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Construction of Šindel sequences

Michal Kř́ıžek, Alena Šolcová, Lawrence Somer

Dedicated to Jan Šindel, the rector of the Prague University in 1410.

Abstract. We found that there is a remarkable relationship between the triangular num-
bers Tk and the astronomical clock (horologe) of Prague. We introduce Šindel sequences
{ai} ⊂ N of natural numbers as those periodic sequences with period p that satisfy the
following condition: for any k ∈ N there exists n ∈ N such that Tk = a1 + · · ·+ an. We
shall see that this condition guarantees a functioning of the bellworks, which is controlled
by the horologe. We give a necessary and sufficient condition for a periodic sequence
to be a Šindel sequence. We also present an algorithm which produces the so-called
primitive Šindel sequence, which is uniquely determined for a given s = a1 + · · ·+ ap.

Keywords: Jacobi symbol, quadratic nonresidue, clock sequence, primitive Šindel se-

quences, Chinese remainder theorem, Dirichlet’s theorem

Classification: 11A07, 11A51, 01A40

1. Introduction

The origin of a mathematical model of the astronomical clock of Prague is
attributed to Joannes Andreae, called Šindel (see [2]). He invented this model
approximately 600 years ago. In honour of this great achievement we introduce
and investigate a new term, the Šindel sequence. The clock was realized by the
clockmaker Nicholas from Kadaň around 1410. Over the centuries its construction
has been renovated several times.

The bellworks of the Prague horologe contains a large gear with 24 slots at
increasing distances along its circumference (see Figure 1). This arrangement
allows for a periodic repetition of 1–24 strokes of the bell each day. There is also
a small auxiliary gear whose circumference is divided by 6 slots into segments of
arc lengths 1, 2, 3, 4, 3, 2 (see Figure 1). These numbers constitute a period
which repeats after each revolution and their sum is s = 15.

At the beginning of every hour a catch rises, both gears start to revolve and
the bell chimes. The gears stop when the catch simultaneously falls back into the
slots on both gears. The bell strikes 1+2+ · · ·+24 = 300 times every day. Since
this number is divisible by s = 15, the small gear is always at the same position
at the beginning of each day.
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Figure 1. The number of bell strokes is denoted by the numbers . . . ,
9, 10, 11, 12, 13, . . . along the large gear. The small gear placed behind
it is divided by slots into segments of arc lengths 1, 2, 3, 4, 3, 2. The
catch is indicated by a small rectangle on the top.

The large gear has 120 interior teeth which drop into a pin gear with 6 little
horizontal bars that surround the centre of the small gear (see Figure 1). The
large gear revolves one time per day and therefore, the small gear revolves 20
times per day with approximately 4 times greater circumferential speed, since its
circumference is 5 times smaller. Thus, the small gear makes the regulation of
strokes sufficiently precise despite the wearing out of the slots on the large gear.
Moreover, one stroke of the bell at one a.m. is due only to the movement of the
small gear. There is no tooth between the first and second slot of the large gear.
Therefore, in this case the catch is in contact only with the tooth of arc length 1
of the small gear, which makes the use of the small gear essential.
When the small gear revolves it generates by means of its slots a periodic

sequence whose particular sums correspond to the number of strokes of the bell
at each hour:

1 2 3 4 3 2
︸︷︷︸

5

1 2 3
︸ ︷︷ ︸

6

4 3
︸︷︷︸

7

(1)

2 1 2 3
︸ ︷︷ ︸

8

4 3 2
︸ ︷︷ ︸

9

1 2 3 4
︸ ︷︷ ︸

10

3 2 1 2 3
︸ ︷︷ ︸

11

4 3 2 1 2
︸ ︷︷ ︸

12

3 4 3 2 1
︸ ︷︷ ︸

13

2 3 4 3 2
︸ ︷︷ ︸

14

1 2 3 4 3 2
︸ ︷︷ ︸

15

. . .

