Commentationes Mathematicae Universitatis Carolinae

Chuan Liu
 A note on paratopological groups

Commentationes Mathematicae Universitatis Carolinae, Vol. 47 (2006), No. 4, 633--640

Persistent URL: http://dml.cz/dmlcz/119624

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

A note on paratopological groups

Chuan Liu

Abstract

In this paper, it is proved that a first-countable paratopological group has a regular G_{δ}-diagonal, which gives an affirmative answer to Arhangel'skii and Burke's question [Spaces with a regular G_{δ}-diagonal, Topology Appl. 153 (2006), 1917-1929]. If G is a symmetrizable paratopological group, then G is a developable space. We also discuss copies of S_{ω} and of S_{2} in paratopological groups and generalize some Nyikos [Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), no. 4, 793-801] and Svetlichnyi [Intersection of topologies and metrizability in topological groups, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 4 (1989), 79-81] results.

Keywords: paratopological group, symmetrizable spaces, regular G_{δ}-diagonal, weak bases, Arens space
Classification: Primary 54H13, 54H99

1. Introduction

Recently, paratopological groups have been studied by many topologists ([3], [4], [19]). It is natural to ask what results on topological groups are valid on paratopological groups. In this paper, by discussing copies of S_{ω} and of S_{2} on paratopological groups, we generalize some results from [14], [15] and [18]. We also discuss first-countable paratopological groups and prove that a first-countable paratopological group has a regular G_{δ}-diagonal, and give an affirmative answer to a question from [3].

Recall that a paratopological group is a group with a topology such that the multiplication is jointly continuous.

All spaces are regular T_{1} unless stated otherwise. \mathbb{N} denotes natural numbers and e denotes the neutral element of a group. We refer to [6] for notations and terminology not given explicitly.

2. Main results

A space X is said to have a regular G_{δ}-diagonal if the diagonal $\Delta=\{(x, x)$: $x \in X\}$ can be represented as the intersection of the closures of a countable family of open neighborhoods of Δ in $X \times X$. According to Zenor [21], a space X has a regular G_{δ}-diagonal if and only if there exists a sequence $\left\{\mathcal{G}_{n}: n \in \omega\right\}$ of open covers of X with the following property:
${ }^{(*)}$ For any two distinct points y and z in X, there are open neighborhoods O_{y} and O_{z} of y and z, respectively, and $k \in \omega$ such that no element of \mathcal{G}_{n} intersects both O_{x} and O_{y}.

In [3], Arhangel'skii and Burke proved that every Hausdorff first countable Abelian paratopological group G has a regular G_{δ}-diagonal. We sharpen the result by showing the following
Theorem 2.1. Let G be a Hausdorff first-countable paratopological group. Then G has a regular G_{δ}-diagonal.
Proof: Fix a countable base $\left\{V_{n}: n \in \mathbb{N}\right\}$ at the neutral element e in G with $V_{n+1}^{2} \subset V_{n}$. Let $x \in G$; then $x V_{n}, V_{n} x$ are open for $n \in \mathbb{N}$ since G is a paratopological group. For $x \in G, n \in \mathbb{N}$, let $W_{n}(x)=x V_{n} \cap V_{n} x$. Then $W_{n}(x)$ is a neighborhood of x. Let $\mathcal{G}_{n}=\left\{W_{n}(x): x \in G\right\}$ for $n \in \mathbb{N}$. Then $\left\{\mathcal{G}_{n}: n \in \mathbb{N}\right\}$ is a sequence of open coverings of G.

By Zenor's characterization of regular G_{δ}-diagonal, we only prove the following
Claim: For $y, z \in G, y \neq z$, there is $k \in \mathbb{N}$ such that no element of \mathcal{G}_{k} intersects both $y V_{k}$ and $z V_{k}$.

