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Regularity for entropy solutions of a class

of parabolic equations with irregular data

Fengquan Li

Abstract. Using as a main tool the time-regularizing convolution operator introduced
by R. Landes, we obtain regularity results for entropy solutions of a class of parabolic
equations with irregular data. The results are obtained in a very general setting and
include known previous results.
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1. Introduction and statement of the results

In this paper, we study the following class of nonlinear parabolic equations

(P)











∂u
∂t − div(a(x, t, u,Du)) = f in Q,

u = 0 on Σ,

u(x, 0) = u0 in Ω,

where Ω is a bounded open subset of RN (N ≥ 2) and T > 0, Q = Ω× (0, T ), Σ
denotes the lateral surface ofQ, f ∈ L1(Q), u0 ∈ L1(Ω). The function a(x, t, s, ξ) :

Q×R×RN → RN is a Carathéodory function satisfying for almost every (x, t) ∈

Q and every (s, ξ) ∈ RN+1, ξ ∈ RN , ξ′ ∈ RN , ξ 6= ξ′,

a(x, t, s, ξ)ξ ≥ b(|s|)|ξ|p,(1.1)

|a(x, t, s, ξ)| ≤ β(η(x, t) + b(|s|)|ξ|p−1),(1.2)

[a(x, t, s, ξ)) − a(x, t, s, ξ′)][ξ − ξ′] > 0,(1.3)

where β is a positive constant, p > 1, η is a nonnegative function and belongs to

Lp′(Q), p′ = p
p−1 , b : [0,+∞)→ (0,+∞) is a continuous function such that

(1.4) b(|s|) ≥ α > 0,

Project supported by NSFC (No:10401009).



70 Fengquan Li

where α is a positive constant.
The simplest model, in the case p = 2, of a(x, t, s, ξ) is a(x, t, s, ξ) = (1+ |s|)mξ

with m ≥ 0.
Recently the concept of entropy solutions to elliptic equations and parabolic

equations was introduced in [1] and [2], respectively. The existence of entropy
solutions to problem (P) was obtained in [3].
Let Tk(s) = min{k,max{−k, s}}, Sk(s) =

∫ s
0 Tk(τ) dτ denote its primitive

function for every s ∈ R and k > 0.

Definition 1.1. A measurable function u ∈ L∞(0, T ;L1(Ω)) will be called an

entropy solution of problem (P) if Tk(u) ∈ Lp(0, T ;W 1,p0 (Ω)), Sk(u(·, t)) ∈ L1(Ω),
∀ k > 0, ∀ t ∈ [0, T ], and u satisfies

(1.5)

∫

Ω
Sk(u(T )− φ(T )) dx+

∫ T

0
〈φt, Tk(u− φ)〉 dt

+

∫

Q
a(x, t, u,Du)DTk(u − φ) dx dt

≤

∫

Ω
Sk(u0 − φ(0)) dx +

∫

Q
fTk(u− φ) dx dt,

∀ k > 0, ∀φ ∈ Lp(0, T ;W 1,p0 (Ω)) ∩ L
∞(Q) such that φt ∈ Lp′(0, T ;W−1,p′(Ω)) +

L1(Q).

Definition 1.2 (see [5], [10], [14]). For 0 < q < +∞, the set of all measurable
functions u : Q → R such that the functional [u]q = supk>0 kmeas{(x, t) ∈

Q : |u(x, t)| > k}
1
q is finite, is called the Marcinkiewicz space and is denoted

byMq(Q).

One can deduce that Mq(Q) ⊂ Mr(Q) for r < q. The connection between
Marcinkiewicz and Lebesgue spaces is as follows: Lq(Q) ⊂ Mq(Q) ⊂ Lr(Q) for
r < q (see [5], [14]). The Marcinkiewicz spaces are also known as weak-Lebesgue
spaces. When q > 1, the Marcinkiewicz space Mq(Q) is a Banach space with

the norm defined by ‖u‖q = supt>0 t
1−q

q
∫ t
0 u

∗(τ)dτ , where u∗(τ) = inf{k > 0 :
meas{|u| > k} ≤ τ} defines the non-increasing rearrangement of u (see [14]).
Considering the growth of a(x, t, s, ξ) with respect to s, not only it can be

proved the existence of entropy solution u, but also that a fast growth of a(x, t, s, ξ)
as s goes to infinity improves the regularity of u. What is most remarkable is that
the growth of b(|s|) at infinity affects also the summability of Du. Regularity
results in a similar context to elliptic equations can be found in [4].
Now we state the main results of this paper.

