a

essible from a su
h that x ‖− Ci. If x is a node of some Kj then thisis true be
ause all formulas in � are valid in Kj . If x is a then this is also truesin
e x ‖−/ Ci. Note that a similar argument applies also to impli
ations of theform ⊥ → D and p → D. If p → D ∈ � then, by the de�nition of irredu
iblesequent, p is not in � and as su
h is evaluated negatively in a. �So if 〈� ⇒ G 〉 is an intuitionisti
ally tautologi
al sequent then the rules(7) and (8) may be not appli
able (in reverse) to any formula we 
hoose; butif 〈� ⇒ G 〉 is irredu
ible then Theorem 3 guarantees that some of these rulesis appli
able to some formula. Theorem 3 
an be viewed as a generalization ofHarrop's theorem. A similar theorem appears also in [1℄ and is impli
it in [5℄.Unfortunately Theorem 3 is still not suÆ
ient for a de
ision pro
edure to bebased on: it is not sure that the sequent 〈� ⇒ Ci 〉 is shorter than 〈� ⇒ G 〉,and thus it is not guaranteed that using the left impli
ation rule (8) in reverseyields two simpler sequents. The solution is | when pro
essing an impli
ation
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edent | to 
loser look at the form of its premise. This is one of theimportant ideas in [4℄.Lemma 4. The following rules are sound and invertible:
〈�, A → (B → D) ⇒ G 〉 / 〈�, A &B → D ⇒ G 〉,(10)
〈�, A → D, B → D ⇒ G 〉 / 〈�, A ∨ B → D ⇒ G 〉,(11)

〈�, A, B → D ⇒ B 〉 / 〈�, (A → B) → D ⇒ A → B 〉.(12)Proof: is obvious. �Now we are able to spe
ify the de
ision pro
edure for sequents with one for-mula in su

edent, and prove its properties. The heart of the pro
edure is aBoolean fun
tion S whi
h de
ides about a given sequent whether it is intuition-isti
ally tautologi
al. The fun
tion S re
ursively 
alls itself in some 
ases. Thede
ision pro
edure (main program) reads the input sequent 〈� ⇒ H 〉 and sim-ply 
alls the fun
tion S with a parameter 〈� ⇒ H 〉. The fun
tion S denotes itsparameter 〈� ⇒ G 〉 and works as follows:(a) If G is E & F then 
all S on 〈� ⇒ E 〉 and then on 〈� ⇒ F 〉. Return trueif both 
alls return true, return false otherwise.If G is E → F then use the rule (5), i.e. 
all S on 〈�, E ⇒ F 〉 and returnwhatever it returns.If � 
ontains a formula of the form E & F , E ∨ F , A& B → D, or A ∨ B → D,then pro
eed analogi
ally, i.e. use the rule (3), (4), (10), or (11), respe
tively.(b) If � 
ontains a pair p, p → D then: repla
e p → D by D (i.e. use the rule (6)),remove all formulas of the form C1 → ( . . → (Ck → D). .) from � (i.e. use therule (9) repeatedly), 
all S on the resulting sequent and return whatever it returns.(
) If ⊥ ∈ � or if G is an atom su
h that G ∈ � then return true.(d) If G is E ∨ F then 
all S on 〈� ⇒ E 〉 and on 〈� ⇒ F 〉. If some of the
alls returns true then return true.(e) Create a list (A1 → B1) → D1, . ., (Am → Bm) → Dm of all impli
ationsin � with a 
ompound premise. Denote �i the set � − {(Ai → Bi) → Di}and denote �−i the set resulting from �i by removing all impli
ations of the form
C1 → ( . . → (Ck → Di). .). For i := 1 to m 
all S on 〈�i, Ai, Bi → Di ⇒ Bi 〉and on 〈�−i , Di ⇒ G 〉. If for some i both 
alls return true then return true.Otherwise return false.If the fun
tion S rea
hes the instru
tion (e) then the sequent 〈� ⇒ G 〉 is ir-redu
ible, and moreover, 
ompound premises of impli
ations in � must again beimpli
ations. If the number of su
h impli
ations is zero then the fun
tion S re-turns false. Further explanation about the instru
tion (e) is in the �nal part ofproof of Theorem 5.