Suppose not; for any $n \in \mathbb{N}$, there is an element $W_{n}\left(x_{n}\right) \in \mathcal{G}_{n}$ such that $y V_{n} \cap W_{n}\left(x_{n}\right) \neq \emptyset$ and $W_{n}\left(x_{n}\right) \cap z V_{n} \neq \emptyset$. Then there are $a_{n}, b_{n}, c_{n}, d_{n}$ and f_{n} in V_{n} such that $y a_{n}=x_{n} b_{n}, x_{n} c_{n}=d_{n} x_{n}=z f_{n}, y a_{n}=d_{n}^{-1} d_{n} x_{n} b_{n}=d_{n}^{-1} z f_{n} b_{n}$. Since $a_{n} \rightarrow e$, we have $y a_{n} \rightarrow y$, hence $d_{n}^{-1} z f_{n} b_{n} \rightarrow y . d_{n} \rightarrow e$ since $d_{n} \in V_{n}, G$ is a paratopological group, then $d_{n} d_{n}^{-1} z f_{n} b_{n} \rightarrow e y=y$, hence $z f_{n} b_{n} \rightarrow y$. Notice that $f_{n}, b_{n} \in V_{n}$, thus $f_{n} b_{n} \rightarrow e$, hence $z d_{n} b_{n} \rightarrow z . G$ is Hausdorff, then $y=z$, this is a contradiction.

Therefore, G has a regular G_{δ}-diagonal.
A subset A of a space X is said to be bounded [3] in X if every infinite family ξ of open subsets of X such that $V \cap A \neq \emptyset$, for every $V \in \xi$, has an accumulation point X. If X is bounded in itself, then we say that X is pseudocompact.

Notice that a pseudocompact or bounded subset of a regular space X is metrizable if X has a regular G_{δ}-diagonal [3]. We have the following
Corollary 2.1. Let G be a regular first-countable paratopological group. Then every pseudocompact subspace of G is a metrizable compactum.

Corollary 2.2. Let G be a regular first-countable paratopological group. Then every bounded subspace of G is metrizable.

The above theorem and corollaries give an affirmative answer to Arhangel'skii and Burke's question [3, Problem 25].

A space X is an $w \Delta$-space [8] if there exists a sequence $\left(\mathcal{G}_{n}\right)$ of open covers of X such that if $x_{n} \in \operatorname{st}\left(x, \mathcal{G}_{n}\right)$ for each $n \in \mathbb{N}$, then the set $\left\{x_{n}: n \in \mathbb{N}\right\}$ has a cluster point in X.

Since a space X with a regular G_{δ}-diagonal has a G_{δ}^{*}-diagonal, by [8, Theorem 3.3], we have the following

Corollary 2.3. Let G be a first-countable paratopological group. Then G is a Moore space if G is an $w \Delta$-space.

A space X is quasi-developable [8] if there exists a sequence $\left(\mathcal{G}_{n}\right)$ of families of subsets of X such that for each $x \in X,\left\{\operatorname{st}\left(x, \mathcal{G}_{n}\right): n \in \mathbb{N}\right\}$ is a base at x. Recall that a topological space is said to be symmetrizable if its topology is generated by a symmetric, that is, by a distance function satisfying all the usual restrictions on a metric, except for the triangle inequality [1].

