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Martin boundary associated with a system of PDE

Allami Benyaiche, Salma Ghiate

Abstract. In this paper, we study the Martin boundary associated with a harmonic
structure given by a coupled partial differential equations system. We give an integral
representation for non negative harmonic functions of this structure. In particular, we
obtain such results for biharmonic functions (i.e.△2ϕ = 0) and for non negative solutions
of the equation △2ϕ = ϕ.

Keywords: Martin boundary, biharmonic functions, coupled partial differential equa-
tions

Classification: Primary 31C35; Secondary 31B30, 31B10, 60J50

1. Introduction

Let D be a domain in R
d, d ≥ 1, and let Li, i = 1, 2, be two second order

elliptic differential operators onD leading to harmonic spaces (D, HLi
) with Green

functions Gi (see [18]). Moreover, we assume that every ball B ⊂ B̄ ⊂ D is an Li-
regular set. Throughout this paper we consider two positive Radon measures µ1
and µ2 such that K

µi

D =
∫
D Gi(·, y)µi (dy) is a bounded continuous real function

on D, i = 1, 2, and ∥∥K
µ1
D

∥∥
∞

∥∥K
µ2
D

∥∥
∞

< 1.

We consider the system:

(S)

{
L1u = −vµ1,

L2v = −uµ2.

Note that if U is a relatively compact open subset of D, µ1 = λd, where λd is
the Lebesgue measure, µ2 = 0 and L1 = L2 = △, then we obtain the classical
biharmonic case on U . In the case when µ1 = µ2 = λd and λd(D) < ∞, we
obtain equations of type △2ϕ = ϕ. In this work, we shall study the Martin
boundary associated with the balayage space given by the system (S) (see [7],
[14] and [19]), and we shall characterize minimal points of this boundary in order
to give an integral representation for non negative solutions of the system (S).
Let us note that the notion of a balayage space defined by J. Bliedtner and

W. Hansen in [7] is more general than that of a P-harmonic space. It covers
harmonic structures given by elliptic or parabolic partial differential equations,
Riesz potentials, and biharmonic equations (which are a particular case of this
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work). In the biharmonic case, a similar study can be done using couples of
functions as presented in [3], [5], [8], [9], [21] and [22].
We are also grateful to the referee for his remarks and comments.

2. Notations and preliminaries

For j = 1, 2, let Xj = D × {j}, and let X = X1
⋃

X2. Moreover, let ij and πj

be the mappings defined by

ij :

{
D −→ Xj

x 7−→ (x, j)
and πj :

{
Xj −→ D

(x, j) 7−→ x.
.

Let U0 be the set of all balls B such that B ⊂ B̄ ⊂ D, Uj be the image of U0
by ij , j = 1, 2, and U = U1 ∪ U2.

Definition 2.1. Let v be a measurable function on X . For U ∈ U1, we define
the kernel SU by

SUv = (H1π1(U)(v ◦ i1)) ◦ π1 + (K
µ1
π1(U)

(v ◦ i2)) ◦ π1.

For U ∈ U2, we define the kernel SU by

SUv = (H2π2(U)(v ◦ i2)) ◦ π2 + (K
µ2
π2(U)

(v ◦ i1)) ◦ π2,

where H
j
πj(U)

, j = 1, 2, denote the harmonic kernels associated with (D, HLj
)

and

K
µi

πi(U)
(w) =

∫
G

πi(U)
i (·, y)w(y)µi (dy) i = 1, 2,

where w is a measurable function onD andG
πi(U)
i is the Green function associated

with the operator Li on πi(U). Let Gj , j = 1, 2, be the Green kernel associated
with Lj on D. The family of kernels (SU )U∈U yields a balayage space on X as
defined in [7] and [14].

Let ∗H(X) denote the set of all hyperharmonic functions on X , i.e.

∗H(X) := {v ∈ B(X) : v is l.s.c. and SUv ≤ v ∀U ∈ U},

where B(X) denotes the set of all Borel functions on X . Let S(X) be the set of
all superharmonic functions on X , i.e.

S(X) := {v ∈ ∗H(X) : (SUv) |U∈ C(U) ∀U ∈ U},

and let H(X) be the set of all harmonic functions on X :

H(X) := {h ∈ S(X) : SUh = h ∀U ∈ U}.
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Denoting W := ∗H+(X), the space (X,W) is a balayage space (see [7] and [14]).
For every positive numerical function ϕ on X and for every U ∈ U , the reduit

RU
ϕ is defined by

RU
ϕ := inf{v ∈ ∗H(X) : v ≥ ϕ on U}.

Let R̂U
ϕ be the lower semi-continuous regularization of R

U
ϕ , i.e.

R̂U
ϕ (x) := lim infy→x

RU
ϕ (y), x ∈ X.

Theorem 2.1. Let s be a function on X such that

K
µj

D (s ◦ ik) < ∞, j 6= k, j, k = 1, 2.

The following statements are equivalent.

1. s is a superharmonic function on X .

2. sj := s ◦ ij −K
µj

D (s ◦ ik), j 6= k, j, k ∈ {1, 2}, are Lj-superharmonic on D.

Proof: Let s be a superharmonic function on X and let U ∈ U0. We have

i1(U) ∈ U1 and π1(i1(U)) = U.

Since Si1(U)s ≤ s, we have

H1U (s ◦ i1) +K
µ1
U
(s ◦ i2) ≤ s ◦ i1.

Knowing that

K
µ1
U (s ◦ i2) = K

µ1
D (s ◦ i2)− H1U (K

µ1
D (s ◦ i2)),

we obtain

H1U (s ◦ i1) +K
µ1
D (s ◦ i2)− H1U (K

µ1
D (s ◦ i2)) ≤ s ◦ i1.

Therefore
H1U (s ◦ i1 − K

µ1
D (s ◦ i2)) ≤ s ◦ i1 − K

µ1
D (s ◦ i2).

So, s1 := s ◦ i1 − K
µ1
D (s ◦ i2) is an L1-superharmonic function on D. Similarly,

we prove that s2 := s ◦ i2 − K
µ2
D (s ◦ i1) is L2-superharmonic on D. Conversely,

we assume that si, i = 1, 2, are Li-superharmonic functions. Let U ∈ Uj , j = 1, 2
and k 6= j. Since sj is an Lj-superharmonic function,

H
j
πj(U)

sj ≤ sj .

Hence
H

j
πj(U)

(s ◦ ij − K
µj

D (s ◦ ik)) ≤ s ◦ ij − K
µj

D (s ◦ ik).

Therefore
H

j
πj(U)

(s ◦ ij) +K
µj

πj(U)
(s ◦ ik) ≤ s ◦ ij .

So,
SUs ≤ s, ∀U ∈ U .

Thus s is superharmonic on X . �
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Corollary 2.1. Let v be a function on X such that K
µj

D (v ◦ ik), j 6= k, j, k ∈
{1, 2}, is a finite function. Then the following properties are equivalent.

1. v is harmonic on X .

2. v◦i1−K
µ1
D (v◦i2) and v◦i2−K

µ2
D (v◦i1) are L1-harmonic and L2-harmonic

function on D, respectively.

Remarks 2.1. (1) Note that if v is a positive harmonic function on X , then

K
µj

D (v ◦ ik), j 6= k, j, k ∈ {1, 2}, is a finite function.