166 V. �SvejdarTheorem 5. The pro
edure spe
i�ed above works in polynomial spa
e and 
or-re
tly de
ides whether a given sequent is intuitionisti
ally tautologi
al.Proof: The 
omputation of a fun
tion like S, 
alling re
ursively itself in some
ases, 
an be viewed as a tree T with verti
es labeled by parameters of the 
alls.If S has to pro
ess a sequent 〈� ⇒ G 〉, and when doing so it re
ursively 
allsitself with parameters 〈�1 ⇒ G1 〉 to 〈�m ⇒ Gm 〉, then the tree T 
ontains avertex labeled by 〈� ⇒ G 〉, with m immediate su

essors labeled by 〈�1 ⇒ G1 〉to 〈�m ⇒ Gm 〉. The root of T is labeled by the input sequent 〈� ⇒ H 〉. Wehave to show that ea
h path in T terminates, i.e. ends with a vertex labeled by asequent pro
essed without re
ursive 
alls.We asso
iate weights with 
onne
tives and sequents. As in [4℄, the weight of
onjun
tion & is 2 while the weight of ∨ and → is 1. The weight of an atom isalso 1. A weight of a sequent depends on the way how the sequent appeared in thedata of the fun
tion S. To de�ne it we think of some o

urren
es of impli
ations ashighlighted . It will be 
lear from what is said below that a highlighted impli
ationnever o

urs in the s
ope of a 
onjun
tion or a disjun
tion or in the \left s
ope"of an impli
ation. It also never o

urs in a su

edent of a sequent. Highlightedimpli
ations and the notion of suÆx de�ned below are meant to tra
e how aformula o

urred in an ante
edent of a sequent.Initially no impli
ation is highlighted. If the fun
tion S uses the rule (10),repla
ing some formula A & B → D ∈ � by A → (B → D), then if the for-mula A → (B → D) is new , i.e. not an element of �, all impli
ations insideor (immediately) before the subformula D are preserved , i.e. highlighted or nota

ording to whether they were highlighted in the original formula A & B → D.The new impli
ation, whi
h is the main 
onne
tive in A → (B → D), is not high-lighted. If S uses the rule (11) and repla
es a formula A∨B → D by two formulas
A → D and B → D, then for ea
h of these two formulas, if the formula is new,all impli
ations inside the subformula D are preserved, and the main impli
ation,before the formula D, be
omes highlighted. When S applies instru
tion (e) it
hooses a formula (A → B) → D in � and repla
es it by the pair A, B → D inone embedded 
all and by the formula D in the asso
iated embedded 
all. In the�rst 
ase, if B → D is new then impli
ations inside and immediately before thesubformula D are preserved. In the se
ond 
ase, if D is new then impli
ationsinside it are preserved. In the remaining 
ases nothing happens with highlightedimpli
ations: in instru
tions (b) and (e) some impli
ations, highlighted or not,merely disappear, and if S uses any of the rules (2){(5) or (7), in instru
tions(a) or (d), then it pro
esses a formula 
ontaining no highlighted impli
ations.In any stage of the 
omputation, ea
h formula E ∈ � 
an be written in theform C1 → ( . . → (Ck → D). .) where none of the formulas Ci and D 
ontainhighlighted impli
ations. The number k 
an be zero and D 
an still be an impli
a-tion. The part → (Ci → ( . . → (Ck → D). .)) of the formula E, together with aninformation whi
h impli
ations are highlighted in it, is a suÆx of E provided its
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ation. So the number of di�erent suÆxesof E equals the number of highlighted impli
ations in E. Weight of a sequent
〈� ⇒ G 〉 is de�ned as the sum of weights of all o

urren
es of 
onne
tives andatoms in � ∪ {G}, with the following ex
eption. If a formula E ∈ � has a suf-�x → D then the symbols in this suÆx 
ount only on
e for ea
h formula in �that also has → D as a suÆx.