Theorem 2.2. Every symmetrizable paratopological group G is a Moore space.
Proof: We fix a symmetric d on the paratopologcial group G generating the topology on G. Since G is weakly first-countable [1], by a result of Nyikos [15], G is first-countable. Put $B(x, 1 / n)=\{y \in G: d(x, y)<1 / n\}$, and fix an open base $\left\{V_{n}: n \in \mathbb{N}\right\}$ at e with $V_{n} \subset \operatorname{int}(B(e, 1 / n))$ and $V_{n+1}^{2} \subset V_{n}$. Let $A_{i j}=\left\{x \in G: V_{i} x \subset \operatorname{int}(B(x, 1 / j))\right\}$ and $\mathcal{G}_{i j}=\left\{V_{i} x: x \in A_{i j}\right\}$ for $i, j \in \mathbb{N}$. Since $\left\{V_{i} x: i \in \mathbb{N}\right\}$ and $\{\operatorname{int}(B(x, 1 / j)): j \in \mathbb{N}\}$ are bases at $x, G=\bigcup\left\{A_{i j}: i, j \in \mathbb{N}\right\}$. We prove that $\left\{\operatorname{st}\left(x, \mathcal{G}_{i j}\right): i, j \in \mathbb{N}\right\}$ is a base at $x \in G$. Let U be an open subset of X with $x \in U$. There exists $k \in \mathbb{N}$ such that $x \in \operatorname{int}(B(x, 1 / k)) \subset U$ and pick $m, n \in \mathbb{N}$ such that $m<n, V_{n} x \subset V_{m} x \subset \operatorname{int}(B(x, 1 / k))$. We choose k^{\prime} such that $B\left(x, 1 / k^{\prime}\right) \subset V_{n} x$ since $\{B(x, 1 / i): i \in \mathbb{N}\}$ is a weak base at x. For $x \in V_{n} y \in \mathcal{G}_{n k^{\prime}}$, since $V_{n} y \subset B\left(y, 1 / k^{\prime}\right), d(x, y)=d(y, x)<1 / k^{\prime}$, hence $y \in B\left(x, 1 / k^{\prime}\right) \subset V_{n} x . \quad V_{n} y \subset V_{n} V_{n} x \subset V_{m} x \subset \operatorname{int}(B(x, 1 / k)) \subset U$, hence $x \in \operatorname{st}\left(x, \mathcal{G}_{n k^{\prime}}\right) \subset U$. Therefore G is quasi-developable.
G is symmetrizable and first-countable, hence G is semi-stratifiable [8, Theorem 9.8], thus every closed subset of G is a G_{δ}-set. Therefore G is a developable space [8, Theorem 8.6].

We cannot replace "symmetrizable" with "first-countable" in Theorem 2.2, Sorgenfrey line is a first-countable paratopological group but not a Moore space.

Let S_{κ} be the quotient space obtained by identifying all limit points of the topological sum of κ many convergent sequences. S_{ω} is called sequential fan. The Arens' space $S_{2}=\{\infty\} \cup\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{x_{n}(m): m, n \in \mathbb{N}\right\}$ is defined as follows: Each $x_{n}(m)$ is isolated; a basic neighborhood of x_{n} is $\left\{x_{n}\right\} \cup\left\{x_{n}(m): m>k\right.$, for some $k \in \mathbb{N}\}$; a basic neighborhood of ∞ is $\{\infty\} \cup\left(\bigcup\left\{V_{n}: n>k\right.\right.$ for some $k \in \mathbb{N}\}$), where V_{n} is a neighborhood of x_{n}.

In [14], it was proved that a topological group contains a (closed) copy of S_{ω} if and only if it contains a (closed) copy of S_{2}. We do not know if the result is still true for paratopological groups, but we have the following theorem by modifying Lemma 2.1 in [14].

Theorem 2.3. Let G be a paratopological group. Then G contains a (closed) copy of S_{ω} if G has a (closed) copy of S_{2}.

Proof: Let $A=\{e\} \cup\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{x_{n}(m): m, n \in \mathbb{N}\right\}$ be a closed copy of S_{2}, where e is the neutral element of G. For $n, m \in \mathbb{N}$, let $y_{n}(m)=x_{n}^{-1} x_{n}(m)$. Then $y_{n}(m) \rightarrow e$ as $m \rightarrow \infty$ for $n \in \mathbb{N}$. For each n, let $S_{n}=\left\{y_{n}(m): m \in\right.$ $\mathbb{N}\}$. Then $F=\left\{n: S_{m} \cap S_{n}\right.$ is infinite $\}$ is finite (otherwise, pick distinct $x_{n_{i}}^{-1} x_{n_{i}}\left(m_{i}\right) \in S_{m} \cap S_{n_{i}}$ for $n_{i} \in F$ with $n_{i}<n_{i+1}, x_{n_{i}}^{-1} x_{n_{i}}\left(m_{i}\right) \rightarrow e, x_{n_{i}} \rightarrow e$, hence $x_{n_{i}}\left(m_{i}\right) \rightarrow e$, a contradiction). Without loss of generality, we assume $S_{i} \cap S_{j}=\emptyset$ if $i \neq j$. Let $B=\{e\} \cup\left\{y_{n}(m): n, m \in \mathbb{N}\right\}$.