Theorem 1.1. Assume (1.1) and (1.4), and let f ∈ L1(Q), u0 ∈ L1(Ω). Assume
moreover that there exist positive constants γ and s0,m ≥ 0 such that

(1.6) b(|s|) ≥ γ|s|m, ∀ s : |s| ≥ s0.
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Let u be an entropy solution to problem (P). Then we have

(i) if m > 1, then u ∈ Lp(0, T ;W 1,p0 (Ω)) ∩ L
r(Q), r = N+1

N p;

(ii) if 0 ≤ m < 1, then u ∈ Mr(Q), r =
(N+1)p−N

N + m, |Du| ∈ Mq(Q),

q = p−
N(1−m)

N+1 ;

(iii) if m = 1, then u ∈ Lq(0, T ;W 1,q0 (Ω)) ∩ L
r(Q), 1 ≤ q < p, r <

(N+1)p
N ;

whereMr(Q),Mq(Q) are the Marcinkiewicz spaces.

Theorem 1.2. Assume (1.1), (1.4) and (1.6), and let f ∈ Ld(Q), 1 < d <
(N+2)p
(N+2)p−N

, u0 = 0. Let u be an entropy solution to problem (P) and u ∈

L∞(0, T ;L
(2−p−d+dp)N

N+p−pd (Ω)). Then we have

(i) if m ≥ 1 −
(N+2−d)p
(N+p−pd)d′

, d′ = d
d−1 , then u ∈ Lp(0, T ;W

1,p
0 (Ω)) ∩ L

r(Q),

r =
(N+2−d)p
N+p−pd ;

(ii) if 0 ≤ m < 1−
(N+2−d)p
(N+p−pd)d′

and one of the following conditions is satisfied:

(1) p ≥ 2− 1
N+1 ,

(2) 1 < p < 2− 1
N+1 but

N+2
(N+1)p−(N−1)

≤ d,

then u ∈ Lq(0, T ;W
1,q
0 (Ω)) ∩ L

r(Q) with q = d[p− N+p−pd
N+2−d (1 −m)] and

r = d[
p(N+2−d)
N+p−pd − 1 +m].

Theorem 1.3. Assume (1.1), (1.4) and (1.6), and let u0 ∈ Ld(Ω), 1 < d < 2,

f = 0. Let u be an entropy solution to problem (P) and u ∈ L∞(0, T ;Ld(Ω)).
Then we have

(i) if m ≥ 2− d, then u ∈ Lp(0, T ;W
1,p
0 (Ω)) ∩ L

r(Q), r = N+d
N p;

(ii) if 0 ≤ m < 2− d and one of the following conditions is satisfied:

(1) p ≥ 2− 1
N+1 ,

(2) 1 < p < 2− 1
N+1 but

N(3−p)
N+p−1 ≤ d,

then u ∈ Lq(0, T ;W 1,q0 (Ω)) ∩ L
r(Q) with q = p − N

N+d(2 −m − d) and

r = N+d
N p− 2 +m+ d.

Remark 1.1. Theorems 1.1–1.3 show that not only the right term f and initial
value u0 can affect the regularity of entropy solution u, but also the growth of
b(|s|) at infinity affects the regularity.

Remark 1.2. The exponents q, r of Theorem 1.1 in the case of m = 0 are the
same as that of [7]. This theorem extends Theorem 3.6 in [7] to the general setting.
Moreover two cases of 0 ≤ m < 1 and m = 1 are studied in the framework of
Marcinkiewicz and Sobolev space in this paper.
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Remark 1.3. In Theorem 1.2, if d tends to 1 then
(2−p−d+dp)N

N+p−pd tends to 1,

q, r tend to p−
N(1−m)

N+1 and
(N+1)p−N

N +m, respectively, which are the bounds
for q, r obtained in Theorem 1.1. The existence and regularity of solutions to
problem (P) was studied in [6] in the case of m = 0 and p ≥ 2. We point out

that our result was obtained for every p ≥ 2 − 1
N+1 and 1 < p < 2 − 1

N+1 (with
N+2

(N+1)p−(N−1)
≤ d) in the case of m = 0. From the viewpoint of regularity,

Theorem 1.2 improves Theorem 1.9 of [6].