〈Γ,
1

t
2

→. (
3

w
4

→
5

r),
6

q →. (w → r),
7

u
8

→. (
9

w
10

→.
11

r ),
12

v →. (w →. r),
13

s →. r ⇒ G 〉

〈Γ, t ∨ q → (w → r), u →. (w →. r), v →. (w →. r), s →. r ⇒ G 〉

〈Γ, t ∨ q → (w → r), (u ∨ v) → (w →. r), s →. r ⇒ G 〉

〈Γ, t ∨ q → (w → r), (u ∨ v) & w →. r, s →. r ⇒ G 〉

〈Γ, t ∨ q → (w → r), ((u ∨ v) & w) ∨ s → r ⇒ G 〉Figure 2: Weights and highlighted impli
ationsAn example of how the weights are determined is given in Figure 2. The �vesequents 
an be viewed as both a fragment of a proof or lo
al data of the fun
-tion S, where higher sequents 
orrespond to deeper re
ursive 
alls. Highlightedimpli
ations are marked with dots. In the formulas shown in the topmost sequentwe have a suÆx →. (w → r) whi
h o

urs twi
e, then a suÆx →. (w →. r) whi
halso o

urs twi
e, and a suÆx →. r whi
h o

urs three times. Numbers abovesymbols show how the weight is 
omputed. If � 
ontains no highlighted impli
a-tions then the weight of the topmost sequent is 13 plus the number of symbolsin � ∪ {G} plus the number of 
onjun
tions in � ∪ {G}.Let the input sequent 〈� ⇒ H 〉 have n symbols. Then its weight 
an bebounded by 2n. We would like to 
laim that whenever S 
alls itself while pro-
essing a sequent 〈� ⇒ G 〉, the weight of the parameter(s) of the embedded 
allis lower than the weight of the 
urrent parameter 〈� ⇒ G 〉. In most 
ases itis true. For example, if S uses the rule (11), repla
ing a formula A ∨ B → Dby two formulas A → D and B → D, then the 
onne
tives inside D and theimpli
ation next to D do not 
ount twi
e, and the pro�t is the removal of onedisjun
tion. If S uses the rule (6), repla
ing a formula p → D by D, then itis quite possible that only the atom p in p → D 
ounts, while in the embed-ded 
all more symbols in D 
ount. This happens if the outermost impli
ationis highlighted, i.e. if the formula p → D has a suÆx → D, and there are moreformulas in � with the same suÆx. Note however that when the fun
tion S ap-plies instru
tion (b) it simultaneously removes all other formulas having the samesuÆx → D. So the minimal possible pro�t of repla
ing the formula p → D by Dand removing all formulas of the form C1 → ( . . → (Ck → D). .) is a de
reasein weight by 1, the weight of the atom p. The same phenomenon o

urs in in-stru
tion (e), when (A → B) → D is repla
ed by D. The only ex
eption whenthe weight may not de
rease is that 
all in instru
tion (e) where the fun
tion S
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es a sequent 〈�, (A → B) → D ⇒ G 〉 by 〈�, A, B → D ⇒ B 〉: theformula B appears twi
e in the embedded 
all and it 
an be of higher weight thanthe removed formula G. However, this happens at most on
e for ea
h (o

urren
eof a) subformula B of the original sequent 〈� ⇒ H 〉. Thus we 
an 
laim thatwhenever the fun
tion S re
ursively 
alls itself, the weight of the parameter of theembedded 
all is lower, ex
ept that at most n times the weight is in
reased by atmost 2n. This means that ea
h path in the tree T of embedded 
alls has lengthat most quadrati
 in the length of the input sequent 〈� ⇒ H 〉, and our de
isionpro
edure terminates on any input 〈� ⇒ H 〉. It is known ([3℄, [8℄, . . .) that thespa
e requirements of a fun
tion like S, 
alling re
ursively itself, is determinedby the sum of sizes of lo
al data of instan
es of S along any path in the treeof re
ursive 
alls. When S is 
alled with parameter 〈� ⇒ G 〉 its lo
al data isessentially the sequent 〈� ⇒ G 〉 itself, and one 
an 
he
k that its size is alsoquadrati
 in n. So our pro
edure works in polynomial spa
e.Let us say that a vertex in the tree T labeled by 〈� ⇒ G 〉 is positive ornegative a