Claim: B is a closed copy of S_{ω}.
Suppose B is not closed. Then there is $x \in X \backslash B$ with $x \in \bar{B}$. Since A is closed, there exists an open neighborhood V of the neutral element e such that $V x$ meets $\left\{x_{n}(m): m \in \mathbb{N}\right\}$ for at most one n. Let U be open neighborhood of e with $U^{2} \subset V ; U x$ contains an infinite subset $\left\{y_{n_{i}}\left(m_{i}\right): i \in \mathbb{N}\right\}$ of B. Since $x_{n} \rightarrow e$, without loss of generality, $\left\{x_{n_{i}}: i \in \mathbb{N}\right\} \subset U .\left\{x_{n_{i}} y_{n_{i}}\left(m_{i}\right): i \in \mathbb{N}\right\} \subset U U x \subset V x$, it means $\left\{x_{n_{i}}\left(m_{i}\right): i \in \mathbb{N}\right\} \subset V x$, a contradiction.

If $f: \omega \rightarrow \omega$, then $C=\bigcup\left\{y_{n}(m): m \leq f(n), n \in \mathbb{N}\right\}$ does not have a cluster point. Otherwise, there exists $x \in \overline{C \backslash\{x\}}$. Let V be an open neighborhood V of the neutral element e such that $V x$ meets $\left|V x \cap\left\{x_{n}(m): m \leq f(n), n \in \mathbb{N}\right\}\right| \leq 1$. Let U be open neighborhood of e with $U^{2} \subset V, U x$ contains an infinite subset $\left\{y_{n_{i}}\left(m_{i}\right): i \in \mathbb{N}\right\} \subset C$, hence $x_{n_{i}}\left(m_{i}\right)=x_{n_{i}} y_{n_{i}}\left(m_{i}\right) \in U U x \subset V x$ for each $i \in \mathbb{N}$, which is a contradiction. Hence B is a copy of S_{ω}.

Nogura, Shakhmatov and Tanaka proved the following corollary as G is a topological group [14]. By Theorem 2.3, we can see the following corollary is still true for a paratopological group G.

Note that a sequential space is an A-space ${ }^{1}$ if and only if it contains no closed copy of $S_{\omega}[20]$. By Theorem 2.3, a paratopological group contains no closed copy of S_{2} if it is an A-space. A sequential space that each point is a G_{δ}-set or is hereditarily normal is strongly Fréchet if it contains no closed copy of S_{ω} and S_{2} [20, Theorem 3.1]. A strongly Fréchet space is an α_{4}-space ${ }^{2}$ [2, Theorem 5.26].

Corollary 2.4. Suppose that G is a sequential paratopological group such that either (a) $e \in G$ is a G_{δ}-set, or (b) G is hereditarily normal. Then the following

[^0]are equivalent:
(1) G is an α_{4}-space;
(2) G is an A-space, and
(3) G is strongly Fréchet.

A paratopological group G is said to have the property (${ }^{* *}$), if there exists a sequence $\left\{x_{n}: n \in \mathbb{N}\right\} \subset G$ such that $x_{n} \rightarrow e$ and $x_{n}^{-1} \rightarrow e$. Obviously, every topological group has the property $\left({ }^{* *}\right)$. Not every paratopological group has the property $\left({ }^{(* *}\right)$, for instance, Sorgenfrey line \mathbb{S} does not have the property $\left({ }^{* *}\right)$. A paratopological group having the property $\left({ }^{* *}\right)$ need not be a topological group: for instance, if $(\mathbb{R},+)$ is the real line with the usual topology, then $\mathbb{S} \times \mathbb{R}$ is a paratopological group having the property (${ }^{* *}$) but not a topological group.

Theorem 2.4. Let G be a paratopological group having the property (${ }^{* *}$). Then G has a (closed) copy of S_{2} if it has a (closed) copy of S_{ω}.

