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Martin boundary associated with a system of PDE

ALLAMI BENYAICHE, SALMA GHIATE

Abstract. In this paper, we study the Martin boundary associated with a harmonic
structure given by a coupled partial differential equations system. We give an integral
representation for non negative harmonic functions of this structure. In particular, we
obtain such results for biharmonic functions (i.e. A%¢ = 0) and for non negative solutions
of the equation A2p = .

Keywords: Martin boundary, biharmonic functions, coupled partial differential equa-
tions

Classification: Primary 31C35; Secondary 31B30, 31B10, 60J50

1. Introduction

Let D be a domain in R, d > 1, and let L;, i = 1,2, be two second order
elliptic differential operators on D leading to harmonic spaces (D, Hy,,) with Green
functions G (see [18]). Moreover, we assume that every ball B C B C D is an L;-
regular set. Throughout this paper we consider two positive Radon measures p1
and p9 such that K ff = [p Gi(-,y)pi (dy) is a bounded continuous real function
onD,i=1,2, and

1D oo 165 o < 1

We consider the system:

Llu: —UUL,
{0
2V = —Ufl2.

Note that if U is a relatively compact open subset of D, u; = A, where A% is
the Lebesgue measure, yus = 0 and L; = Ly = /A, then we obtain the classical
biharmonic case on U. In the case when p; = puo = A and )\d(D) < 00, we
obtain equations of type A2¢ = . In this work, we shall study the Martin
boundary associated with the balayage space given by the system (S) (see [7],
[14] and [19]), and we shall characterize minimal points of this boundary in order
to give an integral representation for non negative solutions of the system (.5).
Let us note that the notion of a balayage space defined by J. Bliedtner and
W. Hansen in [7] is more general than that of a P-harmonic space. It covers
harmonic structures given by elliptic or parabolic partial differential equations,
Riesz potentials, and biharmonic equations (which are a particular case of this
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work). In the biharmonic case, a similar study can be done using couples of
functions as presented in [3], [5], [8], [9], [21] and [22].
We are also grateful to the referee for his remarks and comments.

2. Notations and preliminaries

For j =1,2,let X; = D x {j}, and let X = X7 |J X2. Moreover, let i; and 7;
be the mappings defined by

1 ) and 7;: ) .
x — (z,]) (z,j) — .
Let Uy be the set of all balls B such that B ¢ B C D, U; be the image of Uy
by i, 7 =1,2, and U = Uy UUs.
Definition 2.1. Let v be a measurable function on X. For U € U1, we define

the kernel Sy by

Suv = (Hp, gy (voir) om + (KL ) (voiz)) omi.

1

For U € U, we define the kernel Si; by
Syv = (Hz,qy(voiz)) om + (K (0o in) oma,

where Hfr () j = 1,2, denote the harmonic kernels associated with (D, H Lj)
J

and

i (U .
Kl @) = [ 610 oot @) i=1.2,
where w is a measurable function on D and G;”(U) is the Green function associated
with the operator L; on m;(U). Let Gj, j = 1,2, be the Green kernel associated

with L; on D. The family of kernels (Si7)pey yields a balayage space on X as
defined in [7] and [14].

Let *H(X) denote the set of all hyperharmonic functions on X, i.e.
"H(X):={veB(X):v isls.c.and Syv<wv VU €U},

where B(X) denotes the set of all Borel functions on X. Let S(X) be the set of
all superharmonic functions on X, i.e.

S(X) :={v e H(X): (Syv) [pe C(U) YU € U},
and let H(X) be the set of all harmonic functions on X:

H(X) :={heS(X):Syh=h YU €U}.
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Denoting W := *H T (X), the space (X, V) is a balayage space (see [7] and [14]).
For every positive numerical function ¢ on X and for every U € U, the reduit
RY is defined by

Rg =inf{v € *H(X):v>p on U}.
Let ﬁg be the lower semi-continuous regularization of Rg , l.e.
Rg(:v) = lizrln_égrﬂlng(y), z e X.
Theorem 2.1. Let s be a function on X such that
K (soig) <oo, j#k, jk=1,2

The following statements are equivalent.
1. s is a superharmonic function on X.
2. 55 :=801;— ng (soig), j #k, j,k € {1,2}, are L j-superharmonic on D.
PROOF: Let s be a superharmonic function on X and let U € Uy. We have
11(U) ey and w1(i1(0U)) =U.
Since Sil(U)S <'s, we have
Hii(soi) + K} (soig) < soi.
Knowing that
KF (s 0ig) = KW (s 0ig) — HY (K (s 042)),
we obtain
H}(s0iy) + K (s oig) — H (K (s0ig)) < soiy.
Therefore
H(soin — K (soig)) < soip — Kb (s o).
So, s1 ;== so1] — K%l (s oig) is an Li-superharmonic function on D. Similarly,
we prove that sg := so01ip — K’ff(s 0141) is Lg-superharmonic on D. Conversely,

we assume that s;, i = 1,2, are L;-superharmonic functions. Let U € U, j = 1,2
and k # j. Since s; is an Lj-superharmonic function,

J ) .
Hw]»(U)SJ < 5.

Hence ‘ | |
Hfrj(U)(s o ij — ng (s o zk)) <so ij _ K/[‘)J(S o iy,).
Therefore ‘
J ;- 1j , -
Hnj(U)(S o z]) + Kw;(U)(S oip) < so ij.
So,

Sys<s, YUE€EU.

Thus s is superharmonic on X. (I
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Corollary 2.1. Let v be a function on X such that ng (voig), j £k, j k€
{1,2}, is a finite function. Then the following properties are equivalent.