Remark 1.4. The same problem as that of Theorem 1.3 was discussed in [8] and

[9] for the case of m = 0. However the condition of p > 2 − 1
N+1 was assumed

in [8]. Though Segura de León (see [9]) got the regularity of entropy solution in
the framework of Marcinkiewicz space without the restriction of p, his result is
not optimal because the same exponents of Sobolev space as that of Theorem 1.3
and [8] cannot be deduced from Segura de León’s results even in the case of

p > 2− 1
N+1 .

Remark 1.5. In Theorem 1.2 and Theorem 1.3, we need to assume entropy

solution u ∈ L∞(0, T ;L(2−p−d+dp)N/(N+p−pd)(Ω)) and u ∈ L∞(0, T ;Ld(Ω)),
respectively. In fact, the existence of at least an entropy solution having this
properties can be obtained by using the same method as that of [6]. However, we
mainly study the regularity, not the existence, of entropy solution to problem (P)
in this paper.

2. The proof of Theorems 1.1–1.3

In order to prove the main results of this paper, we need the following lemmas.

Lemma 2.1. If f ∈ L1(Q), u0 ∈ L1(Ω), and u is an entropy solution to prob-
lem (P), then

(2.1)

∫

{h≤|u|<h+k}
b(|u|)|Du|p dx dt

≤ k(

∫

{|u|≥h}
|f | dx dt+

∫

{|u0|≥h}
|u0| dx), ∀ k, h > 0.

Proof: To prove Lemma 2.1, we need to introduce a time-regularizing convolu-
tion operator as it is done in [12], [3], [6] and [8]. More precisely, let T̃h(u) be
zero extension of Th(u) outside (0, T ). Then we define

(2.2) (Th(u))ν(x, t) =

∫ t

−∞
νT̃h(u)e

ν(s−t) ds.
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The property of (Th(u))ν can be seen in [12] and [3]. Let us take a sequence
{ψn} ⊂ C∞

0 (Ω) such that ψn converges to u0 in L
1(Ω) and consider the function

φn,ν(x, t) = (Th(u))ν + e
−νtTh(ψn). Taking φ = φn,ν in (1.5), we get

(2.3)

∫

Ω
Sk(u(T )− φn,ν(T )) dx+

∫ T

0
〈(φn,ν)t, Tk(u− φn,ν)〉 dt

+

∫

Q
a(x, t, u,Du)DTk(u− φn,ν) dx dt

≤

∫

Ω
Sk(u0 − Th(ψn)) dx +

∫

Q
fTk(u − φn,ν) dx dt.

Note that |φn,ν | ≤ h and (φn,ν)t = ν(Th(u)− φn,ν). Therefore we have

(2.4)

∫ T

0
< (φn,ν)t, Tk(u− φn,ν) > dt

=

∫

Q
ν(Th(u)− φn,ν)Tk(u− φn,ν) dx dt

=

∫

{|u|≤h}
ν(u− φn,ν)Th(u− φn,ν) dx dt

+

∫

{u>h}
ν(h− φn,ν)Tk(u− φn,ν) dx dt

+

∫

{u<−h}
ν(−h− φn,ν)Tk(u − φn,ν) dx dt ≥ 0, ∀n, ν.

Since Sk(s) ≥ 0, ∀ s ∈ R, (2.3) implies that

(2.5)

∫

Q
a(x, t, u,Du)DTk(u− (Th(u))ν − e−νtTh(ψn)) dx dt

≤

∫

Q
fTk(u − (Th(u))ν − e−νtTh(ψn)) dx dt +

∫

Ω
Sk(u0 − Th(ψn)) dx.

Since DTk(u − φn,ν) = 0 where |u| > h + k, the first integral in (2.5) can be
rewritten in the following way:

(2.6)

∫

Q
a(x, t, Th+k(u), DTh+k(u))DTk(u− (Th(u))ν − e−νtTh(ψn)) dx dt.

It is easy to see that, as ν goes to infinity, we have

(2.7) DTk(u− (Th(u))ν − e
−νtTh(ψn)) −→ DTk(u−Th(u)) strongly in Lp(Q).
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Let ν tend to infinity in (2.5). We get

(2.8)

∫

Q
a(x, t, Th+k(u), DTh+k(u))DTk(u− Th(u)) dx dt

≤

∫

Q
fTk(u− Th(u)) dx dt+

∫

Ω
Sk(u0 − Th(ψn)) dx.