(2) If v ∈ H(X), then the couple (v ◦ i1, v ◦ i2) is a solution of (S).

Corollary 2.2. Let v be a positive function defined on X . Then the following

properties are equivalent.

1. v is hyperharmonic on X .

2. The function

vj :=

{
v ◦ ij − K

µj

D (v ◦ ik) if K
µj

D (v ◦ ik) < ∞,

+∞ otherwise

is a positive Lj-hyperharmonic function on D, j 6= k, j, k ∈ {1, 2}.

If we identify a function s on X with the couple (s ◦ i1, s ◦ i2) defined on D,
then we get the following N. Bouleau’s decomposition [9]:

Theorem 2.2. Any superharmonic function s on X can be written as s = t+V s,

where

V =

(
0 K

µ1
D

K
µ2
D 0

)

and t is a function on X defined by

t :=

{
s1 ◦ π1 on X1,

s2 ◦ π2 on X2,

where sj := s ◦ ij − K
µj

D (s ◦ ik), j 6= k, j, k ∈ {1, 2}.

Proof: It follows from Theorem 2.1 that sj , j = 1, 2, is Lj-superharmonic on D.
Then, if we identify the function s with the couple (s◦ i1, s◦ i2) defined on D and
the function t with the couple (t ◦ i1, t ◦ i2) = (s1, s2) defined on D, we have

(
0 K

µ1
D

K
µ2
D 0

) (
s ◦ i1
s ◦ i2

)
+

(
s1
s2

)
=

(
s ◦ i1
s ◦ i2

)
.

�

Remark 2.1. In the classical biharmonic case, we obtain the N. Bouleau’s decom-
position [9]. Indeed, if we identify a function s on X with the couple (s◦ i1, s◦ i2)
on D, then

s ◦ i1 = s1 +K
µ1
D (s ◦ i2),

with s1 L1-superharmonic on D and the N. Bouleau’s kernel V is given by V =
K

µ1
D .
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3. Martin boundary associated with (S)

Let us fix x0 ∈ D and set for all x, y ∈ D

g1(x, y) :=

{
G1(x,y)
G1(x0,y)

if x 6= x0 or y 6= x0,

1 if x = y = x0,

and

g2(x, y) :=

{
G2(x,y)
G2(x0,y)

if x 6= x0 or y 6= x0,

1 if x = y = x0.

Let A1 = {g1(x, ·), x ∈ D}, A2 = {g2(x, ·), x ∈ D} and A = A1 ∪ A2.

As in [10] and [12], we consider the Martin compactification D̂ of D associated

with A. The boundary △ = D̂ \ D of D is called the Martin boundary of D

associated with the system (S).

The function gk(x, ·), k = 1, 2, x ∈ D can be extended, on D̂, to a continuous

function denoted gk(x, ·), k = 1, 2, x ∈ D as well.

In the following, we denote Q:=
∑+∞

n=0(K
µ1
D K

µ2
D )

n (resp. T :=
∑+∞

n=0(K
µ2
D K

µ1
D )

n)

which coincides with (I − K
µ1
D K

µ2
D )

−1 (resp. (I − K
µ2
D K

µ1
D )

−1) on Bb(D), where

(I − K
µ1
D K

µ2
D )

−1 (resp. (I − K
µ2
D K

µ1
D )

−1) is the inverse of the operator (I −

K
µ1
D K

µ2
D ) (resp. (I − K

µ2
D K

µ1
D )) on Bb(D), and Bb(D) denotes the set of all

bounded Borel measurable functions on D. We recall the following equalities

(K
µ1
D K

µ2
D )Q = Q(K

µ1
D K

µ2
D ),

(Kµ1
D K

µ2
D )Q+ I = Q.

Similarly we have

(K
µ2
D K

µ1
D )T = T (K

µ2
D K

µ1
D ),

(Kµ2
D K

µ1
D )T + I = T,

K
µ2
D Q = TK

µ2
D

and

K
µ1
D T = QK

µ1
D .

Remark 3.1. Note that if ϕ is a finite positive Borel measurable function on D

such that K
µ1
D K

µ2
D ϕ is bounded, then Qϕ < +∞.
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Theorem 3.1. Let ti, i = 1, 2, be two Li-harmonic functions on D such that

K
µj

D
tk is finite and K

µk

D
K

µj

D
tk is bounded, j 6= k, j, k ∈ {1, 2}, on D. Then the

functions v and w defined on X by

v :=

{
(Qt1) ◦ π1 on X1,

(Kµ2
D Qt1) ◦ π2 on X2,

and

w :=

{
(QK

µ1
D t2) ◦ π1 on X1,

(T t2) ◦ π2 on X2

are harmonic on X .

Remark 3.2. In the biharmonic case, if we assume that Kλd

D t2 < ∞, then (t1, 0)

and (Kλd

D t2, t2) are biharmonic.

Proof: Let us prove first that v and w are finite.
(i) We have

(Qt1) ◦ π1 = (QK
µ1
D

K
µ2
D

t1) ◦ π1 + t1 ◦ π1.

Since K
µ1
D

K
µ2
D

t1 is bounded and t1 is finite,

(Qt1) ◦ π1 < ∞.

(ii) We have also
(K

µ2
D Qt1) ◦ π2 = (TK

µ2
D t1) ◦ π2,

hence
(Kµ2

D Qt1) ◦ π2 = (TK
µ2
D K

µ1
D K

µ2
D t1) ◦ π2 + (K

µ2
D t1) ◦ π2.

Since K
µ1
D K

µ2
D t1 is bounded and K

µ2
D t1 is finite,

(K
µ2
D Qt1) ◦ π2 < ∞.

(iii) We have

(QK
µ1
D t2) ◦ π1 = (QK

µ1
D K

µ2
D K

µ1
D t2) ◦ π1 + (K

µ1
D t2) ◦ π1.

Knowing that K
µ2
D K

µ1
D t2 is bounded and K

µ1
D t2 is finite, we have

(QK
µ1
D t2) ◦ π1 < ∞.

(iv) We have
(T t2) ◦ π2 = (TK

µ2
D K

µ1
D t2) ◦ π2 + t2 ◦ π2.
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Since K
µ2
D K

µ1
D t2 is bounded and t2 is finite,

(T t2) ◦ π2 < ∞.

Let us show now that v and w are harmonic. From Corollary 2.1, it suffices to
show that v ◦ ij − K

µj

D (v ◦ ik) and w ◦ ij − K
µj

D (w ◦ ik), j 6= k, j, k ∈ {1, 2}, are
Lj-harmonic functions on D.

(v) On the one hand,

v ◦ i1 − K
µ1
D (v ◦ i2) = Qt1 − (K

µ1
D K

µ2
D )Qt1.

As
Qt1 = (K

µ1
D K

µ2
D )Qt1 + t1,

we get
v ◦ i1 − K

µ1
D (v ◦ i2) = t1.

Since t1 is an L1-harmonic function on D, v ◦ i1 − K
µ1
D (v ◦ i2) is L1-harmonic

on D.
On the other hand,

v ◦ i2 − K
µ2
D (v ◦ i1) = K

µ2
D Qt1 − K

µ2
D Qt1 = 0,

i.e. v◦ i2−K
µ2
D (v◦ i1) is L2-harmonic on D. Then we conclude that v is harmonic

on X .