1. v is harmonic on X.
2. voiq —Kf)l (voig) and voig —K’[L)2 (voiy) are Li-harmonic and La-harmonic
function on D, respectively.

Remarks 2.1. (1) Note that if v is a positive harmonic function on X, then
ng (voig), j #k, j, ke {l,2},is a finite function.

(2) If v € H(X), then the couple (v oiy,v 0i3) is a solution of (5).

Corollary 2.2. Let v be a positive function defined on X. Then the following
properties are equivalent.

1. v is hyperharmonic on X.
2. The function

{voz'j—ng(voz'k) if ng(voz'k)<oo,
v; o=
J 400 otherwise

is a positive Lj-hyperharmonic function on D, j # k, j, k € {1,2}.
If we identify a function s on X with the couple (s o i1, s 0iy) defined on D,

then we get the following N. Bouleau’s decomposition [9]:

Theorem 2.2. Any superharmonic function s on X can be written as s = t+V's,

where 0 o
v=(up V)
KD2 0

and t is a function on X defined by
t{sloﬂ'l on Xl,
o §9 0 Ty on Xa,
where s; 1= s014; — ng (soig), £k, j, ke {1,2}.
PRrOOF: It follows from Theorem 2.1 that s;, j = 1,2, is Lj-superharmonic on D.

Then, if we identify the function s with the couple (soi1, soi2) defined on D and
the function ¢ with the couple (t o i1,t 0ig) = (51, s2) defined on D, we have

0 K 5011 L) 2 5011
ng 0 019 s9 )] \soig )~
[l

Remark 2.1. In the classical biharmonic case, we obtain the N. Bouleau’s decom-
position [9]. Indeed, if we identify a function s on X with the couple (soiy, soig)
on D, then
soiy =s1+ K (soig),
with s1 Lj-superharmonic on D and the N. Bouleau’s kernel V is given by V =
K
D
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3. Martin boundary associated with (.5)

Let us fix zg € D and set for all z,y € D

G1(z,y) .
gl(;v,y) = { G1(%0,y) if x 75 Tg Or y 75 %o,

1 if v=y=umxq,
and
Ga(z,y) .
92(x,y) .— ¢ Ga(zo,y) Tf T #x0 Or Y F# X0,
1 if = Yy = x0.

Let A; = {¢g'(z,-), z € D}, Ay = {¢%(z,-), € D} and A = A; U As.

As in [10] and [12], we consider the Martin compactification D of D associated
with A. The boundary A = D\ D of D is called the Martin boundary of D
associated with the system (.9).

The function gk(:v, ), k=1,2, x € D can be extended, on ﬁ, to a continuous
function denoted gk(:v, ), k=1,2,z € D as well.

In the following, we denote Q:=3_ 4 (K K4?)™ (resp. T:=>" ) (KI2 KIiH™)
which coincides with (I — K/ K4?)™1 (vesp. (I — K2 K/')™1) on By(D), where
(I — KIS KP)™Y (vesp. (I — KI5 KH')™1) is the inverse of the operator (I —
KV K1Y (resp. (I — KIPKR')) on By(D), and By(D) denotes the set of all
bounded Borel measurable functions on D. We recall the following equalities

(Kp Kp)Q = QKR K1),
(K KP)Q+1=Q.

Similarly we have

(KW KEOT = T(KIZ K,
(KRKINT +1 =T,
K?Q=TKY

and
Kng = QK%I.

Remark 3.1. Note that if ¢ is a finite positive Borel measurable function on D
such that K15} K72 is bounded, then Qp < +oc.
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Theorem 3.1. Let ¢;, i = 1,2, be two L;-harmonic functions on D such that
ngtk is finite and ngngtk is bounded, j # k, j,k € {1,2}, on D. Then the
functions v and w defined on X by

{ (Qtl)oﬂl on Xji,
vi=
(K2Qt1)oms  on Xo,

and
(QK%ltg) o on Xi,
w =
(T't2) o ma on Xo

are harmonic on X.

Remark 3.2. In the biharmonic case, if we assume that K%)dtg < 00, then (#1,0)
and (K gdtg, ta) are biharmonic.

PROOF: Let us prove first that v and w are finite.
(i) We have

(Qt1) om = (QK‘f)lK%ztl) omy +t107my.

Since K ’51 K ‘[‘)2151 is bounded and ¢; is finite,

(Qt1) o1 < 0.

(ii) We have also
(K%thl) oy = (TK%ztl) o9,

hence
(K2 Qt1) omy = (TKIP K K1) o g + (K/5t1) o 7.

Since K’[L)l Kfftl is bounded and K’[L)Ztl is finite,
(K5 Qty) 0w < oo.
(iii) We have
(QK o) oy = (QEI K2 KM t9) o my + (K5 t9) o 1.
Knowing that K g2 K gl to is bounded and K gl to is finite, we have
(QK't2) o my < o0

(iv) We have
(Tty) omg = (TK%ZK‘[?@) oMo + to 0 ma.
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Since K2 K't3 is bounded and t; is finite,
(T't2) o g < 0.

Let us show now that v and w are harmonic. From Corollary 2.1, it suffices to
show that v oi; — ng (voiy) and woij — ng (woig), j #k, j, k € {1,2}, are
L j-harmonic functions on D.

(v) On the one hand,
Vo1l — K%l (voig) =Qt; — (Kglng)Qtl.
As
Qt1 = (KPS K7)Qt1 + t,

we get
VO] — Kgl(voig) =1t1.