Finally we pass to the limit in (2.8) as n tends to infinity, obtaining

(2.9)

∫

Q
a(x, t, Th+k(u), DTh+k(u))DTk(u− Th(u)) dx dt

≤

∫

Q
fTk(u− Th(u)) dx dt+

∫

Ω
Sk(u0 − Th(u0)) dx.

The above inequality can be rewritten in the following way

(2.10)

∫

Q
a(x, t, u,Du)DTk(u − Th(u)) dx dt

≤ k[

∫

{|u|≥h}
|f | dx dt+

∫

{|u0|≥h}
|u0| dx].

From (1.1) and (2.10), we can get (2.1). Thus we complete the proof of Lemma 2.1.
�

We also need the following embedding theorem.

Lemma 2.2 (see [13, Proposition 3.1]). If v ∈Ll(0, T ;W 1,l0 (Ω))∩L
∞(0, T ;Lρ(Ω))

with l ≥ 1, ρ ≥ 1, then there exists a constant C depending only on N , l, ρ such
that

(2.11)

∫

Q
|v|r dx dt ≤ C‖v‖

ρl/N
L∞(0,T ;Lρ(Ω))

∫

Q
|Dv|l dx dt,

where r =
(N+ρ)l

N .

Lemma 2.3. Let u be an entropy solution to problem (P). Then for any fixed
0 < τ < 1 and large enough l > 1, we have

(2.12)

l
∑

k=1

∫

{|u|≥k}
|f |k−τ dx dt ≤

1

1− τ

∫

Q
|f | |Tl(u)|

1−τ dx dt.
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Proof: Let Bh = {(x, t) ∈ Q : h ≤ |u(x, t)| < h+1}. It follows from the formula
of Abel’s summation that

l
∑

k=1

∫

{|u|≥k}
|f |k−τ dx dt

=

l
∑

k=1

∞
∑

h=k

∫

Bh

|f |k−τ dx dt

=

∫

{|u|≥l}
|f |

l
∑

k=1

k−τ dx dt+

l−1
∑

k=1

∫

Bk

|f |

k
∑

h=1

h−τ dx dt

≤
1

1− τ

∫

{|u|≥l}
|f |l1−τ dx dt+

1

1− τ

l−1
∑

k=1

∫

Bk

|f |k1−τ dx dt

=
1

1− τ

∫

{|u|≥l}
|f | |Tl(u)|

1−τ dx dt+
1

1− τ

l−1
∑

k=1

∫

Bk

|f | |Tk(u)|
1−τ dx dt

≤
1

1− τ

∫

{|u|≥l}
|f | |Tl(u)|

1−τ dx dt+
1

1− τ

l−1
∑

k=1

∫

Bk

|f | |Tl(u)|
1−τ dx dt

=
1

1− τ

∫

{|u|≥1}
|f | |Tl(u)|

1−τ dx dt

≤
1

1− τ

∫

Q
|f | |Tl(u)|

1−τ dx dt.

Thus the proof of Lemma 2.3 is complete. �

Remark 2.1. Similarly to the proof of Lemma 2.3, we can obtain

∞
∑

k=1

∫

{|u0|≥k}
|u0|k

d−2 dx ≤
1

d− 1

∫

Ω
|u0|

d dx,

where 1 < d < 2.

Proof of Theorem 1.1:

Proof of (i): For any given k ≥ 1, replacing h and k with k and 1 in Lemma 2.1
respectively, we get

(2.13)

∫

{k≤|u|<k+1}
b(|u|)|Du|p dx dt ≤

∫

{|u|≥k}
|f | dx dt+

∫

{|u0|≥k}
|u0| dx.

Inequality (1.6) implies that

(2.14) γkm
∫

Bk

|Du|p dx dt ≤ ‖f‖L1(Q) + ‖u0‖L1(Ω). ∀ k ≥ s0.
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Thus we get

(2.15)

∫

Bk

|Du|p dx dt ≤
C1
km ,

where C1 =
1
γ (‖f‖L1(Q) + ‖u0‖L1(Ω)). Let k0 = [s0] + 1, where [s0] denotes the

maximal integer not beyond s0. Since m > 1, we get

(2.16)

∫

Q
|Du|p dx dt ≤

∫

Q
|DTk0(u)|

p dx dt+
∞
∑

k=1

C1
km ≤ C2,

where C2 is a positive constant. The above estimate is due to the summability of
integration domain and the convergence of m-series (m > 1).
In the following, we will denote by Ci analogous constants. It can be deduced

that u has zero trace by Theorem 2.1 in [7]. Thus we obtain that u belongs to

Lp(0, T ;W 1,p0 (Ω)). Taking l = p, ρ = 1, r = N+1
N p in (2.11), we get u ∈ Lr(Q),

r = N+1
N p.