(vi) Since

(∗) T = K
µ2
D QK

µ1
D + I,

we have

w ◦ i1 − K
µ1
D (w ◦ i2) = (QK

µ1
D − K

µ1
D K

µ2
D QK

µ1
D − K

µ1
D )t2.

As
Q = (Kµ1

D K
µ2
D )Q+ I,

we obtain
w ◦ i1 − K

µ1
D (w ◦ i2) = 0.

Using (∗), we have

w ◦ i2 − K
µ2
D (w ◦ i1) = (K

µ2
D QK

µ1
D + I − K

µ2
D QK

µ1
D )t2 = t2.

Then w ◦ ij − K
µj

D (w ◦ ik) is Lj-harmonic on D and therefore, w is a harmonic
function on X . �
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Corollary 3.1. Let ti, i = 1, 2, be two positive Li-hyperharmonic functions

on D. Then the functions v and w defined on D by

v :=

{
(Qt1) ◦ π1 on X1,

(Kµ2
D Qt1) ◦ π2 on X2,

and

w :=

{
(QK

µ1
D t2) ◦ π1 on X1,

(T t2) ◦ π2 on X2

are hyperharmonic on X .

Theorem 3.2. Let ν1 and ν2 be two positive Radon measures on △ such that

∫

△

K
µj

D gk(·, y) dνk(y) < ∞

and ∫

△

K
µj

D K
µk

D gj(·, y) dνj(y)

is bounded on D, j 6= k, j, k ∈ {1, 2}. Then the function v defined on X1 by

v :=

∫

△

(Qg1(·, y)) ◦ π1 dν1(y) +

∫

△

(QK
µ1
D g2(·, y)) ◦ π1 dν2(y)

and on X2 by

v :=

∫

△

(K
µ2
D Qg1(·, y)) ◦ π2 dν1(y) +

∫

△

(Tg2(·, y)) ◦ π2 dν2(y)

is harmonic on X .

Proof: It suffices to replace the functions tj from Theorem 3.1 with the Lj-

harmonic functions
∫
△ gj(·, y) dνj(y).

�

Corollary 3.2. Let ν1 and ν2 be two positive Radon measures on △ such that∫
△

K
µ1
D g2(·, y) dν2(y) < ∞. Then

(v, w) =
(∫

△

g1(·, y) dν1(y) +

∫

△

K
µ1
D g2(·, y) dν2(y),

∫

△

g2(·, y) dν2(y)
)

is a biharmonic couple in the classical sense.
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Theorem 3.3. Let v be a positive harmonic function onX such thatK
µj

D K
µk

D (v◦
ij) is bounded on D, j, k ∈ {1, 2}, j 6= k. Then there exist two positive Radon

measures ν1 and ν2 supported by △ such that v can be represented on X1 by

v =

∫

△

(Qg1(·, y)) ◦ π1 dν1(y) +

∫

△

(QK
µ1
D g2(·, y)) ◦ π1 dν2(y)

and on X2 by

v =

∫

△

(Kµ2
D Qg1(·, y)) ◦ π2 dν1(y) +

∫

△

(Tg2(·, y)) ◦ π2 dν2(y).

Proof: Let (Dn)n be an increasing sequence of relatively compact open subsets
of D such that D =

⋃
Dn, and let v be a positive harmonic function on X . From

Corollary 2.1, the positive functions v ◦ i1 − K
µ1
D (v ◦ i2) and v ◦ i2 − K

µ2
D (v ◦ i1)

are L1-harmonic and L2-harmonic on D, respectively. Then for all n ∈ N, both

R̂Dn

v◦i1−K
µ1
D
(v◦i2)

and R̂Dn

v◦i2−K
µ2
D
(v◦i1)

are L1-potential and L2-potential on D,

respectively. Therefore, there exist two positive Radon measures µ1n and µ2n on
D such that

R̂Dn

v◦i1−K
µ1
D
(v◦i2)

=

∫

D
G1(·, y) dµ1n(y)

and

R̂Dn

v◦i2−K
µ2
D
(v◦i1)

=

∫

D
G2(·, y) dµ2n(y).

Then we have

R̂Dn

v◦i1−K
µ1
D
(v◦i2)

=

∫

D
g1(·, y) dν1n(y)

and

R̂Dn

v◦i2−K
µ2
D
(v◦i1)

=

∫

D
g2(·, y) dν2n(y)

with
dν1(y) = G1(x0, ·)dµ1n(y)

and
dν2(y) = G2(x0, ·)dµ2n(y).

Since R̂Dn

v◦ij−K
µj
D
(v◦ik)

is Lj-harmonic on D \ Dn, j 6= k, j, k ∈ {1, 2}, ν1n and ν2n

are necessarily supported by D \ Dn.

Because of ‖νj
n‖ ≤ (v ◦ ij)(x0) − K

µj

D (v ◦ ik)(x0), j = 1, 2, we may extract

two subsequences (ν1
p(n)) and (ν

2
p(n)) converging vaguely to two positive Radon

measures ν1 and ν2 on D̄ = D̂. So, ν1 and ν2 are supported by △. Therefore
{

v ◦ i1 − K
µ1
D
(v ◦ i2) =

∫
△

g1(·, y) dν1(y),

v ◦ i2 − K
µ2
D (v ◦ i1) =

∫
△

g2(·, y) dν2(y).
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Hence
{

v ◦ i1 =
∫
△

g1(·, y) dν1(y) +K
µ1
D

( ∫
△

g2(·, y) dν2(y) +K
µ2
D
(v ◦ i1)

)
,

v ◦ i2 =
∫
△

g2(·, y) dν2(y) +K
µ2
D (v ◦ i1),

and
{

v ◦ i1 =
∫
△

g1(·, y) dν1(y) +
∫
△

K
µ1
D g2(·, y) dν2(y) +K

µ1
D K

µ2
D (v ◦ i1),

v ◦ i2 =
∫
△ g2(·, y) dν2(y) +K

µ2
D (v ◦ i1).

Thus,





Q(v ◦ i1) =
∫
△

Qg1(·, y) dν1(y) +
∫
△

QK
µ1
D

g2(·, y) dν2(y)

+QK
µ1
D K

µ2
D (v ◦ i1),

v ◦ i2 =
∫
△ g2(·, y) dν2(y) +K

µ2
D (v ◦ i1).

Since
QK

µ1
D K

µ2
D + I = Q,

we obtain





K
µ1
D

K
µ2
D

Q(v ◦ i1) + v ◦ i1 =
∫
△

Qg1(·, y) dν1(y) +
∫
△

QK
µ1
D

g2(·, y) dν2(y)

+QK
µ1
D K

µ2
D (v ◦ i1),

v ◦ i2 =
∫
△ g2(·, y) dν2(y) +K

µ2
D (v ◦ i1).

Since K
µ1
D K

µ2
D (v ◦ i1) is bounded,

{
v ◦ i1 =

∫
△ Qg1(·, y) dν1(y) +

∫
△ QK

µ1
D g2(·, y) dν2(y),

v ◦ i2 =
∫
△

K
µ2
D

Qg1(·, y) dν1(y) +
∫
△

Tg2(·, y) dν2(y).

So the function v can be written on X1 as

v =

∫

△

(Qg1(·, y)) ◦ π1 dν1(y) +

∫

△

(QK
µ1
D g2(·, y)) ◦ π1 dν2(y)

and on X2 as

v =

∫

△

(K
µ2
D Qg1(·, y)) ◦ π2dν1(y) +

∫

△

(Tg2(·, y)) ◦ π2 dν2(y).