In the next section we show that we could continue in this way until infinity.
However, not all periodic sequences have such a nice summation property. For
instance, we immediately find that the period 1, 2, 3, 4, 5, 4, 3, 2 could not be
used for such a purpose, since 6 < 4 + 3. Also the period 1, 2, 3, 2 could not be
used, since 2 + 1 < 4 < 2 + 1 + 2.
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The astronomical clock of Prague is probably the oldest (see [2, p. 76]) still
functioning clock that contains such an apparatus illustrated in Figure 1. Due to
the beautiful summation property discussed above, Sloane in [5] and [7, A028355,
A028356] calls the sequence 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, . . . in (1) the clock sequence.

2. Connections with triangular numbers and periodic sequences

In this section we show how the triangular numbers

(2) Tk = 1 + 2 + · · ·+ k =
k(k + 1)

2
, k = 0, 1, 2, . . . ,

are related to the astronomical clock. We shall look for all periodic sequences
that have a similar property as the clock sequence in (1), i.e., that could be used
in the construction of the small gear. Put N = {1, 2, . . .}.

A sequence {ai}
∞
i=1 is said to be periodic if there exists p ∈ N such that

(3) ∀ i ∈ N : ai+p = ai.

The finite sequence a1, . . . , ap is called a period and p is called the period length.
The smallest p satisfying (3) is called the minimal period length and the associated
sequence a1, . . . , ap is called the minimal period .

Definition 1. Let {ai} ⊂ N be a periodic sequence. We say that the triangular
number Tk for k ∈ N is achievable by {ai}, if there exists a positive integer n such
that

(4) Tk =

n∑

i=1

ai.

The periodic sequence {ai} is said to be a Šindel sequence if Tk is achievable by
{ai} for every k ∈ N, i.e.,

(5) ∀ k ∈ N ∃n ∈ N : Tk =

n∑

i=1

ai.

The triangular number Tk on the left-hand side is equal to the sum 1 + · · · + k
of hours on the large gear, whereas the sum on the right-hand side expresses the
corresponding rotation of the small gear (see Figure 2). For the kth hour, we have

(6) k = Tk − Tk−1 =

n∑

i=m+1

ai,
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where Tk−1 =
∑m

i=1 ai. Since ai > 0, the number n depending on k in (5) is

unique. From (2) and (4) we also see that a1 = 1 when {ai} is a Šindel sequence.

•
︸︷︷︸

1

• •
︸︷︷︸

2

• • •
︸ ︷︷ ︸

3

• • • •
︸ ︷︷ ︸

4

• • •
︸ ︷︷ ︸

3

• •
︸︷︷︸

2

•
︸︷︷︸

1

• •
︸︷︷︸

2

• • •
︸ ︷︷ ︸

3

• • • •
︸ ︷︷ ︸

4

• • •
︸ ︷︷ ︸

3

Figure 2. Schematic illustration of the triangular number T7. The
bullets in the kth row indicate the number of strokes at the kth hour
(see (6)). The numbers denote lengths of segments on the small gear.

The next theorem shows that condition (5) can be replaced by a much weaker
condition containing only a finite number of k’s. This enables us to perform only a
finite number of arithmetic operations to check whether a given period a1, . . . , ap

yields a Šindel sequence. From now on let

(7) s =

p
∑

i=1

ai

denote the sum of the period.

Theorem 1. A periodic sequence {ai} for s odd is a Šindel sequence if Tk is

achievable by {ai} for k = 1, 2, . . . , (s − 1)/2.

Proof: The case s = 1 is trivial. So let s ≥ 3 be odd and suppose that

(8) ∀ k ∈ {1, 2, . . . , (s − 1)/2} ∃n ∈ N : Tk =

n∑

i=1

ai.

According to (7),

(9) 1 + 2 + · · ·+ (s − 1) =
s − 1

2

p
∑

i=1

ai,
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where p is the period length and (s − 1)/2 is integer. For the corresponding
sequence

(10) a1, a2, . . . , ap
︸ ︷︷ ︸

s

, a1, a2, . . . , ap
︸ ︷︷ ︸

s

, . . . , a1, a2, . . . , ap
︸ ︷︷ ︸

s

,

formula (9) expresses that the period a1, . . . , ap in (10) is repeated (s−1)/2 times.
Assuming (8), we have to verify equality (4) for all k ≥ (s+1)/2. For k = s−1,

which is even, we obtain by (2), (9), and (3)

Tk = Ts−1 =
k

2

p
∑

i=1

ai =

pk/2
∑

i=1

ai,

i.e., n = pk/2 in (4) and the number Ts−1 is achievable.
Suppose now that k = s − 1 − k′, where 1 ≤ k′ ≤ (s − 3)/2 and s > 3. By

assumption (8), there exists n′ ∈ N such that

(11)
k′(k′ + 1)

2
=

n′

∑

i=1

ai.