Proof of (ii): In the case of 0 ≤ m < 1, for any given k > k0, arguing as for
(2.16), it can be deduced that

(2.17)

∫

Q
|DTk(u)|

p dx dt =

∫

Q
|DTk0(u)|

p dx dt+

k−1
∑

i=k0

C1
im

≤

∫

Q
|DTk0(u)|

p dx dt+

k−1
∑

i=1

C1
im

≤ C3(1 + k
1−m).

Taking ρ = 1, l = p, r =
(N+1)p

N , v = Tk(u) in (2.11), we have

(2.18)

∫

Q
|Tk(u)|

(N+1)p
N dx dt ≤ C4‖Tk(u)‖

p

N

L∞(0,T ;L1(Ω))

∫

Q
|DTk(u)|

p dx dt

≤ C4‖u‖
p
N

L∞(0,T ;L1(Ω))

∫

Q
|DTk(u)|

p dx dt

≤ C5

∫

Q
|DTk(u)|

p dx dt.

However, we get

(2.19) meas{|u| > k} ≤ k−
(N+1)p

N

∫

Q
|DTk(u)|

p dx dt.
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By (2.17)–(2.19), we obtain

(2.20) meas{|u| > k} ≤ C5k
−
(N+1)p

N C3(1 + k
1−m)

≤ C6k
−(p−1+ p

N
+m), ∀ k > k0.

Thus we get

(2.21) sup
k>0

k(meas{|u| > k})
1

p−1+
p
N
+m ≤ C7.

Hence we obtain u ∈ Mr(Q), r = p− 1 + p
N +m. For any given l > 0,

(2.22) meas{|DTk(u)| >
l

2
} ≤

∫

Q

|DTk(u)|
p

( l
2 )

p
dx dt ≤

2pC3(1 + k
1−m)

lp
.

Thus

(2.23)

meas{|Du| > l} ≤ meas{|Du−DTk(u)| >
l

2
}+meas{|DTk(u)| >

l

2
}

≤ meas{|u| > k}+meas{|DTk(u)| >
l

2
}

≤ C8k
−(p−1+ p

N
+m) +

2pC3(1 + k
1−m)

lp
.

Taking k = lq/r in (2.23), we get

(2.24) meas{|Du| > l} ≤ C9l
−q, q = p−

N

N + 1
(1−m).

Hence |Du| ∈ Mq(Q), q = p− N
N+1 (1−m).

Proof of (iii): As m = 1, for large enough l > k0, for every 1 ≤ q < p and
λ > 0, we have

∫

Q

|DTl(u)|
p

(1 + |Tl(u)|)
λ
dx dt =

∫

{|u|≤k0}

|DTl(u)|
p

(1 + |Tl(u)|)
λ
dx dt(2.25)

+

l−1
∑

k=k0

∫

Bk

|DTl(u)|
p

(1 + |Tl(u)|)λ
dx dt

≤

∫

{|u|≤k0}
|Du|p dx dt+

l−1
∑

k=k0

∫

Bk

|DTl(u)|
p

(1 + |Tl(u)|)
λ
dx dt
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=

∫

Q
|DTk0(u)|

p dx dt+

l−1
∑

k=k0

∫

Bk

|Du|p

(1 + |u|)λ
dx dt

≤

∫

Q
|DTk0(u)|

p dx dt+

l−1
∑

k=k0

1

(1 + k)λ
C1
k

≤

∫

Q
|DTk0(u)|

p dx dt+

∞
∑

k=1

1

(1 + k)λ
C1
k

≤ C10.

By Hölder’s inequality, we obtain

(2.26)

∫

Q
|DTl(u)|

q dx dt =

∫

Q

|DTl(u)|
q

(1 + |Tl(u)|)
λq/p
(1 + |Tl(u)|)

λq/p dx dt

≤ (

∫

Q

|DTl(u)|
p

(1 + |Tl(u)|)λ
dx dt)q/p(

∫

Q
(1 + |Tl(u)|)

λq/(p−q) dx dt)1−q/p

≤ C11[1 + (

∫

Q
|Tl(u)|

λq/(p−q) dx dt)1−q/p].