�

Corollary 3.3 ([5]). Let (v, w) be a positive biharmonic couple in the classical
sense. Then there exist two positive Radon measures µ and ν supported by △
such that {

v =
∫
△

g1(·, y) dµ(y) +
∫
△

K
µ1
D g2(·, y) dν(y),

w =
∫
△ g2(·, y) dν(y).
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4. Minimal points and uniqueness of the integral representation

Definition 4.1. (1) A positive L1-harmonic (resp. L2-harmonic) function h on
D is called L1-minimal (resp. L2-minimal) if for any positive L1-harmonic (resp.
L2-harmonic) function u on D, u ≤ h implies u = αh with a factor α > 0.

(2) A positive harmonic function h on X is called minimal if for any positive
harmonic function u on X , u ≤ h implies u = αh with a factor α > 0.

Denote

△1 = {y ∈ △ : g1(·, y) is L1-minimal},

△2 = {y ∈ △ : g2(·, y) is L2-minimal}.

Note that for all y ∈ △, the function g1(·, y) (resp. g2(·, y)) is L1-harmonic (resp.
L2-harmonic) on D.

Proposition 4.1. Any positive harmonic function v on X such that K
µk

D K
µj

D (v◦
ik) is bounded for all j 6= k, j, k ∈ {1, 2}, can be written as v = w + s, where w

and s are defined by

w :=

{
(Qv1) ◦ π1 on X1,

(Kµ2
D Qv1) ◦ π2 on X2,

and

s :=

{
(QK

µ1
D v2) ◦ π1 on X1,

(Tv2) ◦ π2 on X2,

with vj := v ◦ ij − K
µj

D (v ◦ ik), j 6= k, j, k ∈ {1, 2}.

Remark 4.1. (1) Note that if v = w
′

+ s
′

is another decomposition of v with

w′ :=

{
(Qt1) ◦ π1 on X1,

(Kµ2
D Qt1) ◦ π2 on X2,

and

s′ :=

{
(QK

µ1
D t2) ◦ π1 on X1,

(T t2) ◦ π2 on X2,

where tj , j = 1, 2, are Lj-harmonic on D, then t1 = v1 and t2 = v2.

(2) In the classical case, for any biharmonic couple (h1, h2) the following holds:

(h1, h2) = (t, 0) + (K
µ1
D h2, h2),

where t is a harmonic function on D. Note that (K
µ1
D h2, h2) is a pure biharmonic

couple (see [3] and [21], [22]).
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Corollary 4.1. Let v be a positive minimal harmonic function on X such that

K
µk

D
K

µj

D
(v ◦ ik), j 6= k, j, k ∈ {1, 2}, is bounded. Then v = αw or v = βs, where

α and β are positive constants; w and s are defined as in Proposition 4.1.

Proposition 4.2. Let v be a positive function on X such that K
µj

D (v◦ik) is finite

and K
µk

D K
µj

D (v ◦ ik), j 6= k, j, k ∈ {1, 2}, is bounded. The following statements
are equivalent.

(1) v is a minimal harmonic function on X .

(2) v1 is a positive minimal L1-harmonic function on D, or v2 is a positive

minimal L2-harmonic function on D, where vj := v ◦ ij − K
µj

D (v ◦ ik).

Proof: Let v be a positive minimal harmonic function on X . Then we have
v = αw or v = βs by Corollary 4.1.
We shall show that if v = αw, then v1 is L1-minimal and if v = βs, then v2 is

L2-minimal.

(i) Case v = αw:

Suppose that v1 is not L1-minimal. Then there exist two L1-harmonic functions
u1 and u2 such that v1 = u1 + u2. So v = αf1 + αf2, with

f1 =

{
(Qu1) ◦ π1 on X1,

(Kµ2
D Qu1) ◦ π2 on X2,

and

f2 =

{
(Qu2) ◦ π1 on X1,

(K
µ2
D Qu2) ◦ π2 on X2.

It follows from Theorem 3.1 that f1 and f2 are harmonic on X . This contradicts
that v is minimal.

(ii) Case v = βs:

Suppose that v2 is not L2-minimal. Then there exist two L2-harmonic functions
u1 and u2 such that v2 = u1 + u2. Therefore v = βs1 + βs2, with

s1 =

{
(QK

µ1
D u1) ◦ π1 on X1,

(Tu1) ◦ π2 on X2,

and

s2 =

{
(QK

µ1
D u2) ◦ π1 on X1,

(Tu2) ◦ π2 on X2.

It follows from Theorem 3.1 that s1 and s2 are harmonic on X . This contradicts
that v is minimal.
Conversely, suppose that v1 is L1-minimal and let us show that v is minimal.

Assume the contrary and put v = g1+g2, where g1 and g2 are harmonic functions
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on X . Then, from Proposition 4.1, there exist two L1-harmonic functions s1 and
s2, and two L2-harmonic functions w1 and w2 such that

g1 =

{
(Qs1) ◦ π1 + (QK

µ1
D w1) ◦ π1 on X1,

(K
µ2
D Qs1) ◦ π2 + (Tw1) ◦ π2 on X2,

and

g2 =

{
(Qs2) ◦ π1 + (QK

µ1
D w2) ◦ π1 on X1,

(Kµ2
D Qs2) ◦ π2 + (Tw2) ◦ π2 on X2.

Therefore the function g1 + g2 is defined on X1 by

g1 + g2 := (Q(s1 + s2)) ◦ π1 + (QK
µ1
D (w1 + w2)) ◦ π1

and on X2 by

g1 + g2 := (K
µ2
D Q(s1 + s2)) ◦ π2 + (T (w1 + w2)) ◦ π2.

We deduce, from Proposition 4.1 and Remark 4.1.1, that v1 = s1 + s2, which
leads to a contradiction because v1 is L1-minimal.
In the same way, we suppose that v2 is an L2-minimal function and we show

that v is a minimal function. �

By using the fact that any positive minimal Lj-harmonic function on D is

proportional to gj(·, y), y ∈ △j (see [10]), w and s from Corollary 4.1 can be
given more precisely.

Corollary 4.2. Let v be a positive minimal harmonic function defined onX such

that the function K
µk

D K
µj

D (v ◦ ik), j 6= k, j, k ∈ {1, 2}, is bounded. Then

v = αw or v = βs,

with

w :=

{
(Qg1(·, y)) ◦ π1 on X1, y ∈ △1,

(K
µ2
D Qg1(·, y)) ◦ π2 on X2, y ∈ △1,

and

s :=

{
(QK

µ1
D

g2(·, y)) ◦ π1 on X1, y ∈ △2,

(Tg2(·, y)) ◦ π2, on X2, y ∈ △2.

Proof: This result follows immediately from Proposition 4.2 and Corollary 4.1.
�
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Remark 4.2. Note that K
µj

D (v ◦ ik) < ∞, j 6= k, j, k ∈ {1, 2}, because v is a
positive harmonic function on X .