Since t1 is an Li-harmonic function on D, v o i — K%l (v 0 ig) is Li-harmonic
on D.
On the other hand,

vOoiy — K%z(v 0i1) = ngQtl — ngQtl =0,

i.e.voig— K’[‘f (voiy) is Lo-harmonic on D. Then we conclude that v is harmonic
on X.

(vi) Since
(%) T:K%zQK%1+I,
we have
woip — KP' (woip) = (QKY — KI KT QKR — K1 ts.
As
Q= (K5 Kp)Q+1,
we obtain

woiy — Ki (woig) =0.
Using (x), we have

woiy — K (woiy) = (KFQKR +1— KIZQKN )ta = to.

Then woi; — ng (w o i) is Lj-harmonic on D and therefore, w is a harmonic
function on X. g
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Corollary 3.1. Let t;, ¢« = 1,2, be two positive L;-hyperharmonic functions
on D. Then the functions v and w defined on D by

{ (Qt1) omy on Xi,
vi= w2
(KD Qt1) omy on Xo,
and
. { (QK%ltg) o on Xi,
o (T'ta) o ma on Xo

are hyperharmonic on X.

Theorem 3.2. Let 1 and vy be two positive Radon measures on /\ such that
/Anggk(-,y) dvg(y) < oo

and
K K Hk j(, d (
N KD DY 'Y) Vj Y)

is bounded on D, j # k, j,k € {1,2}. Then the function v defined on X1 by

V= /A(le(-,y))om dul(y)+/A(QKf)lg2('ay))°7T1 dvs(y)

and on Xo by

vi= /A(ngle(.,y)) o ma dv1(y) +/A(Tg2(.7y)) o o dua(y)

is harmonic on X.

ProorF: It suffices to replace the functions ¢; from Theorem 3.1 with the L;-

harmonic functions [, ¢’ (-, y) dv;(y).
(|

Corollary 3.2. Let v and vy be two positive Radon measures on A\ such that
Ja K5 9% () dva(y) < oo. Then

o) = ([ eain+ [ Ko dnw), [ o6 daw)

is a biharmonic couple in the classical sense.
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Theorem 3.3. Let v be a positive harmonic function on X such that ng K%" (vo
ij) is bounded on D, j,k € {1,2}, j # k. Then there exist two positive Radon
measures v and v supported by /\ such that v can be represented on X1 by

v= /A (Qg" () o 1 dvs () + /A (QK™ g2(y)) o my dua(y)
and on Xo by
0= /A (K" Qg () o ma din (y) + /A (Tg?()) o ma da(y).

PROOF: Let (Dy)n be an increasing sequence of relatively compact open subsets
of D such that D = |J Dy, and let v be a positive harmonic function on X. From
Corollary 2.1, the positive functions v o iy — K/} (v oig) and v oig — K47 (v o i)
are Li-harmonic and Lo-harmonic on D, respectively. Then for all n € N, both

pDn HDn ) . ) .
Rvoz‘l—Kgl (voiz) an Rvoiz—Kg2 (woin) are Li-potential and Lg-potential on D,

respectively. Therefore, there exist two positive Radon measures ,u}L and ,u% on
D such that

=D, B . .
Rvoh—Kgl (voia) - /D Gl( ’y) dﬂn(y)
and
=D, B . )
Rvoi2—K‘E,2 (voiy) /; GQ( 7y) d:“n(y)-
Then we have
ADn o 1 . 1
Rvoil—Kgl (voiz) /; 9 (5y) dl/n(y)
and
=D, B 2 )
R’UOig—ng (Uoil) - /l)g ( 7y) dl/n(y)
with
dvi(y) = G1(zo,-)dul (y)
and

dva(y) = Ga(wo, -)dup (y)-
Since RPn is L;-harmonic on D\ Dy, j # k, j, k € {1,2}, v} and 12

voij—ng (voig)
are necessarily supported by D \ Dy,.
Because of ||V¥LH < (voij)(zo) — ng (voig)(zg), j = 1,2, we may extract
two subsequences (I/;(n)) and (uz(n)) converging vaguely to two positive Radon

measures v! and v2 on D = D. So, v! and v? are supported by A. Therefore
voip — K (voig) = [a g* () dv(y),
V0 iy — Kff(v oi1) = 5 2(-y) dv’(y).
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Hence
voir= [ag'(,y) dvt(y) + K5 ([a 6°(oy) dvP(y) + K7 (v oin)),
{ voiy =[x g*(y) dv3(y) + Ki2(voiy),
and
voir= [ag'(y) dt(y) + [o K g% (hy) dv2(y) + K K5 (v oin),
{ voiyg =[x g*(y) dv?(y) + KJJ (voiy).

Thus,
Quoir) = [o Qe (y) vl (y) + [x QKL ¢°(,y) dv3(y)
QK%IK%Z(U ozl),
voiz =[5 g*(y) dvi(y) + K5 (voir).
Since
QKR KF +1=0Q,
we obtain

KB KB Qo it) +vois = [, Qo () dA(y) + [ QK™ 62(y) d(y)
+QK G K7 (voiy),
voiyg =[x g°(,y) dv?(y) + KIJ (voiy).
Since K)' K% (v oiy) is bounded,
voir =[5 Qe (,y) dvi(y) + [o QKT g% (- y) dia(y),
{ voiyg = [ KI?Qg (,y) dvi(y) + [A Tg* (- y) dva(y).

