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Covering properties in countable products, II

Sachio Higuchi, Hidenori Tanaka

Abstract. In this paper, we discuss covering properties in countable products of Čech-
scattered spaces and prove the following: (1) If Y is a perfect subparacompact space

and {Xn : n ∈ ω} is a countable collection of subparacompact Čech-scattered spaces,
then the product Y ×

Q
n∈ω Xn is subparacompact and (2) If {Xn : n ∈ ω} is a

countable collection of metacompact Čech-scattered spaces, then the product
Q

n∈ω Xn

is metacompact.

Keywords: countable product, C-scattered, Čech-scatterd, subparacompact, metacom-
pact

Classification: Primary 54B10, 54D15, 54D20, 54G12

1. Introduction

A space X is said to be subparacompact (metacompact) if every open cover
of X has a σ-locally finite closed (point finite open) refinement. It is well known
that every countably compact, subparacompact (metacompact) space is compact.
Telgársky [Te] introduced the notion of C-scattered spaces and proved that the

product of a paracompact (Lindelöf) C-scattered space and a paracompact (Lin-
delöf) space is paracompact (Lindelöf). Yajima [Y1], Gruenhage and Yajima [GY]
proved similar results for subparacompact (metacompact) spaces. Furthermore,
the second author ([T1], [T2]) proved the following: (1) if Y is a perfect para-
compact (hereditarily Lindelöf, perfect subparacompact) space and {Xn : n ∈ ω}
is a countable collection of paracompact (Lindelöf, subparacompact) C-scattered
spaces, then the product Y ×

∏
n∈ω Xn is paracompact (Lindelöf, subparacom-

pact) and (2) if {Xn : n ∈ ω} is a countable collection of metacompact C-scattered
spaces, then the product

∏
n∈ω Xn is metacompact.

On the other hand, Hohti and Ziqiu [HZ] introduced the notion of Čech-
scattered spaces, which is a generalization of C-scattered spaces and studied
paracompactness of countable products. Furthermore Aoki, Mori and the sec-
ond author [AMT] proved that if Y is a perfect paracompact (hereditarily Lin-
delöf) space and {Xn : n ∈ ω} is a countable collection of paracompact (Lindelöf)
Čech-scattered spaces, then the product Y ×

∏
n∈ω Xn is paracompact (Lindelöf).

It seems to be natural to consider subparacompactness and metacompactness
of countable products of Čech-scattered spaces. In this paper, the following will
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be shown: (1) If Y is a perfect subparacompact space and {Xn : n ∈ ω} is a
countable collection of subparacompact Čech-scattered spaces, then the product
Y ×

∏
n∈ω Xn is subparacompact and (2) If {Xn : n ∈ ω} is a countable collection

of metacompact Čech-scattered spaces, then the product
∏

n∈ω Xn is metacom-
pact.
All spaces are assumed to be Tychonoff spaces. Let ω denote the set of natural

numbers. Let |A| denote the cardinality of a set A. Undefined terminology can
be found in Engelking [E].

2. Preliminaries

A space X is said to be scattered if every nonempty (closed) subset A has an
isolated point in A and X is said to be C-scattered if for every nonempty closed
subset A of X , there is a point x ∈ A which has a compact neighborhood in A.
Then scattered spaces and locally compact spaces are C-scattered. A space X is
said to be Čech-scattered if for every nonempty closed subset A of X , there is a
point x ∈ A which has a Čech-complete neighborhood in A. Thus locally Čech-
complete spaces and C-scattered spaces are Čech-scattered. It is well known that
the space of irrationals P = ωω is not C-scattered. However, it is Čech-complete
and hence, Čech-scattered.
Let X be a space. For a closed subset A of X , let

A∗ = {x ∈ A : x has no Čech-complete neighborhood in A}.

Let A(0) = A, A(α+1) = (A(α))
∗
and A(α) =

⋂
β<α A(β) for a limit ordinal α.