Consider the family of mappings on the real vector space H(X) defined by

ϕK :

{
H(X) −→ R

+,

h 7−→ ϕK(h),

where
ϕK(h) = sup

x∈K
(|h ◦ i1(x)|+ |h ◦ i2(x)|),

and K is a compact subset of D. (ϕK) is a family of semi-norms on H(X) and
these semi-norms define a topology that makes H(X) a metrizable topological
space. It follows that this space is locally convex.
The cone H+(X) = {h ∈ H(X) : h ≥ 0} defines on H(X) an order relation

called specific order:

h1 ≺ h2 ⇐⇒ h2 = h1 + g, g ∈ H+(X).

Equipped with this order, H+(X) is a lattice. The minimal harmonic functions
are the points of the extreme generatrices of H+(X). We recall that a base of
H+(X) is the intersection of H+(X) with a closed hyperplane.
Let us consider the set

B := {h ∈ H+(X) : (h ◦ i1)(xo) + (h ◦ i2)(xo) = 1}, xo ∈ D.

B is a compact base of the cone H+(X). Indeed, the mapping

φxo :

{
H+(X) −→ R,

h 7−→ (h ◦ i1)(xo) + (h ◦ i2)(xo) = 1

is a continuous linear form. Then it defines a closed hyperplane B such that the
origin 0 6∈ B. Then, B is equicontinuous at any point x ∈ X . So, we conclude, by
Ascoli’s theorem, that B is compact. Note that H+(X) = R

+B. Let E(B) denote
the set of all extreme points of H+(X) belonging to B (see [11]). Moreover, using
Corollary 4.2, we have

E(B) = E1(B) ∪ E2(B),

where

E1(B) =

{
h ∈ E(B) : ∃α ∈ R

+, ∃ y ∈ △1 : h =

{
(αQg1(·, y)) ◦ π1 on X1

(αK
µ2
D Qg1(·, y)) ◦ π2 on X2

}

and

E2(B) =

{
h ∈ E(B) : ∃β ∈ R

+, ∃ y ∈ △2 : h =

{
(βQK

µ1
D

g2(·, y)) ◦ π1 on X1

(βTg2(·, y)) ◦ π2 on X2

}
.

We recall the following results which are useful for showing the uniqueness of an
integral representation (see [16]).
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Definition 4.2 ([16]). Let Γ a closed convex cone. A mapping ℓ : λ 7−→ eλ of a
separated topological space Ω in E(Γ) is called a parametrization of E(Γ), if any
element γ ∈ E(Γ) is proportional to a unique element eλ. It is called admissible
if it is continuous and the inverse mapping E(Γ) −→ Ω is universally measurable.

Theorem A ([16]). Let a closed cone convex Γ and an admissible parametriza-
tion ℓ of E(Γ) be given. For any γ ∈ Γ, there exist a positive Radon measure µ

on Ω such that

γ =

∫

Ω
eλdµ(λ).

Theorem B ([16]). The measure µ given by Theorem A is unique for any γ ∈ Γ,
if and only if the cone Γ is a lattice.

Theorem 4.1. If g1(x, ·), x ∈ D, separates△1 and g2(x, ·), x ∈ D, separates△2,
then for any positive harmonic function v onX such that the functionK

µk

D K
µj

D (v◦
ik), j 6= k, j, k ∈ {1, 2}, is bounded, there exist two unique measures ν1 and ν2
supported respectively by △1 and △2 such that v can be represented on X1 by

v =

∫

△1

(Qg1(·, y)) ◦ π1 dν1(y) +

∫

△2

(QK
µ1
D g2(·, y)) ◦ π1 dν2(y)

and on X2 by

v =

∫

△1

(Kµ2
D Qg1(·, y)) ◦ π2 dν1(y) +

∫

△2

(Tg2(·, y)) ◦ π2 dν2(y).

Proof: If v = 0, we have ν1 = ν2 = 0.
If v 6= 0, we may assume without loss of generality that v ∈ B. Consider the

mapping

Ψ :

{
△1 ∪△2 −→ E(B)

y 7−→ Ψ(y)

where Ψ(y) is defined by

Ψ(y) :=

{
(Qg1(·, y)) ◦ π1 on X1

(K
µ2
D Qg1(·, y)) ◦ π2 on X2

, y ∈ △1,

Ψ(y) :=

{
(QK

µ1
D g2(·, y)) ◦ π1 on X1

(Tg2(·, y)) ◦ π2 on X2
, y ∈ △2.

The mapping Ψ is bijective because g1(x, ·) and g2(x, ·) separate △1 and △2,
respectively. Ψ and its inverse Ψ−1 are continuous because g1 and g2 are contin-
uous on △×D. Then there exists, by Theorem B, a unique measure ν supported
by △1 ∪△2 such that

v =

∫

△1∪△2

Ψ(y) dν(y).
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Let νj , j = 1, 2, be the restriction of the measure ν to △j . Then v may be written
on X1 as

v =

∫

△1

(Qg1(·, y)) ◦ π1 dν1(y) +

∫

△2

(QK
µ1
D g2(·, y)) ◦ π1 dν2(y)

and on X2 as

v =

∫

△1

(Kµ2
D Qg1(·, y)) ◦ π2 dν1(y) +

∫

△2

(Tg2(·, y)) ◦ π2 dν2(y).

�

Let ti, i = 1, 2, be two positive Li-harmonic functions on D such that the
function K

µj

D tk is finite and the function K
µk

D K
µj

D tk, j 6= k, j, k ∈ {1, 2}, is
bounded on D. By [10] and [12], there exists a unique measure νtj , supported

by △j , such that tj =
∫
△j

gj(·, y) dνtj (y), j = 1, 2. We consider the harmonic

function w from Theorem 3.1 defined on X by

w :=

{
(Qt1 +QK

µ1
D t2) ◦ π1 on X1,

(K
µ2
D Qt1 + T t2) ◦ π2 on X2.

Corollary 4.3. If the functions gj(x, ·), x ∈ D, separate △j , j = 1, 2, then w is

written on X1 by

w =

∫

△1

(Qg1(·, y)) ◦ π1 dνt1(y) +

∫

△2

(QK
µ1
D g2(·, y)) ◦ π1 dνt2(y),

and on X2 by

w =

∫

△1

(K
µ2
D Qg1(·, y)) ◦ π2 dνt1(y) +

∫

△2

(Tg2(·, y) ◦ π2 dνt2(y).

Proof: It suffices to replace tj , j = 1, 2, with their Martin representations in the
expression of w, and the result follows from the uniqueness of the measures νj in
Theorem 4.1. �

Remark 4.3. By Corollary 4.3 , we have νtj (△\△j) = 0, thus νtj (△\(△1 ∪
△2)) = 0, j = 1, 2.
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5. Dirichlet problem on the Martin boundary associated with (S)

Given a couple of functions (u1, u2) defined on △, the Dirichlet problem on △
consists to find a couple of functions (h1, h2) solving the system (S) such that

lim
x−→y

hi(x) = ui(y) ∀ y ∈ △.

The couple (u1, u2) can be identified with a function f on △̄ :=
⋃2

j=1△×{j} such

that f ◦ ij = uj , where ij , j = 1, 2, denote always the mappings of △ in △× {j}
defined by ij(z) := (z, j), z ∈ △. The Dirichlet problem may be stated as follows:
for a given function f defined on △̄, determine, if possible, a harmonic function
Hf on X such that Hf (x) −→ f(y) as x −→ y for each y ∈ △̄. As in harmonic
and biharmonic cases, there are some examples where there is no solution of
this problem. In this section, we will discuss the Perron-Wiener-Brelot (PWB)
approach to the Dirichlet problem. To this end, we give the following definition.