ording to whether S returns true or false when pro
essing it. Letthe depth of a vertex v be the length of the longest path starting at v, wherethe length of a one-element path is zero. Consider the following 
laim. Let thedepth of a vertex v ∈ T labeled by 〈� ⇒ G 〉 be k. Then v is positive ifand only if 〈� ⇒ G 〉 is intuitionisti
ally tautologi
al. This 
laim is provedby indu
tion on k. Let, for example, v be a vertex of depth k labeled by a se-quent 〈� ⇒ G 〉 whi
h is intuitionisti
ally tautologi
al and su
h that none ofinstru
tions (a){(
) in S is appli
able. Assume that G is not a disjun
tion. Then
G must be ⊥ or an atom p su
h that p /∈ �, and � 
ontains, besides the impli-
ations (A1 → B1) → D1, . ., (Am → Bm) → Dm 
reated in instru
tion (e), onlysome atoms and some impli
ations p → D where p /∈ �. Theorem 3 says that forsome i both sequents 〈�i, (Ai → Bi) → Di ⇒ Ai → Bi 〉 and 〈�i, Di ⇒ G 〉 areintuitionisti
ally tautologi
al. It follows from invertibility of rules (12) and (9)that both sequents 〈�i, Ai, Bi → Di ⇒ Bi 〉 and 〈�−i , Di ⇒ G 〉, whi
h a
tas parameters of the embedded 
alls, are intuitionisti
ally tautologi
al. The im-mediate su

essors of v labeled by these two sequents have depth lower than k.So, by the indu
tion hypothesis, S returns true when 
alled on them. Hen
e theresult of the 
omputation in instru
tion (e) is true, i.e. v is positive. We leave theremaining 
ases to the reader. �A 
orollary of our 
onsiderations is that the single-
on
lusion 
al
ulus withinitial sequents (1) and rules (2){(7) and (9){(12), or (2){(9), is sound and 
om-plete with respe
t to Kripke semanti
s of intuitionisti
 logi
. Note that as totermination of the de
ision pro
edure the paper [4℄ refers the reader to [3℄ whi
hgives a general and widely appli
able method for proving termination but saysnothing about polynomial-spa
e. Note also that J. Hudelmaier [5℄ 
onstru
ts a
al
ulus and a de
ision pro
edure mu
h more eÆ
ient than ours: it works inspa
e O(n log n).
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on
lusion de
ision pro
edureThe left impli
ation rule (8) from the previous se
tion is inherently non-inver-tible be
ause if it is used in reverse and the formula B repla
es the formula G, theformula G disappears without a refund. The multi-
on
lusion 
al
ulus, allowingany number of formulas in su

edent, is more 
onvenient in this respe
t be
ausethe usual multi-
on
lusion left impli
ation rule(∗) 〈� ⇒ �, A 〉, 〈�, B ⇒ � 〉 / 〈�, A → B ⇒ � 〉,while still non-invertible, 
an be repla
ed by the following \non-extending" variant(20) 〈�, A → B ⇒ �, A 〉, 〈�, A → B, B ⇒ � 〉 / 〈�, A → B ⇒ � 〉whi
h is invertible. Note that (20) 
an be simulated by (∗) by taking �∪{A → B}for the set � in (∗). The rule (20) is a restri
ted variant of (∗): while the rule (∗)allows the prin
ipal formula A → B to simultaneously be a side formula, therule (20) requires it. To simplify (thinking about) the de
ision pro
edure spe
i�edbelow, we formulate also the rules for 
onjun
tion and disjun
tion as non-extend-ing. So our multi-
on
lusion 
al
ulus has initial sequents(13) 〈�, p ⇒ �, p 〉, 〈�,⊥ ⇒ � 〉,and the following rules:
〈� ⇒ �, A &B, A 〉, 〈� ⇒ �, A &B, B 〉 / 〈� ⇒ �, A &B 〉(14)