So the function v can be written on X7 as
= [ @t emant) + [ (@KEGC)omdn()
and on X5 as

v= /A (K12 Qg (- ) o maddvr () + /A (Tg?(-.1)) o ma dua(y). ]

Corollary 3.3 ([5]). Let (v, w) be a positive biharmonic couple in the classical
sense. Then there exist two positive Radon measures y and v supported by A

such that
{ v=[A g Cy)duly) + o KI5 g2, y) dv(y),
w= [ g*(,y)dv(y).
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4. Minimal points and uniqueness of the integral representation

Definition 4.1. (1) A positive Lj-harmonic (resp. Lo-harmonic) function h on
D is called Li-minimal (resp. Lo-minimal) if for any positive Li-harmonic (resp.
Ly-harmonic) function uw on D, u < h implies u = ah with a factor a > 0.

(2) A positive harmonic function h on X is called minimal if for any positive
harmonic function v on X, v < h implies u = ah with a factor a > 0.

Denote

A ={ye: gl(-,y) is L1-minimal},

Ny ={yeA: 92(-,y) is Lo-minimal}.
Note that for all y € A, the function g'(-,y) (resp. g(-,y)) is L1-harmonic (resp.
La-harmonic) on D.

Proposition 4.1. Any positive harmonic function v on X such that Kf’)k ng (vo
i) is bounded for all j # k, j,k € {1,2}, can be written as v = w + s, where w
and s are defined by

'_{ (Quy) oy on Xi,

(ngQ’Ul)OTFQ on Xo,

and
- { (QKglvg)owl on Xj,

(Tvg) o m on Xo,
with vj := v oij — ng(v oig), j £k, j, k€ {1,2}.
Remark 4.1. (1) Note that if v = w + s is another decomposition of v with

, (Qtl) o on Xi,
w =
(K%thl) o 9 on Xo,

and "
o (QKD tg) o on Xi,
' (T'tg) o ma on Xo,
where ¢;, j = 1,2, are L;-harmonic on D, then ¢; = v; and t2 = vo.
(2) In the classical case, for any biharmonic couple (hy, ho) the following holds:

(h1,h2) = (t,0) + (K1} ho, ha),

where ¢ is a harmonic function on D. Note that (K} ho, h2) is a pure biharmonic
couple (see [3] and [21], [22]).
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Corollary 4.1. Let v be a positive minimal harmonic function on X such that
ngng (voiy), j £k, j,k €{1,2}, is bounded. Then v = aw or v = f3s, where
« and (3 are positive constants; w and s are defined as in Proposition 4.1.

Proposition 4.2. Let v be a positive function on X such that ng (voiy) is finite
and Kf)’“Kg] (voig), j £k, 5,k € {1,2}, is bounded. The following statements
are equivalent.
(1) v is a minimal harmonic function on X.
(2) vy is a positive minimal Li-harmonic function on D, or ve is a positive
minimal La-harmonic function on D, where vj := v oi; — ng (voig).

PROOF: Let v be a positive minimal harmonic function on X. Then we have
v = aw or v = (s by Corollary 4.1.

We shall show that if v = aw, then vy is Li-minimal and if v = s, then vg is
Lo-minimal.
(i) Case v = aw:
Suppose that v1 is not Li-minimal. Then there exist two Li-harmonic functions
u1 and ug such that vi = uy + ug. So v = af; + afs, with

f _{ (Qui) oy on Xj,

(K Qui)omy  on Xo,

and

f (Qua) o1 on Xi,

27 (K5 Qua)omy  on Xo.

It follows from Theorem 3.1 that f; and fo are harmonic on X. This contradicts
that v is minimal.
(ii) Case v = fs:
Suppose that vo is not Lo-minimal. Then there exist two Lo-harmonic functions
u1 and wug such that vg = uy + uo. Therefore v = (Bs1 + Bs2, with

o — { (QKf)lul)om on Xi,
(Tuy) oo on Xo,

and
{(QK%1U2)°7TI on Xi,
§9 =

(T'ug) o m on Xo.

It follows from Theorem 3.1 that s1 and s9 are harmonic on X. This contradicts
that v is minimal.

Conversely, suppose that v{ is Li-minimal and let us show that v is minimal.
Assume the contrary and put v = g1 + g2, where g1 and gs are harmonic functions
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on X. Then, from Proposition 4.1, there exist two Li-harmonic functions s; and
s2, and two Lo-harmonic functions wi and ws such that

{ (Qs1) om + (QKRBwi)om  on X,
9= (K5 Qs1)omy + (Twi)omy  on Xo,

and
{ (Qs2) om + (QKwa)omy  on Xy,
g2 =

(K§2Q52)07T2+(Tw2)o772 on Xs.

Therefore the function g; + go is defined on X by

g1+ g2 := (Q(s1 + s2)) o m1 + (QK ) (w1 + wa)) o my
and on X by

91+ 92 = (K57 Q(s1 + s2)) o ma + (T(w1 + wg)) o m2.

We deduce, from Proposition 4.1 and Remark 4.1.1, that v; = s1 + s2, which
leads to a contradiction because vy is Li-minimal.

In the same way, we suppose that vg is an Ls-minimal function and we show
that v is a minimal function. (I

By using the fact that any positive minimal L;-harmonic function on D is
proportional to ¢/(,y), y € A; (see [10]), w and s from Corollary 4.1 can be
given more precisely.