Note that every A(α) is a closed subset of X and X is Čech-scattered if and only

if X(α) = ∅ for some ordinal α.
Let X be a Čech-scattered space and Y ⊂ X . If Y is open or closed in X ,

then Y is also Čech-scattered. Furthermore, if Y is an open subset of X , then

Y (α) = Y ∩ X(α) for each ordinal α. However, if Y is a closed subset of X , then

Y (α) ⊂ Y ∩X(α) for each ordinal α. So we consider α-th derivatives with respect
to X . A subset A of X is said to be topped if there is an ordinal α(A) such

that A ∩ X(α(A)) is a nonempty Čech-complete subset and A ∩ X(α(A)+1) = ∅.
Let Top(A) = A ∩ X(α(A)). For each x ∈ X , there is a unique ordinal α such

that x ∈ X(α) − X(α+1), which is denoted by rank(x) = α. Then there is a
neighborhood base Bx of x in X , consisting of open subsets of X , such that for
each B ∈ Bx, B is topped in X and α(B) = rank(x).

It is clear that if X and Y are Čech-scattered spaces, then the product X × Y
is Čech-scattered.

Lemma 1 (Engelking [E]). A space X is Čech-complete if and only if there is a
sequence (An) of open covers of X satisfying that if F is a collection of closed
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subsets of X , with the finite intersection property, such that for each n ∈ ω, there
are Fn ∈ F and An ∈ An with Fn ⊂ An, then the intersection

⋂
F is nonempty.

In Lemma 1, the intersection
⋂
F is countably compact. So, if X is subpara-

compact (metacompact), then
⋂
F is compact. The proof of the following lemma

is routine and hence, we omit it.

Lemma 2. (1) If X is a subparacompact Čech-scattered space and Y is a closed
subset of X , then every open cover of Y has a σ-locally finite topped, closed
refinement.

(2) If X is a metacompact Čech-scattered space and Y is a closed subset of X ,
then for every open cover U of Y , there is a point finite open cover V of Y such
that for each V ∈ V , V is topped and is contained in some member of U .

Reduction. In considering covering properties of countable products of Čech-
scattered spaces, we may consider Y × Xω or Xω. Furthermore, we may assume
that X has a single top point a, that is, Top(X) = {a}. For, let {Xn : n ∈ ω} be
a countable collection of Čech-scattered spaces. Take an a /∈

⋃
n∈ω Xn and let

Ym =
⊕

n∈ω

Xn for each m ∈ ω and

X =
⊕

m∈ω

Ym ∪ {a}.

The topology of X is as follows: every Xn is open and closed in X and the
neighborhood base at a is {Um ∪ {a} : m ∈ ω}, where Um =

⊕
k≥m Yk for

each m ∈ ω. Then X is Čech-scattered and if every Xn is subparacompact
(metacompact), then X is also subparacompact (metacompact) (cf. Alster [A,
Theorem]). Let Y be a space. Then Y ×

∏
n∈ω Xn (

∏
n∈ω Xn) is a closed subset

of Y × Xω (Xω) and hence, if Y × Xω (Xω) is subparacompact (metacompact),
then Y ×

∏
n∈ω Xn (

∏
n∈ω Xn) is also subparacompact (metacompact).

LetX be a Čech-scattered space and Y be a space. A subset A of Y ×Xn is said
to be rectangle if A = Ã×

∏
i≤n Ai such that Ã ⊂ Y and for each i ≤ n, Ai ⊂ X .

A subset A = Ã ×
∏

i∈ω Ai of Y × Xω is said to be basic open (basic closed) if

Ã is an open (closed) subset of Y , and there is an n ∈ ω such that Ai is an open
(closed) subset of X for each i < n and Ai = X for each i ≥ n. Let

n(A) = inf{i : Aj = X for each j ≥ i}.

Let n ∈ ω. If A =
∏

i≤n Ai (
∏

i∈ω Ai) is a subset of Xn (Xω) such that for

each i ≤ n (i ∈ ω), Ai is topped, then we denote

Top(A) =
∏

i≤n

Top(Ai) (
∏

i∈ω

Top(Ai)).
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3. Subparacompactness

An open cover U of a space X is said to be well-monotone if U is well-ordered
by inclusion. In order to prove subparacompactness of spaces, the following is
useful: A space X is subparacompact if and only if every well-monotone open
cover has a σ-locally finite closed refinement (cf. Yajima [Y2, Lemma 2.4]).

Firstly, we shall consider subparacompactness of countable products. By the
Reduction, it suffices to prove the following.

Theorem 1. If Y is a perfect subparacompact space and X is a subparacompact
Čech-scattered space with Top(X) = {a}, then the product Y × Xω is subpara-

compact.