〈� ⇒ �, A ∨ B, A, B 〉 / 〈� ⇒ �, A ∨ B 〉(15)
〈�, A ⇒ B 〉 / 〈� ⇒ �, A → B 〉(16)

〈� ⇒ �, A → B, B 〉 / 〈� ⇒ �, A → B 〉(17)
〈�, A &B, A, B ⇒ � 〉 / 〈�, A &B ⇒ � 〉(18)

〈�, A ∨ B, A ⇒ � 〉, 〈�, A ∨ B, B ⇒ � 〉 / 〈�, A ∨ B ⇒ � 〉(19)
〈�, A → B ⇒ �, A 〉, 〈�, A → B, B ⇒ � 〉 / 〈�, A → B ⇒ � 〉.(20)Note that the 
al
ulus is very similar to 
al
uli de�ned e.g. in [6℄ and [11℄. Themain di�eren
e is the additional rule (17) whi
h 
an be 
alled weak impli
ationrule. It 
an easily be 
he
ked that all rules (14){(20) are sound with respe
tto Kripke semanti
s, and that all rules ex
ept (16) are invertible. The rightimpli
ation rule (16) is now the only rule whi
h is inherently non-invertible. Notealso that the rule (16) is the only rule whi
h 
an bring new formulas: any formulanot introdu
ed as a member of the set � in (16) must 
ome from initial sequents.The rule (16) is appli
able only to a sequent with exa
tly one formula in su

edent.Without this restri
tion, the rule would not be sound.
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ision pro
edure based on our multi-
on
lusion 
al
ulus.As in the previous se
tion, the pro
edure reads the input sequent 〈� ⇒ 
 〉 and
alls a Boolean fun
tion, now named M , on it. The fun
tion M denotes itsparameter 〈� ⇒ � 〉, and in some 
ases re
ursively 
alls itself. It works asfollows:(a) If � 
ontains a formula A & B su
h that A /∈ � and B /∈ � then 
all Mon 〈� ⇒ �, A 〉 and on 〈� ⇒ �, B 〉. Return true if both 
alls return true,return false if some returns false.Otherwise, use one of the rules (15) and (17){(20) a

ordingly, but only if pro�-table, i.e. if the embedded 
all or both embedded 
alls has or have parameter(s)di�erent from 〈� ⇒ � 〉.(b) If instru
tion (a) is not appli
able then return true if ⊥ ∈ � or if � and � havean atom in 
ommon.If instru
tion (a) is not appli
able, i.e. if none of the rules (14), (15), (17){(20)
an be pro�tably used, then the sequent 〈� ⇒ � 〉 is saturated in the followingsense.De�nition 6. A sequent 〈� ⇒ � 〉 is saturated if the following 
onditions aresatis�ed:
◦ if A & B ∈ � (or A ∨ B ∈ �) then both formulas A and B are in � (orin �, respe
tively),
◦ if A ∨ B ∈ � (or A & B ∈ �) then at least one of the formulas A and Bis in � (or in �, respe
tively),
◦ if A → B ∈ � then A ∈ � or B ∈ �,
◦ if A → B ∈ � then B ∈ �.Theorem 7. A saturated sequent 〈� ⇒ � 〉 is intuitionisti
ally tautologi
al ifand only if it is initial or if there is a formula A → B ∈ � su
h that A /∈ � andthe sequent 〈�, A ⇒ B 〉 is intuitionisti
ally tautologi
al.Proof: Again the nontrivial impli
ation is ⇒. So let 〈� ⇒ � 〉 be saturated,intuitionisti
ally tautologi
al and not initial. Let A1 → B1, . ., Am → Bm be alist of all impli
ations A → B ∈ � su
h that A /∈ �. Assume that none of thesequents 〈�, Ai ⇒ Bi 〉 is intuitionisti
ally tautologi
al. Let K1, . ., Km be 
oun-ter-models for 〈�, Ai ⇒ Bi 〉. Assume that a1, . ., am are roots of K1, . ., Km.Let K be the model 
onstru
ted from K1, . ., Km as in the proof of Theorem 3,i.e. by stipulating that a1, . ., am are the only immediate su