Corollary 4.2. Let v be a positive minimal harmonic function defined on X such
that the function K4 K (voiy), j # k, j.k € {1,2}, is bounded. Then

v=aw or v=/s,

with
- { (Qg' (- y)) om on X1, y€ A,
(Kg2Qg1(-,y))o772 on Xo, y€ Ny,

and

- (QKglg2(-,y)) oy on Xy, y€ Ao,
(Tg2(7y)) O T2, on X, Yy e AQ'

PRrROOF: This result follows immediately from Proposition 4.2 and Corollary 4.1.
O
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Remark 4.2. Note that ng(v oidp) < 00, j £k, j,k € {1,2}, because v is a
positive harmonic function on X.

Consider the family of mappings on the real vector space H(X) defined by
{ H(X) — RT,
$K :
h — ¢k(h),

where

¢r (h) = sup (|h oiy(z)] + |h o ig(z)]),
zeK

and K is a compact subset of D. (pg) is a family of semi-norms on H(X) and
these semi-norms define a topology that makes H(X) a metrizable topological
space. It follows that this space is locally convex.

The cone HT(X) = {h € H(X) : h > 0} defines on H(X) an order relation
called specific order:
h1 <hy <= ha=h1+y, g€H+(X).

Equipped with this order, HT(X) is a lattice. The minimal harmonic functions
are the points of the extreme generatrices of HT(X). We recall that a base of
HT(X) is the intersection of H*(X) with a closed hyperplane.
Let us consider the set
B:={heHY(X): (hoi1)(xo) + (hoiz)(xo) =1}, x € D.
B is a compact base of the cone HT(X). Indeed, the mapping
bo : { HT(X) — R,

Ol h o (hoir)(xo) + (hoig)(ze) =1
is a continuous linear form. Then it defines a closed hyperplane B such that the
origin 0 € B. Then, B is equicontinuous at any point € X. So, we conclude, by
Ascoli’s theorem, that B is compact. Note that H*(X) = R B. Let £(B) denote
the set of all extreme points of HT(X) belonging to B (see [11]). Moreover, using

Corollary 4.2, we have
£(B) = &1(B) U &(B),
where
1 . X
81(B)_{h68(B) :JaeR*,3ye Ay :h= {(an ( yl))‘”” on 1}
(@K} Qg (- y))om2 on Xo

and
(BQK%IQQ(-,y))owl on Xl}
(BT g% (-, y)) o m2 on Xp )

We recall the following results which are useful for showing the uniqueness of an
integral representation (see [16]).

EQ(B)_{hEE(B):36€R+,3y6A2:h_{
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Definition 4.2 ([16]). Let I" a closed convex cone. A mapping £: A — ey of a
separated topological space Q in E£(T") is called a parametrization of £(T'), if any
element v € £(I") is proportional to a unique element ey. It is called admissible
if it is continuous and the inverse mapping £(I') — € is universally measurable.

Theorem A ([16]). Let a closed cone convex I' and an admissible parametriza-
tion ¢ of £(T") be given. For any v € T', there exist a positive Radon measure
on ) such that

VZ/QGACZM()\)-

Theorem B ([16]). The measure i given by Theorem A is unique for any v € T,
if and only if the cone I is a lattice.

Theorem 4.1. If g'(z,-), z € D, separates /1 and g%(z,-), € D, separates /g,
then for any positive harmonic function v on X such that the function K g’“ K gj (vo
ir), 7 £k, j,k € {1,2}, is bounded, there exist two unique measures v1 and vy
supported respectively by /A1 and /g such that v can be represented on X1 by

v = /Al(le(~,y)) om dri(y) + /A2(QK}‘;92(~,y)) o1 dva(y)
and on Xy by

U:/Al(Kg2le("y))o7T2dV1(y)+/A2(T92('ay))oﬂzdl/2(y).

Proor: If v =0, we have v; = v = 0.
If v # 0, we may assume without loss of generality that v € B. Consider the

mapping
] { A ULy — E(B)

y — Y(y)
where ¥(y) is defined by

(Qg*(-,y)) omy on X3
\IJ = ) A?
2 {(K“ZQg I yg))om on X' V71
(QK1'g*(y))om  on X
U(y) = , No.
v {(Tm, Woem o xp’ U5

The mapping ¥ is bijective because g'(x,-) and ¢?(z,-) separate A1 and A,
respectively. ¥ and its inverse ¥~ are continuous because g and ¢? are contin-

uous on A x D. Then there exists, by Theorem B, a unique measure v supported
by A1 U Ag such that

413
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Let v}, j = 1,2, be the restriction of the measure v to A;. Then v may be written
on X1 as

v= /Al(le('ay)) omy dvi(y) + /A (QK‘[‘;Q?(.’y)) o m1 dva(y)

2

and on X» as

U:/Al(Kg2le("y))o7T2dV1(y)+/A2(T92('ay))oﬂzdl/2(y).

d

Let t;, i« = 1,2, be two positive L;-harmonic functions on D such that the
function K'5tj, is finite and the function K'FKIJty, j # k, j,k € {1,2}, is
bounded on D. By [10] and [12], there exists a unique measure v, supported
by Aj, such that t; = fAj 9 (- ) dvt;(y), j = 1,2. We consider the harmonic
function w from Theorem 3.1 defined on X by

o { Q1+ QK}ta)om  on Xi,
’ (Kg2Qt1 + Tta) omo on Xo.