Proof: Let U be a well-monotone open cover of Y ×Xω. Define (R, (A(R)i,m)) ∈

C if R = R̃×
∏

i∈ω Ri is a basic closed subset of Y ×Xω such that for each i ∈ ω,
Ri is topped and (A(R)i,m) is a sequence of open (in Top(Ri)) covers of Top(Ri),
satisfying Lemma 1.

Take an (R, (A(R)i,m)) ∈ C and R = R̃ ×
∏

i∈ω Ri. Let i < n(R). For

each A ∈ A(R)i,1, take an open subset A′ of Ri such that A′ ∩ Top(Ri) = A.
Then {A′ : A ∈ A(R)i,1} ∪ {Ri − Top(Ri)} is an open (in Ri) cover of Ri. By
Lemma 2(1), there is a σ-locally finite cover F(R)i of Ri, consisting of topped,
closed subsets such that F(R)i refines {A

′ : A ∈ A(R)i,1} ∪ {Ri − Top(Ri)}. In
order to lengthen n(R), take a σ-locally finite topped, closed cover F(R)n(R) of

X such that there is a proper element F ∈ F(R)n(R) with a ∈ F and for each

F ′ ∈ F(R)n(R) − {F}, a /∈ F ′.

Then F(R) =
∏

i≤n(R) F(R)i is a σ-locally finite cover of
∏

i≤n(R)Ri, consist-

ing of closed rectangles such that for F =
∏

i≤n(R) Fi ∈ F(R) and i ≤ n(R), Fi

is topped. Take an F =
∏

i≤n(R) Fi ∈ F(R) with Top(F )∩Top(
∏

i≤n(R) Ri) 6= ∅

and hence, for each i ≤ n(R),Top(Fi) ∩ Top(Ri) 6= ∅. For each i ≤ n(R), since
Top(Fi) ∩ Top(Ri) = Fi ∩ Top(Ri) = Top(Fi), there is a subset A ∈ A(R)i,1
such that Top(Fi) ⊂ A. Let F̂ = F × X × · · · =

∏
i∈ω F̂i. Then F̂ is a basic

closed subset of Xω with Top(F̂ ) = Top(F ) × {a} × · · · . For each y ∈ R̃, let

Fy = {y} × Top(F̂ ). Define the condition (*) as follows: Fy satisfies (*) if there

are basic open set B in Y × Xω and U ∈ U such that Fy ⊂ B ⊂ B ⊂ U . Let

n(Fy) = min{n(B) : B is a basic open subset of Y × Xω

such that Fy ⊂ B ⊂ B ⊂ U for some U ∈ U}.

We say that F satisfies (*) if there is a y ∈ R̃ such that Fy satisfies (*).

Let y ∈ R̃ and assume that Fy satisfies (*). Take a basic open set B(Fy) =

B̃(Fy)×
∏

i∈ω B(Fy)i in Y × Xω and U(Fy) ∈ U such that
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(1) (a) Fy ⊂ B(Fy) ⊂ B(Fy) ⊂ U(Fy),
(b) n(Fy) = n(B(Fy)).

Define
r(Fy) = max

{
n(R) + 1, n(Fy)

}
.

Let m ∈ ω and W (F )m = {y ∈ R̃ : n(Fy) = m}. Since
⋃

i≤m W (F )i =
⋃
{B̃(Fy)∩ R̃ : n(Fy) ≤ m}, everyW (F )m is an Fσ-set in Y . Since Y is a perfect
subparacompact space, there is a collection G(F )m of closed subsets of Y such
that: for each m ∈ ω,

(2) (a) W (F )m =
⋃
G(F )m,

(b) G(F )m refines {B̃(Fy) ∩ R̃ : n(Fy) = m},
(c) G(F )m is σ-locally finite in Y .

For each G ∈ G(F )m, take a y(G) ∈ W (F )m such that G ⊂ ˜B(Fy(G)) ∩ R̃.

Then n(Fy(G)) = m. Define E(G) as follows:

E(G) = G ×
∏

i<r(Fy(G))

(
F̂i ∩ B(Fy(G))i

)
× X × · · · = G ×

∏

i∈ω

E(G)i.