Proof: Let $A=\{e\} \cup\left\{y_{n}(m): m, n \in \mathbb{N}\right\}$ be a closed copy of S_{ω}, for each $n, y_{n}(m) \rightarrow e$ as $m \rightarrow \infty$. Since G has the property $\left({ }^{* *}\right)$, there is a sequence $\left\{x_{n}: n \in \mathbb{N}\right\}$ such that $x_{n} \rightarrow e$ and $x_{n}^{-1} \rightarrow e$. Let U_{n} be an open neighborhood of x_{n} for each n with $\overline{U_{i}} \cap \overline{U_{j}}=\emptyset$ if $i \neq j$. Let $x_{n}(m)=x_{n} y_{n}(m)$ for $n, m \in \mathbb{N}$. For any $n \in \mathbb{N}$, we have $x_{n}(m) \rightarrow x_{n}$ as $m \rightarrow \infty$. Without loss of generality, we assume $\left\{x_{n}(m): m \in \mathbb{N}\right\} \subset U_{n}$. Let $B=\{e\} \cup\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{x_{n}(m): n, m \in \mathbb{N}\right\}$.

Claim: B is a closed copy of S_{2}.
Suppose B is not closed. Then there exists $x \notin B, e \neq x \in \overline{B \backslash\{x\}}$. Since A is closed, there is a neighborhood of e such that $V x \cap(A \backslash\{x\})=\emptyset$. Let U be a neighborhood of e with $U^{2} \subset V$ and $U x$ contains at most one x_{n}. $U x$ contains infinitely many elements of B, since U contains infinitely many x_{n}^{-1} 's, $U U x$ contains infinitely many $y_{n}(m)$. Hence $V x$ contains infinitely many elements of A, this is a contradiction.

If $f: \omega \rightarrow \omega$, similarly as in the proof of Theorem $2.3,\left\{x_{n}(m): n \geq k\right.$ for some $k, m \leq f(n)\}$ is closed. Hence B is a closed copy of S_{2}.

Note that a Fréchet-Urysohn space contains no closed copy of S_{2}, then a Fréchet-Urysohn paratopological group having the property (${ }^{* *)}$ contains no closed copy of S_{ω} by Theorem 2.4, hence it is a strongly Fréchet space [20] (or countably bisequential space [13]), therefore it is an α_{4}-space [2, Theorem 5.23].

Corollary 2.5. Let G be a paratopological group with the property (**). If G is a Fréchet-Urysohn space, then G is a α_{4}-space.

Corollary 2.5 gives a partial answer to Nyikos' question [15, Problem 3]: "Is a Fréchet-Urysohn paratopological group an α_{4}-space?".

Question 2.1. Can we omit the property (${ }^{* *}$) in Theorem 2.4 or in Corollary 2.5?

A space X is called weakly quasi-first countable or \aleph_{0}-weakly first-countable ([17], [18]) if for each $i \in \mathbb{N}$, there exists a mapping $B^{i}: \mathbb{N} \times X \rightarrow \mathcal{P}(X)$, where $\mathcal{P}(X)$ denotes the power set of X, such that the following (1) and (2) hold:
(1) for $i \in \mathbb{N}$, for each $n \in \mathbb{N}$ and $x \in X, B^{i}(n+1, x) \subset B^{i}(n, x)$, and $\{x\}=\bigcap\left\{B^{i}(n, x): n \in \mathbb{N}\right\} ;$ and
(2) a subset V of X is open if and only if for each $y \in V$ and for each $i \in \mathbb{N}$ there exists $n(i)$ with $B^{i}(n(i), y) \subset V$.
If $B^{i}=B$ for $i \in \mathbb{N}$, then X is called weakly first countable or g-first countable. Obviously, a weakly first countable space is weakly quasi-first countable.
Corollary 2.6. Let G be a Fréchet-Urysohn paratopological group with the property $\left({ }^{* *}\right)$. If G is \aleph_{0}-weakly first-countable, then G is first-countable.
Proof: By Corollary 2.5, G is an α_{4}-space, hence G is weakly first-countable [10], thus G is first-countable [15, Theorem 2].