Corollary 4.3. If the functions ¢/ (z,-), € D, separate Nj,j=1,2, then w is
written on X1 by

w:/Al(le('ay))Oﬂl thl(y)—i—/ (QK%lgz(-,y))owl thz(y),

VAV

and on X2 by

w_/Al(KgZle('ay))omdytl(y)"’/Az(ng('ay)Oﬂ?thz(y)-

PRrOOF: It suffices to replace t;, j = 1,2, with their Martin representations in the
expression of w, and the result follows from the uniqueness of the measures v; in
Theorem 4.1. O

Remark 4.3. By Corollary 4.3 , we have vt (A\A;) = 0, thus v (A\(Ag U
N2))=0,j=1,2.
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5. Dirichlet problem on the Martin boundary associated with (.5)

Given a couple of functions (uj,uz) defined on A, the Dirichlet problem on A
consists to find a couple of functions (hi, ha) solving the system (S) such that

A hi(@) =uiy) Yy € A,

The couple (u1, uz) can be identified with a function f on A := U?Zl A x{j}such
that foi; = uj;, where ij, j = 1,2, denote always the mappings of A in A x {j}
defined by i;(z) := (2,7), 2 € A. The Dirichlet problem may be stated as follows:
for a given function f defined on A, determine, if possible, a harmonic function
Hy on X such that Hy(z) — f(y) as & — y for each y € A. As in harmonic
and biharmonic cases, there are some examples where there is no solution of
this problem. In this section, we will discuss the Perron-Wiener-Brelot (PWB)
approach to the Dirichlet problem. To this end, we give the following definition.

Definition 5.1. Let hy (resp. hg) be a strictly positive Li-harmonic (resp. Lo-
harmonic) function on D, and let h be the function defined on X by
h1 o1 on Xl,
h =
hg o o on Xo.

A function v on X is called h-harmonic (resp. h-hyperharmonic, h-superharmonic)
on X if and only if the function u defined on X by

(hi(voii))om  on Xj,
U=
(ho(voig))omey on Xy

is harmonic (resp. hyperharmonic, superharmonic) on X.

_ We also define the upper and lower class associated with a function defined on
A. Let f be a function defined on A and let h be a function defined on X as in
Definition 5.1. We define:

Uf := {v: v is h-hyperharmonic and bounded from below on X and
liminfv(z) > f(y), Yy € A}
T—Y
and
U= {s:s is h-hypoharmonic and bounded from above on X and

limsupv(z) < f(y), Yy € A}.

r—y
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We note that U 7 and Uy are never empty since they contain the constant functions
400 and —oo respectively, and that Uf =—-U_y. Put

I_{f = info and I;If = supr.

f is called h-resolutive if H s and Hy are equal and h-harmonic on X. If f is
h-resolutive, then we define H}L = Ef = Hy and call H}L the PWB-solution of
the Dirichlet problem on X with boundary function f. If f oi; is hj-resolutive
on A\, we call H]}:é i the PWB-solution of Dirichlet problem on D associated with
foij,j=1,2.
Further properties of PWB solutions.

Let f and g be two functions defined on A. Then we have

(i) H? =-H E f

(i) B < H].

ees h h Th rTh -

(iii) I;If <Hg and Hf <Hg if f<g.

(iv) Let f, g be two h-resolutive functions and o € R. Then f + g and af are

h-resolutive and

Hp  =Hp+H} H!Y =aH}.

(v) U N (=S(X)) # 0 (resp. Uy N S(X) # 0), then the function ff]f} (resp.
H}J%) is identically oo, or h-harmonic on X.
Let f be a positive function on A such that f oiy = 0 and w the function
defined on X by
Th
v { (hilQ(hl'Hféil)) oIy} on Xl,
= ~h
(K5 Q(h1.HyL ))oms o Xo.
We have H ]}} < w. Indeed, it follows from Corollary 3.1 that w is a positive
h-hyperharmonic function on X and moreover, we have

liminf(w oiy)(z) > (foi1)(y), forall ye A

T—Y

and
liminf(w oidg)(x) >0, forall ye A.

r—yY

Hence, w € Uf. Thus f_I]}} < w and therefore if fl}‘ = 400 then w = +oc0. If
H}L < 00, we have
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Lemma 5.1. Let f be a positive function on A such that f oip = 0 and
KV KIS (hl(HJ}} o0i1)) is bounded on D. Then we have

(EQUn S, ) om on Xi,

(%K%zQ(hlfl}%il)) omy on Xa.

I
>
I

PRroOF: It suffices to show that w < H}L
(a) Let us show that woij < EI]’} oi1.

It follows from property (v) of PWB solutions that the function H ]}} is h-

harmonic on X. Then the function

{(hl(H}LOil))Om on Xi,

(hQ(H‘?O’L'Q)) o o on Xo
is a positive harmonic function on X, and by Corollary 2.1, the functions u; =

hj(ﬂ]f} 0ij)— ng (hk(HJ}} oix)), j,k € {1,2}, j # k are positive and L -harmonic
on D. Put v; := hiﬂ] On the one hand, we have
J

K (hy(Hf o)) < (ha(Hf oig)),

hence
KW K (hy (H} 0i1)) < K3 (ho(H} 0 i2)),
ie.
K K2 (hy(HY 0i1)) < (ha(HYf oi1) — hyvy).
So,
Q(h1.v1) + QKN K (hy (HY 0i1)) < Q(ha(H} o).
Since
QKR KF +1=0Q,
we get

Q(hyv1) + QKglK’g(hl(ﬁ}l oi1)) < QKN K2 (hl(H]’} oi1)) + hl(ﬁ;} oi1).
Therefore,

(5.1.1) Q(hyvy) < ha(H} oiy).