If we set λq/(p−q) = q(N+1)/N , then we have λ = N+1
N (p−q). Let r =

q(N+1)
N ,

ρ = 1, l = q in Lemma 2.2, we get

(2.27)

∫

Q
|DTl(u)|

q dx dt ≤ C11[1 + (

∫

Q
|Tl(u)|

q(N+1)/N dx dt)1−q/p]

≤ C12[1 + (

∫

Q
|DTl(u)|

q dx dt)1−q/p].

Hence

(2.28)

∫

Q
|DTl(u)|

q dx dt ≤ C13 and

∫

Q
|Tl(u)|

q dx dt ≤ C13,

where C13 is a positive constant independent of l. Letting l → +∞ in (2.28), we
obtain by Fatou lemma

(2.29)

∫

Q
|Du|q dx dt ≤ C13 and

∫

Q
|u|q dx dt ≤ C13.

The condition λ > 0 implies that it must be q < p and
q(N+1)

N < p + p
N .Thus

it follows that u ∈ Lq(0, T ;W
1,q
0 (Ω))(1 ≤ q < p) from (2.29) and Theorem 2.1
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in [7]. (2.29) and Lemma 2.2 (r =
q(N+1)

N , ρ = 1, l = q) imply that u ∈ Lr(Q),

r < p+ p
N . �

Proof of Theorem 1.2:

Proof of (i): If m ≥ 1 −
(N+2−d)p
(N+p−pd)d′

, and u0 = 0, for large enough l > k0,

taking τ = 1−
(N+2−d)p
(N+p−pd)d′

in (2.12), (1.6) and (2.12)–(2.13) (here u0 = 0) imply

that

(2.30)

∫

Q
|DTl(u)|

p dx dt =

∫

{|u|≤k0}
|DTl(u)|

p dx dt +

l−1
∑

k=k0

∫

Bk

|DTl(u)|
p dx dt

=

∫

{|u|≤k0}
|Du|p dx dt +

l−1
∑

k=k0

∫

Bk

|Du|p dx dt

≤

∫

Q
|DTk0(u)|

p dx dt+
1

γ

l−1
∑

k=k0

∫

{|u|≥k}
|f |k−m dx dt

≤ C14 +
1

γ

l
∑

k=1

∫

{|u|≥k}
|f |k

−[1−
(N+2−d)p

(N+p−pd)d′
]
dx dt

≤ C14 + C15

∫

Q
|f | |Tl(u)|

(N+2−d)p

(N+p−pd)d′ dx dt

≤ C16[1 + (

∫

Q
|Tl(u)|

(N+2−d)p
(N+p−pd) dx dt)

1
d′ ].

Taking r =
(N+2−d)p
N+p−pd , ρ =

(2−p−d+pd)N
N+p−pd , l = p in Lemma 2.2, (2.30) yields

(2.31)
∫

Q
|Tl(u)|

r dx dt ≤ C17

∫

Q
|DTl(u)|

p dx dt ≤ C18[1 + (

∫

Q
|Tl(u)|

r dx dt)1/d′ ].

Thus there exists a positive constant C19 independent of l such that

(2.32)

∫

Q
|Tl(u)|

r dx dt+

∫

Q
|DTl(u)|

p dx dt ≤ C19.

Let l → +∞ in (2.32). By Fatou lemma, it follows that u ∈ Lp(0, T ;W 1,p(Ω)) ∩

Lr(Q), r =
(N+2−d)p
N+p−pd . Furthermore, the conclusion that u has zero trace can be

got by Lemma 2.1 in [7].
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Proof of (ii): Taking 0 < λ < 1−m, let τ = m+λ in (2.12). Hölder’s inequality
and (2.12) imply that
(2.33)

∫

Q
|DTl(u)|

q dx dt ≤

∫

Q

|DTl(u)|
q

(1 + |Tl(u)|)
λ q

p

(1 + |Tl(u)|)
λ q

p dx dt

≤ (

∫

Q

|DTl(u)|
p

(1 + |Tl(u)|)λ
dx dt)

q
p (

∫

Q
(1 + |Tl(u)|)