By Corollary 2.5, we have the following:
Corollary 2.7 ([18]). A Fréchet-Urysohn, \aleph_{0}-weakly first-countable topological group is metrizable.

Next, we discuss when we cannot embed a copy of $S_{\omega_{1}}$ to some paratopological group.

A family $\left\{B_{\alpha}: \alpha \in I\right\}$ of subsets of a space X is hereditarily closure-preserving (weakly hereditarily closure-preserving [5]) (simply, HCP (wHCP)) if

$$
\bigcup\left\{\overline{C_{\alpha}}: \alpha \in J\right\}=\overline{\left(\bigcup\left\{C_{\alpha}: \alpha \in J\right\}\right)}\left(\left\{x_{\alpha}: \alpha \in J\right\} \text { is closed discrete }\right)
$$

whenever $J \subset I$ and $C_{\alpha} \subset B_{\alpha}\left(x_{\alpha} \in B_{\alpha}\right)$ for each $\alpha \in J$. Obviously, a HCP family is wHCP. Spaces with a σ-wHCP weak base (base) were discussed in [11], [12]. Let \mathcal{P} be a cover of a space X. Then \mathcal{P} is a k-network for X if whenever $K \subset U$ with K compact and U open in $X, K \subset \bigcup \mathcal{P}^{\prime} \subset U$ for some finite $\mathcal{P}^{\prime} \subset \mathcal{P}$. A knetwork is a network. A space with a σ-locally finite k-network is an \aleph-space [16]. $S_{\omega_{1}}$ is a closed image of a metric space, hence it has a σ-HCP closed k-network [7] but it is not an \aleph-space [9].
Theorem 2.5. Let G be a paratopological topological group with the property $\left({ }^{* *}\right)$. If G has a σ-wHCP closed k-network, then G contains no closed copy of $S_{\omega_{1}}$.
Proof: Suppose G contains a closed copy of $S_{\omega_{1}}=\{e\} \cup\left\{x_{n}(\alpha): \alpha<\omega_{1}, n \in \mathbb{N}\right\}$, where e is the neutral element of G and $x_{n}(\alpha) \rightarrow e$ as $n \rightarrow \infty$. Since G has the property $\left({ }^{* *}\right)$, there exists a sequence $\left\{x_{n}: n \in \mathbb{N}\right\} \subset G$ such that $x_{n} \rightarrow e$, $x_{n}^{-1} \rightarrow e . G$ is regular, we take open subsets U_{n} of G such that $x_{n} \in U_{n}$, $\overline{U_{n}} \cap \overline{U_{m}}=\emptyset(n \neq m)$ and $\overline{U_{n}} \cap\left\{x_{n}: n \in \mathbb{N}\right\}=\left\{x_{n}\right\}$. For each $m \in \mathbb{N}$, $x_{m} x_{n}(\alpha) \rightarrow x_{m}(n \rightarrow \infty),\left\{x_{m} x_{n}(\alpha): n \in \mathbb{N}\right\}$ is eventually in U_{m} for $\alpha<\omega_{1}$. Without loss of generality, we assume $\left\{x_{m} x_{n}(\alpha): n \in \mathbb{N}\right\} \subset U_{m}$.

Claim: $B=\left\{x_{n(\alpha)} x_{m(\alpha)}(\alpha): \alpha<\omega_{1}\right\}$ is a discrete subset of G for $n(\alpha)$, $m(\alpha) \in \mathbb{N}$.

Case 1: $\left\{n(\alpha): \alpha<\omega_{1}\right\}$ is finite.
We rewrite $\left\{n(\alpha): \alpha<\omega_{1}\right\}=\left\{r_{1}, \ldots r_{k}\right\}$. Since $\left\{x_{g(\alpha)}(\alpha): \alpha<\omega_{1}\right\}$ is discrete for every $g: \omega_{1} \rightarrow \mathbb{N}$, then $\left\{x_{r_{i}} x_{g(\alpha)}(\alpha): \alpha<\omega_{1}\right\}$ is discrete for each $i \leq k$, hence B is discrete.