Then E(G) is a basic closed subset of Y ×Xω such that for each i ∈ ω, E(G)i
is topped and G × Top(F̂ ) ⊂ E(G). By a similar manner as in the proof of
Aoki, Mori and Tanaka [AMT, Theorem 3.1] or Tanaka [T2, Theorem 4.1], we
can obtain the following collection R(G) of basic closed subsets such that:

(3) (a) R(G) is σ-locally finite in Y × Xω,

(b) G × F̂ − E(G) ⊂
⋃
R(G) ⊂ G × F̂ ,

for each R′ = G ×
∏

i∈ω R′
i ∈ R(G),

(c) n(R′) = r(Fy(G)) > n(R),

(d) for each i ∈ ω, α(R′
i) ≤ α(Ri),

(e) (R′, (A(R′)i,m)) ∈ C such that for each i ≤ n(R), if α(R′
i) = α(Ri),

then Top(R′
i) ⊂ Top(Fi) and for each m ∈ ω, A(R′)i,m = {A ∩ R′

i :
A ∈ A(R)i,m+1},

(f) if n(Fy(G)) < n(R), then there is an i < n(Fy(G)) such that

α(R′
i) < α(Ri).

Let E(F )={E(G) : G ∈
⋃

m∈ω G(F )m},R(F )=
⋃
{R(G) : G ∈

⋃
m∈ω G(F )m}.

If F does not satisfy (*) or Top(F ) ∩ Top(
∏

i≤n(R) Ri) = ∅, let E(F ) = {∅},

R(F ) = {R′}, where R′ = R̃ × F × X × · · · . Take a sequence (A(R′)i,m) such
that (R′, (A(R′)i,m)) ∈ C as (3)(e). Let

E(R) =
⋃

{E(F ) : F ∈ F(R)} and R(R) =
⋃

{R(F ) : F ∈ F(R)}.
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(4) (a) E(R) is a σ-locally finite collection of basic closed subsets of Y ×Xω

such that every element of E(R) is contained in some member of U ,
(b) R(R) is a σ-locally finite collection of basic closed subsets of Y ×Xω,
(c) R −

⋃
E(R) ⊂

⋃
R(R) ⊂ R,

for R′ = R̃′ ×
∏

i∈ω R′
i ∈ R(F ), F =

∏
i≤n(R) Fi ∈ F(R),

(d) n(R′) > n(R),
(e) for each i ∈ ω, α(R′

i) ≤ α(Ri),
(f) (R′, (A(R′)i,m)) ∈ C such that for each i ≤ n(R), if α(R′

i) = α(Ri),

then Top(R′
i) ⊂ Top(Fi) and for each m ∈ ω, A(R′)i,m = {A ∩ R′

i :
A ∈ A(R)i,m+1},

(g) if R′ = G ×
∏

i∈ω R′
i for some G ∈ G(F )m, m ∈ ω and n(Fy(G)) <

n(R), then there is an i < n(Fy(G)) such that α(R′
i) < α(Ri).

Let E0 = {∅}, R0 = Y × Xω and R0 = {R0}. Put Ai,m = {{a}} for i, m ∈ ω
and Y (0) = ∅. By the above construction, for each n ≥ 1, we obtain collections
En and Rn of basic closed subsets of Y × Xω and a subset Y (n) of Y , satisfying
the following:

(5) En =
⋃
{E(R) : R ∈ Rn−1} is σ-locally finite in Y × Xω such that every

element of En is contained in some member of U ,
(6) Rn =

⋃
{R(R) : R ∈ Rn−1} is σ-locally finite in Y ×

∏
n∈ω Xn,

for R = R̃ ×
∏

i∈ω Ri ∈ Rn−1, R
′ = R̃′ ×

∏
i∈ω R′

i ∈ R(F ), F =
∏

i≤n(R) Fi ∈

F(R),

(7) (R, (A(R)i,m)) ∈ C,
(8) R −

⋃
E(R) ⊂

⋃
R(R) ⊂ R,

(9) n(R) < n(R′),
(10) for i ∈ ω, α(R′

i) ≤ α(Ri),
(11) (R′, (A(R′)i,m)) ∈ C such that for each i ≤ n(R), if α(R′

i) = α(Ri), then

Top(R′
i) ⊂ Top(Fi) and for each m ∈ ω, A(R′)i,m = {A ∩ R′

i : A ∈
A(R)i,m+1},

(12) Y (R, F )={y ∈ R̃ : Fy satisfies (*)} for F ∈ F(R) and Y (n)=
⋃
{Y (R, F ) :

R ∈ Rn−1 and F ∈ F(R)},
(13) if y ∈ Y (R, F ), F ∈ F(R) and n(Fy) < n(R), then there is an i < n(Fy)

such that α(R′
i) < α(Ri).

