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Banach space valued mappings of the first

Baire class contained in usco mappings

Jiř́ı Spurný

Abstract. We prove that any Baire-one usco-bounded function from a metric space to a
closed convex subset of a Banach space is the pointwise limit of a usco-bounded sequence
of continuous functions.

Keywords: Baire-one functions, usco map, usco-bounded sequence of continuous func-
tions

Classification: 54C60, 54E45, 26A21

1. Introduction

O. Kalenda studied in [2] the following question:

Let X be a metric space, Y a convex subset of a normed linear space and

f : X → Y a Baire-one function whose graph is contained in the graph of a usco

mapping ϕ : X → Y . Does there exist a sequence {fn} of continuous functions
fn : X → Y such that fn → f and the graphs of all fn’s are contained in a usco

map ψ : X → Y ?

(We refer the reader to the next section and [2] for terminology.) He answered
the question affirmatively in case Y is a closed convex subset of the Euclidean
space R

d ([2, Theorem 3.3]). The aim of this note is a positive answer to [2,
Question 4.1] given by the following theorem.

Theorem 1.1. Let (X, ρ), (Y, σ) be metric spaces and f : X → Y be a usco-

bounded Baire-one mapping. Then for each ε > 0 there exists a usco-bounded
simple function g : X → Y such that supx∈X σ(f(x), g(x)) < ε.

Using [2, Theorem 3.2] we get from Theorem 1.1 the following strengthening
of [2, Theorem 3.3].

Theorem 1.2. Let X be a metric space, Y a closed convex subset of a Banach

space and f : X → Y a Baire-one usco-bounded function. Then there exists

a usco-bounded sequence {fn} of continuous functions from X to Y such that

fn → f .
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2. Proofs

We recall that a nonempty-valued mapping ϕ : X → Y between topological
spaces X and Y is called upper semi-continuous compact-valued (briefly usco) if
ϕ(x) is a nonempty compact subset of Y for each x ∈ X and {x ∈ X : ϕ(x) ⊂ U}
is open in X for every open U ⊂ Y . A function f : X → Y is termed Baire-
one if f is the pointwise limit of a sequence of continuous functions. A family
of functions defined on X with values in Y is called usco-bounded if there is a
usco map ϕ : X → Y whose graph contains the graph of every function from the
family.
A family A of subsets of a topological space X is discrete if each point of X has

a neighbourhood intersecting at most one element of the family, A is σ-discrete if
A is a countable union of discrete families. The family A is locally finite if each
point of X has a neighbourhood meeting at most finitely many elements of A.
A family B is a refinement of A if

⋃
A =

⋃
B and for every B ∈ B there exists

A ∈ A such that B ⊂ A.

A function f : X → Y is called simple if there is a σ-discrete partition of X
consisting of Fσ-sets such that f is constant on each element of the partition.

Lemma 2.1. Let X and Y be metric spaces and let ϕ : X → Y be a set-valued

mapping with nonempty values. Then the following assertions are equivalent:

(i) there exists a usco map ψ : X → Y such that ϕ ⊂ ψ (i.e., the graph of ϕ
is contained in the graph of ψ),

(ii) if {xn} ⊂ X converges to x ∈ X and yn ∈ ϕ(xn), then the sequence {yn}
has a convergent subsequence.

Proof: See [2, Lemma 2.1]. �

Lemma 2.2. Let X be a metric space and ε > 0. Then there exists a σ-discrete
locally finite partition of X consisting of Fσ-sets of diameter smaller than ε.

Proof: Given ε > 0, let U be an open cover of X consisting of sets of diameter
smaller than ε. By [1, Theorem 4.4.1] we can find an open σ-discrete locally finite
refinement V of U . We pick a well-ordering ≤ of V and set

PV = V \
⋃

{W :W ∈ V ,W < V }, V ∈ V .

Then P = {PV : V ∈ V}, as a shrinking of V (see [1, p. 386]), is also σ-discrete
and locally finite. Obviously, P consists of Fσ-sets of diameter smaller than ε.
This finishes the proof. �

Proof of Theorem 1.1: Let f be as in the premise and ε > 0. We select
η ∈ (0, ε

4 ). According to [2, Lemma 2.2], there exists a simple function g1 : X → Y

such that supx∈X σ(f(x), g1(x)) < η. By the definition of simple functions, there
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is a σ-discrete partition A of X consisting of Fσ-sets such that g1 is constant on
each element of A.
For each A ∈ A we find a point xA ∈ A and set

g2(x) = f(xA), x ∈ A ∈ A.

Then g2 is also a simple function and supx∈X σ(f(x), g2(x)) ≤ 2η. Indeed, for
x ∈ A ∈ A we have

σ(f(x), g2(x)) = σ(f(x), f(xA))

≤ σ(f(x), g1(xA)) + σ(g1(xA), f(xA))

= σ(f(x), g1(x)) + σ(g1(xA), f(xA))

< 2η.

Let A =
⋃

n
An where each An is discrete. Using Lemma 2.2 we find σ-discrete

locally finite partitions Pn, n ∈ N, of X such that each element of Pn is an Fσ-set
of diameter smaller than 1

n
. For each n ∈ N we set Bn = An ∧ Pn, i.e.,

Bn = {A ∩ P : A ∈ An, P ∈ Pn}.

A routine verification yields that each Bn is a σ-discrete locally finite family of
pairwise disjoint sets. Then B =

⋃
n
Bn is a σ-discrete partition of X consisting

of Fσ-sets.
For each B ∈ B we pick a point xB ∈ B and define

g(x) = f(xB), x ∈ B ∈ B.

Then g is a simple function and supx∈X σ(f(x), g(x)) ≤ 4η. Indeed, given x ∈ B ∈
B, let A be the unique set in A such that B ⊂ A. Then g2(xB) = g2(xA) = g2(x)
and

σ(f(x), g(x)) = σ(f(x), f(xB))

≤ σ(f(x), g2(xB)) + σ(g2(xB), f(xB))

= σ(f(x), g2(x)) + σ(g2(xB), f(xB))

< 2η + 2η.

To finish the proof we have to verify that g is usco-bounded. To this end, let
{xk} be a sequence of points ofX converging to x. Our aim is to find a convergent
subsequence of {g(xk)}.
For each k ∈ N we find nk ∈ N such that xk ∈

⋃
Bnk
. Assume first that {nk}

is a bounded sequence. Then there is an integer n ∈ N such that for infinitely
many k’s we have xk ∈

⋃
Bn. Since Bn is a locally finite family and xk → x,

there is a set B ∈ Bn such that xk ∈ B for infinitely many k’s. Since g is constant
on B, {g(xk)} has a convergent subsequence.
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If {nk} is not bounded, we may assume that {nk} is increasing. For each k ∈ N

we find Bk ∈ Bnk
such that xk ∈ Bk. As diameter of Bk is smaller than

1
nk
and

xk → x, xBk
→ x as well. Since g(xk) = f(xBk

), we can use the hypothesis on f
to conclude that {g(xk)} has a convergent subsequence. This finishes the proof.

�

Proof of Theorem 1.2: Let f : X → Y be a Baire-one usco-bounded function.
Using Theorem 1.1 we construct a sequence {fn} of functions fn : X → Y ,
n ∈ N, such that each fn is usco-bounded and {fn} converges to f uniformly.
By [2, Theorem 3.1], each fn is a pointwise limit of a usco-bounded sequence of
continuous functions from X to Y . According to [2, Theorem 3.2], the same holds
true for the function f . This concludes the proof. �
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