essors of a newroot a. Again, we evaluate all atoms in � positively and all the remaining atomsnegatively in a. Now the following 
laim 
an be proved by indu
tion on 
omplexityof a formula D: if D ∈ � then a ‖− D, and if D ∈ � then a ‖−/ D. If D isan atom in � then a ‖− D by de�nition. If D is an atom in � then, sin
e thesequent 〈� ⇒ � 〉 is not initial, we have D /∈ � and thus a ‖−/ D. So the 
laim istrue if D is an atom. It is evidently true also if D is ⊥. If D is A&B and D ∈ �
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tionhypothesis says a ‖−/ A or a ‖−/ B. So indeed a ‖−/ A & B. The remaining
ases when D is a 
onjun
tion or a disjun
tion in � or in � are similar. Solet D be A → B. First assume that D ∈ �. We have to verify that x ‖− Bwhenever a ≤ x and x ‖− A. If x is an element of some submodel Ki of K thenthere is nothing to do sin
e ai ‖− D. If x = a then, be
ause 〈� ⇒ � 〉 is saturated,we have A ∈ � or B ∈ �, so x ‖−/ A or x ‖− B. Finally assume that D ∈ �. If
D is some of the formulas A1 → B1, . ., Am → Bm, say Ai → Bi, then for x = aiwe have x ‖− A and x ‖−/ B. If D is di�erent from all A1 → B1, . ., Am → Bmthen A ∈ �. The fa
t that 〈� ⇒ � 〉 is saturated yields B ∈ �. Note thatthis is the pla
e where the weak impli
ation rule (17) is helpful. By the indu
tionhypothesis, for x = a we have x ‖− A and x ‖−/ B. So in all 
ases when A → B ∈ �there is an x a

essible from a su
h that x ‖− A and x ‖−/ B. So a ‖−/ A → B.

�Having Theorem 7 we 
an 
omplete our de
ision pro
edure for multi-
on
lusion
al
ulus:(
) If none of (a), (b) is appli
able then 
reate a list A1 → B1, . ., Am → Bmof all impli
ations in � whose premise is not in �. Call M on 〈�, A1 ⇒ B1 〉to 〈�, Am ⇒ Bm 〉. Return true if some of the 
alls returns true, return falseotherwise.In the formulation of the following Theorem 8 we need the notion of positiveand negative o

urren
es of formulas in a sequent 〈� ⇒ � 〉. All members of �are positive, all members of � are negative. If a formula A & B or A ∨ B ispositive (negative) then both subformulas A and B are positive (or negative,respe
tively). If a formula A → B is positive then the subformula A is negativeand the subformula B is positive. If a formula A → B is negative then thesubformula A is positive and the subformula B is negative. For example, in thesequent 〈 ¬¬p → p ⇒ p∨¬p 〉, the formula ¬p (i.e. p → ⊥) o

urs twi
e: positivelyas a part of the impli
ation ¬¬p, and negatively as a part of the disjun
tion p∨¬p.Theorem 8. The pro
edure spe
i�ed above works in polynomial spa
e and 
or-re
tly de
ides whether a given sequent 〈� ⇒ 
 〉 is intuitionisti
ally tautologi
al.If the sequent 〈� ⇒ 
 〉 
ontains n logi
al 
onne
tives and r negative impli
ationsthen it either has a proof of depth O(n2) in the 
al
ulus with initial sequents (13)and rules (14){(20), or it has a Kripke 
ounter-model of depth at most r, in whi
hevery node has at most r immediate su