Let E =
⋃

n∈ω En. We shall show that E is a σ-locally finite basic closed
refinement of U . By (5), it suffices to show that E is a cover of Y × Xω. Assume
that E does not cover Y ×Xω. Take a (y, (xt)) ∈ Y ×Xω −

⋃
E . Then there are

sequences {Rn : n ∈ ω}, {Fn : n ≥ 1}, {yn : n ≥ 1} (if possible) such that: for
each n ≥ 1,

(14) (a) (y, (xt)) ∈ Rn = R̃n ×
∏

i∈ω Rn,i ∈ R(Fn) and
Fn =

∏
i≤n(Rn−1)

Fn,i ∈ F(Rn−1),
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(b) n(Rn−1) < n(Rn),
(c) for each i ∈ ω, α(Rn,i) ≤ α(Rn−1,i),
(d) for each i ≤ n(Rn,i), if α(Rn+1,i) = α(Rn,i), then Top(Rn+1,i) ⊂
Top(Fn,i) and for each m ∈ ω, A(Rn+1)i,m = {A ∩ Rn+1,i : A ∈
A(Rn)i,m+1},

(e) if Fny satisfies (*), then n(Fny) = n(Fnyn
) and furthermore, if

n(Fny) < n(Rn−1), then there is an i < n(Fny) such that
α(Rn,i) < α(Rn−1,i).

Let i ∈ ω. For each n ≥ 1, by (14)(c), α(Rn,i) ≤ α(Rn−1,i). So, by (14)(b),
there is an ni ∈ ω such that i < n(Rni) and α(Rn,i) = α(Rni,i) for n ≥ ni.
Then by (14)(d), Top(Rn+1,i) ⊂ Top(Fn,i). Then there is a sequence {An : n ≥
ni} of closed subsets of X such that for each n ≥ ni, An ∈ A(Rni)i,n−ni+1

and Top(Fn,i) ⊂ An. It follows from Lemma 1 that Ci =
⋂

n≥ni
Top(Rn,i) =⋂

n≥ni
Top(Fn,i) is nonempty and compact. Let C = {y} ×

∏
i∈ω Ci. Then C is

compact. Since U is a well-monotone open cover of Y × Xω, there is a U ∈ U
such that C ⊂ U . Then there is a basic open subset B = B̃ ×

∏
i∈ω Bi such that

C ⊂ B ⊂ B ⊂ U and n(B) is minimal for this property. Take an m ∈ ω such that

(15) (a) n(B) < n(Rm),
(b) for each i < n(B), ni ≤ m and Top(Rm,i) ⊂ Bi.

Then Fm+1y ⊂ B and hence, Fm+1y satisfies (*). Then by (14) and (15),

n(Fm+1y) = n(Fm+1ym+1
) ≤ n(B) < n(Rm). It follows from (14)(e) that there

is an i < n(Fm+1y) such that α(Rm+1,i) < α(Rm,i), which is a contradiction.
�

4. Metacompactness

Theorem 2. If X is a metacompact Čech-scattered space with Top(X) = {a},
then the product Xω is metacompact.

Proof: Let U be an open cover of Xω, which is closed under finite unions. Define
(B, (A(B)i,m)) ∈ C if B =

∏
i∈ω Bi is a basic open subset of Xω such that for

each i ∈ ω, Bi is topped and (A(B)i,m) is a sequence of open (in Top(Bi)) covers

of Top(Bi), satisfying Lemma 1.
Take a (B, (A(B)i,m)) ∈ C and let B =

∏
i∈ω Bi. Let i < n(B). For each

A ∈ A(B)i,1, take an open subset A′ of Bi such that A′ ∩ Top(Bi) = A. By
Lemma 2 (2), there is a point finite collection H(B)i of open subsets of Bi such
that:

(1) (a) H(B)i covers Bi,
(b) for each element H of H(B)i, H is topped,

(c) H(B)i = {H : H ∈ H(B)i} refines {A
′ : A ∈ A(B)i,1}∪

{Bi − Top(Bi)}.
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Take a point finite open cover H(B)n(B) of X such that:

(2) (a) for each H ∈ H(B)n(B), H is topped,

(b) there is a proper element H ∈ H(B)n(B) with a ∈ H and for each

H ′ ∈ H(B)n(B) − {H}, a /∈ H ′.