λ q
p−q dx dt)

1− q
p

= [

∫

{|u|≤k0}

|DTl(u)|
p

(1 + |Tl(u)|)λ
dx dt+

l−1
∑

k=k0

∫

Bk

|DTl(u)|
p

(1 + |Tl(u)|)λ
dx dt]

q
p

× [

∫

Q
(1 + |Tl(u)|)

λ q

p−q dx dt]
1− q

p

≤ [(

∫

{|u|≤k0}
|Du|p dx dt)

q

p + (

l−1
∑

k=k0

∫

Bk

|Du|p

(1 + |u|)λ
dx dt)

q

p ]

× [

∫

Q
(1 + |Tl(u)|)

λ q

p−q dx dt]
1− q

p

= [(

∫

Q
|DTk0(u)|

p dx dt)
q

p + (
l−1
∑

k=k0

∫

Bk

|Du|p

(1 + |u|)λ
dx dt)

q

p ]

× (

∫

Q
(1 + |Tl(u)|)

λ q

p−q dx dt)
1− q

p

≤ [C20 + (

l
∑

k=k0

1

γ

∫

{|u|≥k}

|f |

km+λ
dx dt)

q

p ][

∫

Q
(1 + |Tl(u)|)

λ q

p−q dx dt]
1− q

p

≤ [C20 + C21(

∫

Q
|f | |Tl(u)|

1−m−λ dx dt)
q
p ][

∫

Q
(1 + |Tl(u)|)

λ q
p−q dx dt]

1− q
p

≤ [C20 + C22(

∫

Q
|Tl(u)|

(1−m−λ)d′ dx dt)
q

pd′ ][

∫

Q
(1 + |Tl(u)|)

λ q

p−q dx dt]
1− q

p .

Set (1−m−λ)d′ = λq/(p−q) =
(N+2−d)q
N+p−pd and r =

(N+2−d)q
N+p−pd , ρ =

(2−p−d+pd)N
N+p−pd ,

l = q in Lemma 2.2 (here v = Tl(u)). (2.11) and (2.33) yield

(2.34)

∫

Q
|Tl(u)|

r dx dt+

∫

Q
|DTl(u)|

q dx dt ≤ C23,

where C23 is a positive constant independent of l, q = d[p − N+p−pd
N+2−d (1 − m)]

and r = d[
p(N+2−d)
N+p−pd − 1 +m]. Let l → +∞ in (2.34) and by Lemma 2.1 in [7],

it yields u ∈ Lq(0, T ;W
1,q
0 (Ω)) ∩ L

r(Q) by Fatou lemma. Furthermore, to take
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q ≥ 1 for every 0 ≤ m < 1−
(N+2−d)p
(N+p−pd)d′

, we must have d ≥ N+2
(N+1)p−(N−1)

. Thus

if we choose p ≥ 2− 1
N+1 , then we can deduce that

N+2
(N+1)p−(N−1)

≤ 1. Hence as

p ≥ 2− 1
N+1 , the above conclusion is satisfied for every 1 < d <

(N+2)p
(N+2)p−N

. If we

take 1 < p < 2− 1
N+1 , then we get

N+2
(N+1)p−(N−1)

> 1, thus as 1 < p < 2− 1
N+1 ,

we must restrict N+2
(N+1)p−(N−1)

≤ d <
(N+2)p
(N+2)p−N

. �

Proof of Theorem 1.3:

Proof of (i): Note that f = 0, for any given m ≥ 2 − d. (1.6), (2.13) (here
f = 0) and Remark 2.1 imply that

(2.35)

∫

Q
|Du|p dx dt =

∫

Q
|DTk0(u)|

p dx dt+

∞
∑

k=k0

∫

Bk

|Du|p dx dt

≤ C14 +
1

γ

∞
∑

k=k0

∫

{|u0|≥k}

|u0|

km dx

≤ C14 +
1

γ

∞
∑

k=1

∫

{|u0|≥k}

|u0|

k2−d
dx

≤ C14 + C24

∫

Ω
|u0|

d dx

≤ C25.

Thus we obtain u ∈ Lp(0, T ;W
1,p
0 (Ω)) and taking ρ = d, l = p, r =

N+d
N p, we get

u ∈ Lr(Q), r = N+d
N p.

Proof of (ii): The same as that of Theorem 1.2(ii), we omit the details. �

References
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