417
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On the other hand,

lim inf v1 () = lim inf(fl? 0i] — hiKgl (hg(f_l? 0i3)))(x)
1

> (foi1)(y) — lim sup(hile‘; (ha(H 0 i2)))(x)

r—yY

for all y € A. Since

lim sup(-— K1 (h (1] 0 i2))) (x)
T—y hl

. 1 - .
< /D limsup G (1. )2 () (T} © )() dp 2),

and limsup,_ ., #@)Gl(x,z) = 0 vp,-a.e. on Ay, where v, is the measure

associated with hp in the Martin representation ([13, p.218]), we have, by Re-

mark 4.3, v, (A\A1) = 0. Hence limsup,__,, #@)Gl(:r, z) = 0 v, -a.e. on A,

Thus liminf, ., v1(x) > (foi1)(y) vp,-a.e. on A. Hence vy is a positive hq — L1-
hyperharmonic function on D and liminf, ., v1(x) > (f 0i1)(y) vp,-a.e. on A.
So

iTh

(5.1.2) vi > HE,
Thus, by (5.1.1), we have

QUnHJ, ) < (hi(H} 0in)).

(b) Let us show that w o9 < (H;L 013).
It follows from (a) that

Q(hiHY, ) < (ha(HJ oin)).

Then,

K#2Q(h HYL, ) < K2 (ha(HY 0 in)) < (ha(HY o).

This finishes the proof. O

Remark 5.1. The result of Lemma 5.1 is still valid if instead of the assumption
KK (hl(ﬁjf} 0141)) is bounded, we suppose only that Q(hl(ﬁjf} 041)) is finite.

Let f be a positive function on A such that f oi; = 0 and @ the function
defined on X by

(%QK%I (h2£’]}”l§i2)) o T on Xl,
irh
(%T(thfgiz)) o 9 on X2.

We have ]f} < w. Therefore if H}L = 400, then w = +o00. If ﬁj} < 00, we have:
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Lemma 5.2. Let f be a positive function on A such that foi; = 0 and
KT K (hg(HJ}} 0i3)) is bounded on D. Then

(hllQKgl(hgfl}fiz)) omy on Xj,

I
3>
I

(AT (haH}2, ) 0 72 on Xo.

foia

ProoF: It suffices to show that w < fl}‘
(a) Let us show that w o iy < ﬁjf} 011.

By the property (v) of PWB solutions, the function H Jf} is h-harmonic on X.
Then the function

(hi(Hfoir))om  on Xi,
2 _}LOZQ

" (h ( )) o T2 on X2

is a positive harmonic function on X and by Corollary 2.1, u; = h; (ﬁ;} 01ij) —
ng (hk(f_I]}} oi)), j,k € {1,2}, j # k, are positive and L ;-harmonic functions

on D. Put vj := hia] On the one hand, we have
J

K (ha(H} 0'ig)) < (ha(H} o)),

hence B B
K (hava + K5 (i (H} 0 1)) < hy(H} 0/iy)
and B B
QK'Y (hava) + QKN K (hy (HY 0i1)) < Q(hy(Hf 0i1)).
Since
QKR KR +1=0Q,
we get

QK%l (ho.wa) < hl(f_{? 01i1).

As in the proof of Lemma 5.1, we show that liminf; ., vo(x) > (foi2)(y) vp,-a.e.
on A. Since v is a positive hg — Lo-hyperharmonic function and lim inf, ., va(x)
> (f oi2)(y), vp,-a.e. on A, we obtain

iTh
(5.1.2) vy > HyZ
hence . ~
QK (haHp2, ) < (ha(Hf oiv)).
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(b) Let us show that @ oig < (H;L oig)). We have

K3 (ho(H Y} oig)) < ha(HJ oiy).

So
KK (ha(HY o)) < K2 (ha(H} 0i1)) = ha(HY o ig) — hava.
Hence - -
T(hg.ve) + TKZKY (ho(H} oig)) < T(ha(HJ o ig)).
Since
TKZK +1=T,
we get

T(hoHJ2, ) < (ha(H] o i2)).

O

Remark 5.2. The result of Lemma 5.2 is still valid if instead of the assumption
K15 K (ho (H}L 0i3)) is bounded, we suppose only that T(hg(H}L 0i3)) is finite.

Let f be a positive function on A and let w’ be the function defined on X by

, Qi HL )+ QK (ho HP2, ))om on X7,
w =
A (KEQUnHT, ) +T(hoH}2, ) omy  on Xo.

We have H}L < w'. Therefore, if H? = +00 then w' = +oo. If H}L < 00, we have

F=

Proposition 5.1. Let f be a positive function on /A such that ng Kg’“ (h; (ﬁ;} o

i;)) is bounded on D, j, k € {1,2}, j # k. Then we have
i7h i7h
E[h _ { hil(Q(thféil) + QK%l (h2Hf§i2)) o1 on Xi,
R
ha

(K%ZQ(hlﬁ?éil) + T(hgﬁ?§i2)) omy  on Xo.

ProOF: It suffices to show that w' < EI]’}
(a) Let us show that w’ oij < E]}} 0.

By the property (v) of PWB solutions, the function H Jf} is h-harmonic on X.

Then the function

(hl(ﬁ?Oil))Owl on Xi,
(ho(H} oiz))oms  on Xo
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is a positive harmonic on X and by Corollary 2.1, i; = h; (H}Loij) K“j (hk( _J}}
ir)), j,k € {1,2}, j # k, are positive L;-harmonic on D. Put v; = 1 ;. On the

one hand,
hyvy + K3 (ho(HY 0 ig)) = hy (H}} o i)

and
hovg + K%z (hl(ﬁ? 0i1)) = hg(ﬁ? 012).