Then H(B) =
∏

i≤n(B)H(B)i is a point finite cover of
∏

i≤n(B)Bi, consisting

of open rectangles, such that for H =
∏

i≤n(B)Hi ∈ H(B) and i ∈ ω, Hi is

topped. Take an H =
∏

i≤n(B)Hi ∈ H(B) with Top(H) ∩ Top(
∏

i≤n(B)Bi) =

Top(H) ∩ Top(
∏

i≤n(B)Bi) 6= ∅ and let Ĥ = H × X × · · · =
∏

i∈ω Ĥi. Then

Ĥ is a basic open subset of Xω with n(Ĥ) = n(B) + 1 such that Top(Ĥ) =
Top(H) × {a} × · · · . As before, define the condition (**) as follows: H satisfies
(**) if there are basic open sets B1, B2 in Xω with n(B1) = n(B2) and U ∈ U

such that Top(Ĥ) ⊂ B1 ⊂ B1 ⊂ B2 ⊂ B2 ⊂ U . Let

k(H) = min{n(B1) : B1, B2 are basic open subsets of X
ω with n(B1) = n(B2)

such that Top(Ĥ) ⊂ B1 ⊂ B1 ⊂ B2 ⊂ B2 ⊂ U for some U ∈ U}.

Assume that H satisfies (**). Take basic open sets B1(H) =
∏

i∈ω B1(H)i,
B2(H) =

∏
i∈ω B2(H)i in Xω with n(B1(H)) = n(B2(H)) and U(H) ∈ U such

that

(3) (a) Top(Ĥ) ⊂ B1(H) ⊂ B1(H) ⊂ B2(H) ⊂ B2(H) ⊂ U(H),
(b) k(H) = n(B1(H)).

Let
r(H) = max{n(B) + 1, k(H)}.

Define a basic open subset G(H) as follows:

G(H) =
∏

i<r(H)

(Ĥi ∩ B2(H)i)× X × · · · =
∏

i∈ω

G(H)i.

For each i ∈ ω, G(H)i is topped and G(H) is contained in U(H). By (3)(a),
using B1(H), we can also obtain the following collection B(H) of basic open
subsets of Xω such that:

(4) (a) B(H) is point finite in Xω,
(b) H − G(H) ⊂

⋃
B(H) ⊂ H ,

for each B′ =
∏

i∈ω B′
i ∈ B(H),

(c) n(B′) = r(H) > n(B),

(d) for each i ∈ ω, α(B′
i) ≤ α(Bi),

(e) (B′, (A(B′)i,m)) ∈ C such that for each i ≤ n(B), if α(B′
i) = α(Bi),
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then Top(B′
i) ⊂ Top(Hi) and for each m ∈ ω, A(B′)i,m = {A ∩ B′

i :
A ∈ A(B)i,m+1},

(f) if k(H) < n(B), then there is an i < k(H) such that α(B′
i) < α(Bi).

If H does not satisfy (**) or Top(H)∩Top(
∏

i≤n(B)Bi) = ∅, let B(H) = {Ĥ}.

By Lemma 1 and (4)(a), take a sequence (A(B′)i,m) such that (B
′, (A(B′)i,m)) ∈

C. Let

G(B) = {G(H) : H ∈ H(B) and H satisfies (**)} and

B(B) =
⋃

{B(H) : H ∈ H(B)}.