essors.Proof: Let T be the tree of all 
alls of the fun
tion M , whi
h o

ur when thepro
edure pro
esses a sequent 〈� ⇒ 
 〉 with n logi
al 
onne
tives and r negativeimpli
ations E1 → F1, . ., Er → Fr, where obviously r ≤ n. Ea
h vertex v of T islabeled by a sequent 〈� ⇒ � 〉, the parameter of the 
all of M 
orresponding tothe vertex v. If M uses instru
tion 1 then v has one or two immediate su

essors
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ording to whether M uses (in reverse) a unary or a binary rule. If M usesinstru
tion 2 then v has no su

essors, i.e. is a leaf in T . In both 
ases M returnstrue if and only if all of the embedded 
alls return true. If M uses instru
tion 3then the sequent 〈� ⇒ � 〉 is saturated and non-initial and has m immediatesu

essors where m is the number of impli
ations A → B in � su
h that A /∈ �.The number m 
an be zero in whi
h 
ase the vertex v is a leaf.A step made from a vertex v labeled by a saturated sequent to one of theimmediate su

essors of v 
orresponds to the situation where M pro
esses animpli
ation A → B ∈ � by 
alling itself on 〈�, A ⇒ B 〉. Note that in this 
asethe impli
ation A → B must be a member of the set {Ei → Fi; 1 ≤ i ≤ r} ofall negative impli
ations. Also note that the same impli
ation is never pro
essedagain on a path in T . From this it follow that ea
h path in T 
ontains at most r+1saturated sequents. The distan
e from one saturated sequent to another saturatedsequent on a path is bounded by 2n + 1, the number of all subformulas of asequent with n logi
al 
onne
tives. This is be
ause ea
h use of an invertible ruleadds at least one new formula to �∪�. Thus ea
h path in T terminates and haslength O(n2). The size of lo
al data of any instan
e of M is quadrati
 in n. Sothe pro
edure works in polynomial spa
e.As in Theorem 5, let us say that a vertex in T labeled by 〈� ⇒ � 〉 is posi-tive or negative a

ording to whether M returns true or false when pro
essing it.Consider the following 
laim. Let a vertex v of T labeled by 〈� ⇒ � 〉 be su
hthat the depth of the subtree of T generated by v is k and su
h that on any pathfrom v to some leaf there are at most m+1 saturated sequents. Then if v is pos-itive it has a proof of depth at most k, and if v is negative it has a 
ounter-modelof depth at most m in whi
h every node has at most r immediate su

essors.This 
laim is proved by an indu
tion on k. Indeed, if k = 0 then either M appliesinstru
tion (b), in whi
h 
ase v is positive and the sequent 〈� ⇒ � 〉 is initial,i.e. having a proof of depth 0, or M applies instru
tion (
) with no embedded
alls, in whi
h 
ase v is negative and 〈� ⇒ � 〉 has a one-element, i.e. of depth 0,Kripke 
ounter-model. The indu
tion step and the remaining 
onsiderations areleft to the reader. �To know that intuitionisti
 propositional logi
 is de
idable in polynomial spa
eis interesting in 
onne
tion with the fa
t that it is polynomial-spa
e hard. Thatis proved in [9℄; a relatively easy semanti
al proof 
an also be found in my [10℄.Let me remark that the pre
ise role of the additional impli
ation rule (17) is notquite 
lear. It is redundant in the sense that it 
an be simulated by 
uts andthe 
al
ulus without this rule allows 
ut-elimination. However, I do not knowwhether the 
al
ulus with rules (14){(16) and (18){(20) dire
tly (polynomially)simulates the 
al
ulus with all rules (14){(20). Our treatment of multi-
on
lusion
al
ulus, where the de
ision pro
edure never removes a formula from a sequent,
an be viewed as showing that avoiding 
ontra
tion is not the only way how toensure termination.
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