Case 2: $\left\{n(\alpha): \alpha<\omega_{1}\right\}$ is infinite.
Suppose B is not discrete and let x be the cluster point of B. For every $g: \omega_{1} \rightarrow \mathbb{N}$, there exists an open neighborhood V of e such that $\mid V x \cap\left\{x_{g(\alpha)}(\alpha)\right.$: $\left.\alpha<\omega_{1}\right\} \mid \leq 1$. Let U be an open neighborhood of e with $U^{2} \subset V$. Then $C=U x \cap\left\{x_{n(\alpha)} x_{m(\alpha)}(\alpha): \alpha<\omega_{1}\right\} \neq \emptyset$ for infinitely many $n(\alpha)$. Since $x_{n}^{-1} \rightarrow$ $e,\left\{x_{n}: n \in \mathbb{N}\right\}$ is eventually in $U,\left\{x_{n}^{-1}: n \geq k\right\} C \subset U U x \subset V x$. Then $\left|V x \cap\left\{x_{g(\alpha)}(\alpha): \alpha<\omega_{1}\right\}\right| \geq \omega$, a contradiction.

For $\alpha<\omega_{1}$, let $C_{\alpha}=\{e\} \cup\left\{x_{n}: n \in \mathbb{N}\right\} \cup\left\{x_{n} x_{i}(\alpha): n \in \mathbb{N}, i \geq f_{n}(\alpha)\right\}$. Note that $x_{n} x_{j_{n}}(\alpha) \rightarrow e(n \rightarrow \infty)$, where $j_{m} \geq f_{m}(\alpha)$. Since every infinite subset of C_{α} has a cluster point in it, C_{α} is a countably compact. Since every countably compact space with a σ-wHCP network has a countable network [12, Proposition 6], C_{α} is compact [11].

Let $\mathcal{P}=\bigcup\left\{\mathcal{P}_{n}: n \in \mathbb{N}\right\}$ be a σ-wHCP k-network consisting of closed subsets. Then there is a finite $\mathcal{P}^{\prime} \subset \mathcal{P}$ such that $C_{0} \subset \bigcup \mathcal{P}^{\prime}$. Pick $P_{0} \in \mathcal{P}^{\prime}$ so that P_{0} contains $k_{0}=x_{n(0)} x_{m(0)}(0)$ and infinitely many x_{n} 's. We assume that for each $\alpha<\beta$, there exists $P_{\alpha} \in \mathcal{P}$ such that P_{α} contains infinitely many x_{n} 's and a point $k_{\alpha}=x_{n(\alpha)} x_{m(\alpha)}(\alpha)$. We have $C_{\beta} \subset G \backslash\left\{k_{\alpha}: \alpha<\beta\right\}$, which is open in G by the Claim. There is a finite $\mathcal{P}^{\prime \prime} \subset \mathcal{P}$ such that $C_{\beta} \subset \bigcup \mathcal{P}^{\prime \prime} \subset G \backslash\left\{k_{\alpha}: \alpha<\beta\right\}$, pick $P_{\beta} \in \mathcal{P}^{\prime \prime}$ so that P_{β} contains infinitely many x_{n} and $k_{\beta}=x_{n(\beta)} x_{m(\beta)}(\beta)$. By induction, we obtain $\left\{P_{\alpha}: \alpha<\omega_{1}\right\} \subset \mathcal{P}$ such that $P_{\alpha} \neq P_{\beta}$ if $\alpha \neq \beta$ and each P_{α} contains infinitely many x_{n} 's, hence there are uncountably many $P_{\alpha} \in \mathcal{P}_{n}$ for some $n \in \mathbb{N}$. Note that \mathcal{P}_{n} is wHCP and there is a subsequence L of $\left\{x_{n}: n \in \mathbb{N}\right\}$ such that L is discrete, which is a contradiction.