Definition 5.1. Let h1 (resp. h2) be a strictly positive L1-harmonic (resp. L2-
harmonic) function on D, and let h be the function defined on X by

h :=

{
h1 ◦ π1 on X1,

h2 ◦ π2 on X2.

A function v onX is called h-harmonic (resp. h-hyperharmonic, h-superharmonic)
on X if and only if the function u defined on X by

u :=

{
(h1(v ◦ i1)) ◦ π1 on X1,

(h2(v ◦ i2)) ◦ π2 on X2

is harmonic (resp. hyperharmonic, superharmonic) on X .

We also define the upper and lower class associated with a function defined on
△̄. Let f be a function defined on △̄ and let h be a function defined on X as in
Definition 5.1. We define:

Ūf := {v : v is h-hyperharmonic and bounded from below on X and

lim inf
x→y

v(x) ≥ f(y), ∀ y ∈ △̄}

and

U
¯ f := {s : s is h-hypoharmonic and bounded from above on X and

lim sup
x→y

v(x) ≤ f(y), ∀ y ∈ △̄}.
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We note that Ūf and U¯ f are never empty since they contain the constant functions

+∞ and −∞ respectively, and that Ūf = −U
¯−f . Put

H̄f := inf Ūf and H¯ f := supU¯ f .

f is called h-resolutive if H̄f and H¯ f are equal and h-harmonic on X . If f is

h-resolutive, then we define Hh
f := H̄f = H¯ f and call H

h
f the PWB-solution of

the Dirichlet problem on X with boundary function f . If f ◦ ij is hj-resolutive

on △, we call H
hj

f◦ij
the PWB-solution of Dirichlet problem on D associated with

f ◦ ij , j = 1, 2.

Further properties of PWB solutions.

Let f and g be two functions defined on △̄. Then we have

(i) H
¯

h
f = −H̄h

−f .

(ii) H
¯

h
f ≤ H̄h

f
.

(iii) H
¯

h
f ≤ H

¯
h
g and H̄h

f ≤ H̄h
g if f ≤ g.

(iv) Let f , g be two h-resolutive functions and α ∈ R. Then f + g and αf are
h-resolutive and

Hh
f+g = Hh

f +Hh
g , Hh

αf = αHh
f .

(v) If U
¯ f ∩ (−S(X)) 6= ∅ (resp. Ūf ∩ S(X) 6= ∅), then the function H̄h

f (resp.

H
¯

h
f ) is identically ∞, or h-harmonic on X .

Let f be a positive function on △̄ such that f ◦ i2 = 0 and w the function
defined on X by

w :=

{
( 1h1Q(h1.H̄

h1
f◦i1
)) ◦ π1 on X1,

( 1h2K
µ2
D Q(h1.H̄

h1
f◦i1
)) ◦ π2 on X2.

We have H̄h
f ≤ w. Indeed, it follows from Corollary 3.1 that w is a positive

h-hyperharmonic function on X and moreover, we have

lim inf
x−→y

(w ◦ i1)(x) ≥ (f ◦ i1)(y), for all y ∈ △

and
lim inf
x−→y

(w ◦ i2)(x) ≥ 0, for all y ∈ △.

Hence, w ∈ Ūf . Thus H̄h
f ≤ w and therefore if H̄h

f = +∞ then w = +∞. If

H̄h
f < ∞, we have



Martin boundary associated with a system of PDE 417

Lemma 5.1. Let f be a positive function on △̄ such that f ◦ i2 = 0 and
K

µ1
D K

µ2
D (h1(H̄

h
f ◦ i1)) is bounded on D. Then we have

H̄h
f =






( 1h1Q(h1H̄
h1
f◦i1
)) ◦ π1 on X1,

( 1h2K
µ2
D Q(h1H̄

h1
f◦i1
)) ◦ π2 on X2.

Proof: It suffices to show that w ≤ H̄h
f .

(a) Let us show that w ◦ i1 ≤ H̄h
f ◦ i1.

It follows from property (v) of PWB solutions that the function H̄h
f is h-

harmonic on X . Then the function

ū :=

{
(h1(H̄

h
f ◦ i1)) ◦ π1 on X1,

(h2(H̄
h
f ◦ i2)) ◦ π2 on X2

is a positive harmonic function on X , and by Corollary 2.1, the functions ūj =

hj(H̄
h
f ◦ ij)−K

µj

D (hk(H̄
h
f ◦ ik)), j, k ∈ {1, 2}, j 6= k are positive and Lj-harmonic

on D. Put vj :=
1
hj

ūj . On the one hand, we have

K
µ2
D (h1(H̄

h
f ◦ i1)) ≤ (h2(H̄

h
f ◦ i2)),

hence

K
µ1
D K

µ2
D (h1(H̄

h
f ◦ i1)) ≤ K

µ1
D (h2(H̄

h
f ◦ i2)),

i.e.

K
µ1
D K

µ2
D (h1(H̄

h
f ◦ i1)) ≤ (h1(H̄

h
f ◦ i1)− h1.v1).

So,

Q(h1.v1) +QK
µ1
D K

µ2
D (h1(H̄

h
f ◦ i1)) ≤ Q(h1(H̄

h
f ◦ i1)).

Since

QK
µ1
D K

µ2
D + I = Q,

we get

Q(h1v1) +QK
µ1
D K

µ2
D (h1(H̄

h
f ◦ i1)) ≤ QK

µ1
D K

µ2
D (h1(H̄

h
f ◦ i1)) + h1(H̄

h
f ◦ i1).

Therefore,

(5.1.1) Q(h1v1) ≤ h1(H̄
h
f ◦ i1).
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On the other hand,

lim inf
x−→y

v1(x) = lim inf
x−→y

(H̄h
f ◦ i1 −

1

h1
K

µ1
D (h2(H̄

h
f ◦ i2)))(x)

≥ (f ◦ i1)(y)− lim sup
x−→y

(
1

h1
K

µ1
D (h2(H̄

h
f ◦ i2)))(x)

for all y ∈ △. Since

lim sup
x−→y

(
1

h1
K

µ1
D (h2(H̄

h
f ◦ i2)))(x)

≤

∫

D
lim sup
x−→y

1

h1(x)
G1(x, z)h2(z)(H̄

h
f ◦ i2)(z) dµ1(z),

and lim supx−→y
1

h1(x)
G1(x, z) = 0 νh1 -a.e. on △1, where νh1 is the measure

associated with h1 in the Martin representation ([13, p. 218]), we have, by Re-

mark 4.3, νh1(△\△1) = 0. Hence lim supx−→y
1

h1(x)
G1(x, z) = 0 νh1 -a.e. on △.

Thus lim infx−→y v1(x) ≥ (f ◦i1)(y) νh1-a.e. on△. Hence v1 is a positive h1−L1-
hyperharmonic function on D and lim infx−→y v1(x) ≥ (f ◦ i1)(y) νh1-a.e. on △.
So

(5.1.2) v1 ≥ H̄h1
f◦i1

.

Thus, by (5.1.1), we have

Q(h1H̄
h1
f◦i1
) ≤ (h1(H̄

h
f ◦ i1)).

(b) Let us show that w ◦ i2 ≤ (H̄
h
f ◦ i2).