(5) (a) G(B) is a point finite collection of basic open subsets of Xω such
that for each G ∈ G(B), G is contained in some member of U ,

(b) B(B) is a point finite collection of basic open subsets in Xω,
(c) B −

⋃
G(B) ⊂

⋃
B(B) ⊂ B,

for B′ =
∏

i∈ω B′
i ∈ B(H), H =

∏
i≤n(B)Hi ∈ H(B),

(d) n(B′) > n(B),

(e) for each i ∈ ω, α(B′
i) ≤ α(Bi),

(f) (B′, (A(B′)i,m)) ∈ C such that for each i ≤ n(B), if α(B′
i) = α(Bi),

then Top(B′
i) ⊂ Top(Hi) and for each m ∈ ω, A(B′)i,m = {A ∩ B′

i :
A ∈ A(B)i,m+1},

(g) if H satisfies (**) and k(H) < n(B), then there is an i < k(H) such

that α(B′
i) < α(Bi).

Let G0 = {∅}, B0 = Xω, B0 = {B0} and Ai,m = {{a}} for i, m ∈ ω. By the
above construction, for each n ≥ 1, we obtain collections Gn and Bn of basic open
subsets of Xω, satisfying the following:

(6) Gn =
⋃
{G(B) : B ∈ Bn−1} is point finite in Xω and for G ∈ Gn, G is

contained in some member of U ,
(7) Bn =

⋃
{B(B) : B ∈ Bn−1} is point finite in

∏
n∈ω Xn,

for B =
∏

i∈ω Bi ∈ Bn−1, B
′ =

∏
i∈ω B′

i ∈ B(H), H =
∏

i≤n(B)Hi ∈ H(B),

(8) (B, (A(B)i,m)) ∈ C,
(9) B −

⋃
G(B) ⊂

⋃
B(B) ⊂ B,

(10) n(B) < n(B′),

(11) for i ∈ ω, α(B′
i) ≤ α(Bi),

(12) (B′, (A(B′)i,m)) ∈ C such that for each i ≤ n(B), if α(B′
i) = α(Bi), then

Top(B′
i) ⊂ Top(Hi) and for each m ∈ ω, A(B′)i,m = {A ∩ B′

i : A ∈
A(B)i,m+1},

(13) if H satisfies (**) and k(H) < n(B), then there is an i < k(H) such that

α(B′
i) < α(Bi).
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Let G =
⋃

n∈ω Gn. We shall show that G is a point finite basic open refinement

of U . By (6), every Gn is point finite and for each G ∈ G, G is contained in
some member of U . Let (xt) ∈ Xω. Since (xt) ∈ B0 = Xω, by (6), (7) and
(9), there are finite subcollections G′

1 ⊂ G1 and B′
1 ⊂ B1 such that (xt) ∈

(
⋃

G′
1)∪ (

⋃
B′
1) and (xt) /∈ (

⋃
(G1−G′

1))∪ (
⋃
(B1−B′

1)). If ord((xt),B′
1) = 0,

then (xt) ∈
⋃
G′
1 and (xt) /∈

⋃
2≤n(

⋃
Gn). Assume that 1 ≤ ord((xt),B′

1). By

(6), (7) and (9) again, there are finite subcollections G′
2 ⊂ G2 and B′

2 ⊂ B2
such that (xt) ∈ (

⋃
G′
2) ∪ (

⋃
B′
2) and (xt) /∈ (

⋃
(G2 − G′

2)) ∪ (
⋃
(B2 − B′

2)).
If ord((xt),B′

2) = 0, then (xt) ∈
⋃
G′
2 and (xt) /∈

⋃
3≤n(

⋃
Gn). Assume that

this method can be continued infinitely. That is, for each n ≥ 1, there is a
finite subcollection B′

n ⊂ Bn such that (xt) ∈
⋃
B′

n. Then, by (7) and König’s
lemma [K], there are sequences {Bn : n ∈ ω}, {Hn : n ≥ 1} such that: for n ≥ 1,

(14) (a) (xt) ∈ Bn =
∏

i∈ω Bn,i ∈ B(Hn) and Hn =
∏

i≤n(Bn−1)
Hn,i ∈

H(Bn−1),
(b) n(Bn−1) < n(Bn),
(c) for each i ∈ ω, α(Bn,i) ≤ α(Bn−1,i),

(d) (Bn, (A(Bn)i,m)) ∈ C such that for each i ≤ n(Bn−1), if α(Bn,i) =

α(Bn−1,i), then Top(Bn,i) ⊂ Top(Hn,i) and for each m ∈ ω,

A(Bn)i,m = {A ∩ Bn,i : A ∈ A(Bn−1)i,m+1},
(e) if Hn satisfies (**) and k(Hn) < n(Bn−1), then there is an i < k(Hn)
such that α(Bn,i) < α(Bn−1,i).