References

[1] Arhangel'skiǐ A.V., Mappings and spaces, Russian Math. Surveys 21 (1966), 115-162.
[2] Arhangel'skii A.V., The frequency spectrum of a topological space and the product operation, Trans. Moscow Math. Soc. 2 (1981), 163-200.
[3] Arhangel'skii A.V., Burke D., Spaces with a regular G_{δ}-diagonal, Topology Appl. 153 (2006), 1917-1929.
[4] Arhangel'skii A.V., Reznichenko E.A., Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005), 107-119.
[5] Burke D., Engelking R., Lutzer D., Hereditarily closure-preserving collections and metrization, Proc. Amer. Math. Soc. 51 (1975), 483-488.
[6] Engelking R., General Topology, PWN, Warszawa, 1977.
[7] Foged L., A characterization of closed images of metric spaces, Proc. Amer. Math. Soc. 95 (1985), 487-490.
[8] Gruenhage G., Generalized metric spaces, in: K. Kunen, J.E. Vaughan eds., Handbook of Set-theoretic Topology, North-Holland, 1984, pp. 423-501.
[9] Gruenhage G., Michael E., Tanaka Y., Spaces determined by point-countable covers, Pacific J. Math. 113 (1984), 303-332.
[10] Liu C., On weakly bisequential spaces, Comment Math. Univ. Carolin. 41 (2000), no. 3, 611-617.
[11] Liu C., Notes on g-metrizable spaces, Topology Proc. 29 (2005), no. 1, 207-215.
[12] Liu C., Nagata-Smirnov revisited: spaces with $\sigma-w H C P$ bases, Topology Proc. 29 (2005), no. 2, 559-565.
[13] Michael E., A quintuple quotient quest, General Topology Appl. 2 (1972), 91-138.
[14] Nogura T., Shakhmatov D., Tanaka Y., α_{4}-property versus A-property in topological spaces and groups, Studia Sci. Math. Hungar. 33 (1997), 351-362.
[15] Nyikos P., Metrizability and the Fréchet-Urysohn property in topological groups, Proc. Amer. Math. Soc. 83 (1981), no. 4, 793-801.
[16] O'Meara P., On paracompactness in function spaces with the compact open topology, Proc. Amer. Math. Soc. 29 (1971), 183-189.
[17] Sirois-Dumais R., Quasi- and weakly-quasi-first-countable space, Topology Appl. 11 (1980), 223-230.
[18] Svetlichnyi S.A., Intersection of topologies and metrizability in topological groups, Vestnik Moskov. Univ. Ser I Mat. Mekh. 4 (1989), 79-81.
[19] Reznichenko E.A., Extensions of functions defined on products of pseudocompact spaces and continuity of the inverse in pseudocompact groups, Topology Appl. 59 (1994), 233-244.
[20] Tanaka Y., Metrizability of certain quotient spaces, Fund. Math. 119 (1983), 157-168.
[21] Zenor P., On spaces with regular G_{δ}-diagonals, Pacific J. Math. 40 (1972), 759-763.
Department of Mathematics, Ohio University-Zanesville Campus, Zanesville, OH 43701, USA

[^0]: ${ }^{1}$ A space X is an A-space if, whenever $\left\{A_{n}: n \in \mathbb{N}\right\}$ is a decreasing sequence of subsets of X, and $x \in X$ is a point with $x \in \bigcap\left\{\overline{A_{n} \backslash\{x\}}: n \in \mathbb{N}\right\}$, then for every $n \in \mathbb{N}$ one can find a (possibly empty) set $B_{n} \subset A_{n}$ such that $\bigcup\left\{\overline{B_{n}}: n \in \mathbb{N}\right\}$ is not closed in X.
 ${ }^{2}$ A countable collection $\left\{S_{n}: n \in \mathbb{N}\right\}$ of convergent sequences in a space X is called a sheaf (with a vertex x) if each sequence S_{n} converges to the same point $x \in X$. A space is called α_{4}-space, if for every point $x \in X$ and each sheaf $\left\{S_{n}: n \in \mathbb{N}\right\}$ with the vertex x, there exists a sequence converging to x which meets infinitely many sequences S_{n}.