It follows from (a) that

Q(h1H̄
h1
f◦i1
) ≤ (h1(H̄

h
f ◦ i1)).

Then,

K
µ2
D Q(h1H̄

h1
f◦i1
) ≤ K

µ2
D (h1(H̄

h
f ◦ i1)) ≤ (h2(H̄

h
f ◦ i2)).

This finishes the proof. �

Remark 5.1. The result of Lemma 5.1 is still valid if instead of the assumption
K

µ1
D K

µ2
D (h1(H̄

h
f ◦ i1)) is bounded, we suppose only that Q(h1(H̄

h
f ◦ i1)) is finite.

Let f be a positive function on △̄ such that f ◦ i1 = 0 and w̃ the function
defined on X by

w̃ :=






( 1
h1

QK
µ1
D
(h2H̄

h2
f◦i2
)) ◦ π1 on X1,

( 1
h2

T (h2H̄
h2
f◦i2
)) ◦ π2 on X2.

We have H̄h
f ≤ w̃. Therefore if H̄h

f = +∞, then w̃ = +∞. If H̄h
f < ∞, we have:



Martin boundary associated with a system of PDE 419

Lemma 5.2. Let f be a positive function on △̄ such that f ◦ i1 = 0 and
K

µ2
D K

µ1
D (h2(H̄

h
f ◦ i2)) is bounded on D. Then

H̄h
f =






( 1
h1

QK
µ1
D (h2H̄

h2
f◦i2
)) ◦ π1 on X1,

( 1h2T (h2H̄
h2
f◦i2
)) ◦ π2 on X2.

Proof: It suffices to show that w̃ ≤ H̄h
f .

(a) Let us show that w̃ ◦ i1 ≤ H̄h
f ◦ i1.

By the property (v) of PWB solutions, the function H̄h
f is h-harmonic on X .

Then the function

ū :=

{
(h1(H̄

h
f ◦ i1)) ◦ π1 on X1,

(h2(H̄
h
f ◦ i2)) ◦ π2 on X2

is a positive harmonic function on X and by Corollary 2.1, ūj = hj(H̄
h
f ◦ ij) −

K
µj

D (hk(H̄
h
f ◦ ik)), j, k ∈ {1, 2}, j 6= k, are positive and Lj-harmonic functions

on D. Put vj :=
1
hj

ūj . On the one hand, we have

K
µ1
D (h2(H̄

h
f ◦ i2)) ≤ (h1(H̄

h
f ◦ i1)),

hence
K

µ1
D (h2v2 +K

µ2
D (h1(H̄

h
f ◦ i1))) ≤ h1(H̄

h
f ◦ i1)

and
QK

µ1
D (h2v2) +QK

µ1
D K

µ2
D (h1(H̄

h
f ◦ i1)) ≤ Q(h1(H̄

h
f ◦ i1)).

Since
QK

µ1
D K

µ2
D + I = Q,

we get

QK
µ1
D
(h2.v2) ≤ h1(H̄

h
f ◦ i1).

As in the proof of Lemma 5.1, we show that lim infx−→y v2(x) ≥ (f◦i2)(y) νh2-a.e.
on△. Since v2 is a positive h2−L2-hyperharmonic function and lim infx−→y v2(x)
≥ (f ◦ i2)(y), νh2 -a.e. on △, we obtain

(5.1.2) v2 ≥ H̄h2
f◦i2

,

hence
QK

µ1
D
(h2H̄

h2
f◦i2
) ≤ (h1(H̄

h
f ◦ i1)).
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(b) Let us show that w̃ ◦ i2 ≤ (H̄
h
f ◦ i2)). We have

K
µ1
D (h2(H̄

h
f ◦ i2)) ≤ h1(H̄

h
f ◦ i1).

So
K

µ2
D K

µ1
D (h2(H̄

h
f ◦ i2)) ≤ K

µ2
D (h1(H̄

h
f ◦ i1)) = h2(H̄

h
f ◦ i2)− h2v2.

Hence
T (h2.v2) + TK

µ2
D K

µ1
D (h2(H̄

h
f ◦ i2)) ≤ T (h2(H̄

h
f ◦ i2)).

Since
TK

µ2
D K

µ1
D + I = T,

we get

T (h2H̄
h2
f◦i2
) ≤ (h2(H̄

h
f ◦ i2)).

�

Remark 5.2. The result of Lemma 5.2 is still valid if instead of the assumption
K

µ2
D K

µ1
D (h2(H̄

h
f ◦ i2)) is bounded, we suppose only that T (h2(H̄

h
f ◦ i2)) is finite.

Let f be a positive function on △̄ and let w′ be the function defined on X by

w′ :=






1
h1
(Q(h1H̄

h1
f◦i1
) +QK

µ1
D
(h2H̄

h2
f◦i2
)) ◦ π1 on X1,

1
h2
(Kµ2

D Q(h1H̄
h1
f◦i1
) + T (h2H̄

h2
f◦i2
)) ◦ π2 on X2.

We have H̄h
f ≤ w′. Therefore, if H̄h

f = +∞ then w′ = +∞. If H̄h
f < ∞, we have

Proposition 5.1. Let f be a positive function on △̄ such that K
µj

D K
µk

D (hj(H̄
h
f ◦

ij)) is bounded on D, j, k ∈ {1, 2}, j 6= k. Then we have

H̄h
f =

{ 1
h1
(Q(h1H̄

h1
f◦i1
) +QK

µ1
D (h2H̄

h2
f◦i2
)) ◦ π1 on X1,

1
h2
(Kµ2

D Q(h1H̄
h1
f◦i1
) + T (h2H̄

h2
f◦i2
)) ◦ π2 on X2.

Proof: It suffices to show that w′ ≤ H̄h
f .

(a) Let us show that w′ ◦ i1 ≤ H̄h
f ◦ i1.

By the property (v) of PWB solutions, the function H̄h
f is h-harmonic on X .

Then the function

ū :=

{
(h1(H̄

h
f ◦ i1)) ◦ π1 on X1,

(h2(H̄
h
f ◦ i2)) ◦ π2 on X2
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is a positive harmonic on X and by Corollary 2.1, ūj = hj(H̄
h
f ◦ij)−K

µj

D (hk(H̄
h
f ◦

ik)), j, k ∈ {1, 2}, j 6= k, are positive Lj-harmonic on D. Put vj =
1
hj

ūj . On the

one hand,

h1.v1 +K
µ1
D (h2(H̄

h
f ◦ i2)) = h1(H̄

h
f ◦ i1)

and
h2v2 +K

µ2
D (h1(H̄

h
f ◦ i1)) = h2(H̄

h
f ◦ i2).

Hence
Q(h1v1) +QK

µ1
D (h2(H̄

h
f ◦ i2)) = Q(h1(H̄

h
f ◦ i1))

and
QK

µ1
D (h2.v2) +QK

µ1
D K

µ2
D (h1(H̄

h
f ◦ i1)) = QK

µ1
D (h2(H̄

h
f ◦ i2)).

Since
QK

µ1
D K

µ2
D + I = Q,

we have
Q(h1.v1) +QK

µ1
D (h2.v2) = h1(H̄

h
f ◦ i1).

It follows from (5.1.2) and (5.2.1) that

Q(h1H̄
h1
f◦i1
) +QK

µ1
D (h2H̄

h2
f◦i2
) ≤ h1(H̄

h
f ◦ i1).