Hence B B

Q(h1v1) + QK (ho(HY 0 in)) = Q(h1(H} o1ir))
and B B

QK (ha-va) + QK KR (hi(H} 0i1)) = QK (ho(H} o).
Since
QKB KR +1=Q,

we have

Q(h1v1) + QK (hg.va) = hi(H} oin).
It follows from (5.1.2) and (5.2.1) that

) + QKW (ho H2

h
Q( H ! foia

53 ) < hy(HYf oiy).

Similarly, we show that

1
g (K QU

1)+ T(haHP2,)) < ho(HY oi).

O

Remark 5.3. The result of Proposition 5.1 is still valid if instead of the assump-
tion KgJK%’“ (hj(H]}} 0i;)) is bounded on D, j, k € {1,2}, j # k, we suppose that

Q(hl(l_{;} 01i1)) < oo and T(hg(f{j} 01ig)) < oo.
h-negligible sets.

Definition 5.2. Let e be a subset of A. e is called h-negligible if E{Le = 0, where
1. is the indicator of the set e.

Let € be a subset of A. € is called hj-negligible if and only if ﬁ{z =0,7=1,2.
Proposition 5.2. Let e C A = (A x {1}) U (A x {2}) be such that e = (e1 x
{1}) U (e2 x {2}), where ¢; C A, j = 1,2. The following are equivalent:

(1) e is h-negligible;
(2) ej is hj-negligible, j = 1,2.
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PROOF: Suppose that e is h-negligible; then Hﬁ = 0. By Proposition 5.1, we
have

n _{ QM HY, )+ QK1 (hoH[2,, ))om  on X7,
hl(KuzQ(hlﬂl oi) )—i—T(thlem.z))mrg on Xo,

hence

Q(thl 07,1) = _QKul(}QHl 07,2) K“2Q(h1H1 07,1) - (h2H1€ozz)

Since the functions hjflijoij, j = 1,2, are positive, }_Iifoij =0,7 =1,2. Since
leoij =1, Hij =0, i.e., the set e; is h;-negligible. The converse is obvious.
’ O
Proposition 5.3. Let f and f be two positive functions defined on A such that
e ={f # f} is a h-negligible set. Then H? = E}L

PROOF: We have e = {f # f}=(e1 x {1})U(eg x {2}), where ej ={foij # foz'j}
1=12, and e is h-negligible. Then, by Proposition 5.2, e; is h;-negligible. Thus

h.
Hyl = Hfo, , j = 1,2. Therefore, by Proposition 5.1, A = H]f: O
Lemma 5.3. Let f be a positive function on A such that ng K (h; (ﬁ;} 0ij))
is bounded on D, j, k € {1,2}, j # k. Then we have

hJHfOZJ = hj(H} oij) — K (he(H} o i)

PRrROOF: By Proposition 5.1, we have

e = QUL + QKE ()
1
ha

Hf oy = (K1 QUn AL, ) + T(haHJ2,)).
Then B
{ M} o i = Q) + QKL (haHJ2,)),
hoHT o ig = (K2 Q(hy I, ) + T(ho H2, ).
Hence

{ K2 (hy B oin) = KEHQ(r A, ) + KIZ(QK (ha HJZ, ),
i . h h
hoHl oig = (KR QAL ) + T(ho HYZ, ).
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Since E}L is h-harmonic on X, K% (hl(ﬁ;} 01i1)) < co. Thus,

ho(H} oig) — K13 (hy(HYf oi1)) = T(hzﬁ?@z) - K7QK} (hzﬁ}fh)-
Since
T= K%ZQK%l + 1,
we get

ho(HY oig) — K42 (hy (HY 0i1)) = ho H 12

foia®
Similarly, we show that

hi(HY oiy) — KI5 (ha(HY i) = AL, .

Theorem 5.1. Let f be a positive function defined on A such that
Kg] K (hj(H]}} 0ij)) is bounded, j # k, j,k € {1,2}. The following are equiva-
lent:
(a) f is h-resolutive;
(b) (1) foij is hj-resolutive on A, j = 1,2, and
(2) KM (hHTY ) is finite, j # k, j,k € {1,2}.

foij

PROOF: Suppose that (b) holds. Then the function th]ffgi_ is L;-harmonic,
J

7 = 1,2. Moreover, we have

h; =h .
thfgij < hj(Hf o ’Lj).
. i = . . . . i h;
Since ngng(hj(Hj} 0ij;)) is bounded, j # k, j,k € {1,2}, KgJng(thfgij)

is bounded, j # k, j,k € {1,2}. Hence, by Theorem 3.1, the function

h h
o { QUi HIL, )+ QK (haHT2, ) om on X1,
= h h
%(ngQ(thféil) + T(h2Hf§i2)) 0 g on X9
is h-harmonic on X, moreover FI}L = H? = H}l, therefore f is h-resolutive.

Conversely, suppose that f is h-resolutive. Then H ]}} = H? =H Jf} and H Jf} is
h-harmonic. On the one hand, it follows from Lemma 5.3 that
=h; . i .
hiH, = hj(H} oij) — KI5 (hy(Hf oiy)),

foi; ™

423
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and by Corollary 2.1, the function Hhél is hj — Lj-harmonic on D, i.e. f oi; is
J
hj-resolutive on A. On the other hand,

h; ) . .
K (hiH L) < Kif (hj(H} oij)) < hyH} o'i,

thus N
] . J
KpF(h;H Oij) < 0. .
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