Let i ∈ ω. For each n ≥ 1, by (14)(c), α(Bn,i) ≤ α(Bn−1,i). So, by (14)(b),

there is an ni ∈ ω such that i < n(Bni) and α(Bn,i) = α(Bni,i) for n ≥ ni. Then

by (14)(d), Top(Bn+1,i) ⊂ Top(Hn,i) for each n ≥ ni. As before, {Top(Bn,i) :

n ≥ ni} is a decreasing sequence of closed subsets of Top(Bni), satisfying the

completeness. By Lemma 1, Ci =
⋂

n≥ni+1
Top(Bn,i) =

⋂
n≥ni

Top(Hn,i) is

nonempty and compact. Let C =
∏

i∈ω Ci. Then C is compact. Since U is an
open cover of Xω, which is closed under finite unions, there is a U ∈ U such
that C ⊂ U . Since C is compact, there are basic open subsets B =

∏
i∈ω Bi and

B′ =
∏

i∈ω B′
i in Xω with n(B) = n(B′) such that C ⊂ B ⊂ B ⊂ B′ ⊂ B′ ⊂ U

and n(B) is minimal for this property. Take an m ∈ ω such that:

(15) (a) n(B) < n(Bm),
(b) for each i < n(B), ni ≤ m and Top(Bm,i) ⊂ Bi.

Then Hm+1 satisfies (**). Since k(Hm+1) < n(Bm), by (14)(e), there is an
i < k(Hm+1) such that α(Bm+1,i) < α(Bm,i), which is a contradiction.

So, our method is finished after finitely many times, that is , n times for some
n ≥ 1. Then (xt) ∈

⋃
G′

n and (xt) /∈
⋃
Bn and hence, (xt) /∈

⋃
s≥n+1(

⋃
Gs).

Thus G is point finite. �
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A space X is said to be submetacompact (weakly submetacompact) if for ev-
ery open cover U of X , there is a sequence (Vn) of open refinements (an open
refinement

⋃
n∈ω Vn) of U such that for each x ∈ X , there is an n ∈ ω with

ord(x,Vn) < ω (1 ≤ ord(x,Vn) < ω). For a collection A of subsets of X and
x ∈ X , let ord(x, A) = |{A ∈ A : x ∈ A}|. It is well known that every
subparacompact (metacompact) space is submetacompact and every countably
compact, weakly submetacompact space is compact (cf. [S]). The second author
([T3], [T4]) proved that if {Xn : n ∈ ω} is a countable collection of submetacom-
pact C-scattered spaces, then the product

∏
n∈ω Xn is submetacompact and if

Y is a hereditarily weakly submetacompact space and {Xn : n ∈ ω} is a count-
able collection of weakly submetacompact C-scattered spaces, then the product
Y ×

∏
n∈ω Xn is weakly submetacompact. So we raise the following problem.

Problem. (1) If {Xn : n ∈ ω} is a countable collection of submetacompact
Čech-scattered spaces, then is the product

∏
n∈ω Xn submetacompact?

(2) If Y is a hereditarily weakly submetacompact space and {Xn : n ∈ ω} is
a countable collection of weakly submetacompact Čech-scattered spaces, then is
the product Y ×

∏
n∈ω Xn weakly submetacompact?
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slovak Math. J. 49 (1999), 569–583.

[K] Kunen K., Set Theory: An Introduction to Independence Proofs, North-Holland, Ams-
terdam, 1980.

[S] Smith J.C., Properties of weakly θ-refinable spaces, Proc. Amer. Math. Soc. 53 (1975),
511–517.

[T1] Tanaka H., A class of spaces whose countable products with a perfect paracompact space
is paracompact, Tsukuba J. Math. 16 (1992), 503–512.

[T2] Tanaka H., Covering properties in countable products, Tsukuba J. Math. 17 (1993),
565–587.

[T3] Tanaka H., Submetacompactness and weak submetacompactness in countable products,
Topology Appl. 67 (1995), 29–41.

[T4] Tanaka H., Submetacompactness in countable products, Topplogy Proc. 27 (2003), 307–
316.
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