Similarly, we show that

1

h2
(Kµ2

D Q(h1H̄
h1
f◦i1
) + T (h2H̄

h2
f◦i2
)) ≤ h2(H̄

h
f ◦ i2).

�

Remark 5.3. The result of Proposition 5.1 is still valid if instead of the assump-
tion K

µj

D K
µk

D (hj(H̄
h
f ◦ ij)) is bounded on D, j, k ∈ {1, 2}, j 6= k, we suppose that

Q(h1(H̄
h
f ◦ i1)) < ∞ and T (h2(H̄

h
f ◦ i2)) < ∞.

h-negligible sets.

Definition 5.2. Let e be a subset of △̄. e is called h-negligible if H̄h
1e
= 0, where

1e is the indicator of the set e.

Let ẽ be a subset of △. ẽ is called hj -negligible if and only if H̄
hj

1ẽ
= 0, j = 1, 2.

Proposition 5.2. Let e ⊂ △̄ = (△× {1}) ∪ (△ × {2}) be such that e = (e1 ×
{1}) ∪ (e2 × {2}), where ej ⊂ △, j = 1, 2. The following are equivalent:

(1) e is h-negligible;

(2) ej is hj-negligible, j = 1, 2.
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Proof: Suppose that e is h-negligible; then H̄h
1e
= 0. By Proposition 5.1, we

have

H̄h
1e =

{ 1
h1
(Q(h1H̄

h1
1e◦i1

) +QK
µ1
D (h2H̄

h2
1e◦i2

)) ◦ π1 on X1,

1
h2
(K

µ2
D Q(h1H̄

h1
1e◦i1

) + T (h2H̄
h2
1e◦i2

)) ◦ π2 on X2,

hence

Q(h1H̄
h1
1e◦i1

) = −QK
µ1
D (h2H̄

h2
1e◦i2
), K

µ2
D Q(h1H̄

h1
1e◦i1

) = −T (h2H̄
h2
1e◦i2

).

Since the functions hjH̄
hj

1e◦ij
, j = 1, 2, are positive, H̄

hj

1e◦ij
= 0, j = 1, 2. Since

1e ◦ ij = 1ej , H̄
hj

1ej
= 0, i.e., the set ej is hj-negligible. The converse is obvious.

�

Proposition 5.3. Let f and f̃ be two positive functions defined on △̄ such that
e = {f 6= f̃} is a h-negligible set. Then H̄h

f = H̄h
f̃
.

Proof: We have e = {f 6= f̃}=(e1×{1})∪(e2×{2}), where ej = {f ◦ij 6= f̃ ◦ij},
j = 1, 2, and e is h-negligible. Then, by Proposition 5.2, ej is hj-negligible. Thus

H̄
hj

f◦ij
= H̄

hj

f̃◦ij
, j = 1, 2. Therefore, by Proposition 5.1, H̄h

f = H̄h
f̃
. �

Lemma 5.3. Let f be a positive function on △̄ such that K
µj

D K
µk

D (hj(H̄
h
f ◦ ij))

is bounded on D, j, k ∈ {1, 2}, j 6= k. Then we have

hjH̄
hj

f◦ij
= hj(H̄

h
f ◦ ij)− K

µj

D
(hk(H̄

h
f ◦ ik)).

Proof: By Proposition 5.1, we have

{
H̄h

f ◦ i1 =
1
h1
(Q(h1H̄

h1
f◦i1
) +QK

µ1
D (h2H̄

h2
f◦i2
)),

H̄h
f ◦ i2 =

1
h2
(K

µ2
D Q(h1H̄

h1
f◦i1
) + T (h2H̄

h2
f◦i2
)).

Then {
h1H̄

h
f ◦ i1 = (Q(h1H̄

h1
f◦i1
) +QK

µ1
D
(h2H̄

h2
f◦i2
)),

h2H̄
h
f ◦ i2 = (K

µ2
D Q(h1H̄

h1
f◦i1
) + T (h2H̄

h2
f◦i2
)).

Hence

{
K

µ2
D (h1.H̄

h
f ◦ i1) = K

µ2
D (Q(h1H̄

h1
f◦i1
)) +K

µ2
D (QK

µ1
D (h2H̄

h2
f◦i2
)),

h2H̄
h
f ◦ i2 = (K

µ2
D Q(h1H̄

h1
f◦i1
) + T (h2H̄

h2
f◦i2
)).
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Since H̄h
f is h-harmonic on X , Kµ2

D (h1(H̄
h
f ◦ i1)) < ∞. Thus,

h2(H̄
h
f ◦ i2)− K

µ2
D
(h1(H̄

h
f ◦ i1)) = T (h2H̄

h2
f◦i2
)− K

µ2
D

QK
µ1
D
(h2H̄

h2
f◦i2
).

Since
T = K

µ2
D QK

µ1
D + I,

we get

h2(H̄
h
f ◦ i2)− K

µ2
D (h1(H̄

h
f ◦ i1)) = h2H̄

h2
f◦i2

.

Similarly, we show that

h1(H̄
h
f ◦ i1)− K

µ1
D (h2(H̄

h
f ◦ i2)) = h1H̄

h1
f◦i1

.

�

Theorem 5.1. Let f be a positive function defined on △̄ such that
K

µj

D K
µk

D (hj(H̄
h
f ◦ ij)) is bounded, j 6= k, j, k ∈ {1, 2}. The following are equiva-

lent:

(a) f is h-resolutive;

(b) (1) f ◦ ij is hj -resolutive on △, j = 1, 2, and

(2) K
µk

D (hjH
hj

f◦ij
) is finite, j 6= k, j, k ∈ {1, 2}.

Proof: Suppose that (b) holds. Then the function hjH
hj

f◦ij
is Lj-harmonic,

j = 1, 2. Moreover, we have

hjH
hj

f◦ij
≤ hj(H̄

h
f ◦ ij).

Since K
µj

D K
µk

D (hj(H̄
h
f ◦ ij)) is bounded, j 6= k, j, k ∈ {1, 2}, K

µj

D K
µk

D (hjH
hj

f◦ij
)

is bounded, j 6= k, j, k ∈ {1, 2}. Hence, by Theorem 3.1, the function

H̄h
f =

{ 1
h1
(Q(h1H

h1
f◦i1
) +QK

µ1
D
(h2H

h2
f◦i2
)) ◦ π1 on X1,

1
h2
(K

µ2
D Q(h1H

h1
f◦i1
) + T (h2H

h2
f◦i2
)) ◦ π2 on X2

is h-harmonic on X , moreover H̄h
f = H¯

h
f = Hh

f , therefore f is h-resolutive.

Conversely, suppose that f is h-resolutive. Then H̄h
f = H¯

h
f = Hh

f and Hh
f is

h-harmonic. On the one hand, it follows from Lemma 5.3 that

hjH̄
hj

f◦ij
= hj(H

h
f ◦ ij)− K

µj

D (hk(H
h
f ◦ ik)),
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and by Corollary 2.1, the function H
hj

f◦ij
is hj − Lj-harmonic on D, i.e. f ◦ ij is

hj -resolutive on △. On the other hand,

K
µk

D (hjH
hj

f◦ij
) ≤ K

µk

D (hj(H
h
f ◦ ij)) ≤ hkHh

f ◦ ik,

thus
K

µk

D (hjH
hj

f◦ij
) < ∞.

�
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