From (2) we observe that

(12) Tk = Ts−1−k′ =
(s − 1− k′)(s − k′)

2
=

s(s − 1− 2k′)

2
+

k′(k′ + 1)

2
.

Since 1 ≤ k′ ≤ (s − 3)/2 and s is odd, it follows that m = s − 1− 2k′ is an even
positive integer. Thus, by (12), (7), (11), and (3),

Tk =
s − 1− 2k′

2

p
∑

i=1

ai +

n′

∑

i=1

ai =

pm/2+n′

∑

i=1

ai.

Next, let k = qs+ k′ with q ∈ N and 0 ≤ k′ < s. Then by (2) and (7) we find
that

Tk =
(qs+ k′)(qs+ k′ + 1)

2
= sj +

k′(k′ + 1)

2
=

pj
∑

i=1

ai + Tk′,

where j = q(qs + 1)/2 + qk′ is integer and Tk′ = 0 for k′ = 0. By our earlier

observation in this proof Tk′ =
∑n′

i=1 ai for some n′ ∈ N when 0 < k′ < s. �
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Remark 1. The number (s − 1)/2 in (8) cannot be reduced if p is the minimal
period length associated with s. To see this consider the periodic sequence {ai}
with the minimal period 1, 2, 2, 1, 4, 1, 4 and s = 15. Then, by Definition 1, the
triangular numbers T1, . . . , T6 are achievable, but T7 is not.

Example 1. The power of Theorem 1 can be demonstrated on the clock sequence
given by (1) with s = 15. It is enough to check (5) only for k ≤ (s− 1)/2 = 7 (see
the first row of (1) and Figure 2) and the achievability of all k > 7 follows from
Theorem 1.
Similarly, we can easily verify by inspection the assumptions of Theorem 1 for

other periods:
1, 2 with p = 2 and s = 3,
1, 2, 2 with p = 3 and s = 5,
1, 2, 3, 1 with p = 4 and s = 7,
1, 2, 3, 3 with p = 4 and s = 9,
1, 2, 2, 1, 4, 1, 4, 1, 4, 1, 4 with p = 11 and s = 25.

Example 2. There are also Šindel sequences with s even. We can construct one,
e.g., from the period 1, 2, 1, 1, 1:

(13) 1 2 1 1 1
︸ ︷︷ ︸

3

1 2 1
︸ ︷︷ ︸

4

1 1 1 2
︸ ︷︷ ︸

5

1 1 1 1 2
︸ ︷︷ ︸

6

. . .

The factor (s − 1)/2 appearing on the right-hand side of (9) is not an integer.
Therefore, the particular terms expressing the number s = 6 in (13) are not in
the same order as the given period.

Theorem 2. A periodic sequence {ai} for an even s in (7) is a Šindel sequence
if Tk is achievable by {ai} for k = 1, 2, . . . , s − 1.

Proof: Let s ≥ 2 be even and suppose that

(14) ∀ k ∈ {1, 2, . . . , s − 1} ∃n ∈ N : Tk =

n∑

i=1

ai.

From (7) and (3) we get

T2s−1 = (2s − 1)

p
∑

i=1

ai =

(2s−1)p
∑

i=1

ai.

Now suppose that k = 2s − 1 − k′, where 1 ≤ k′ ≤ s − 1. According to
hypothesis (14), there exists n′ ∈ N such that

k′(k′ + 1)

2
=

n′

∑

i=1

ai.
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Then, by (2),

Tk = T2s−1−k′ =
(2s − 1− k′)(2s − k′)

2
= s(2s − 1− 2k′) +

k′(k′ + 1)

2
.

Hence,

Tk = (2s − 1− 2k
′)

p
∑

i=1

ai +

n′

∑

i=1

ai =

pm+n′

∑

i=1

ai,

where m = 2s − 1− 2k′.
The rest of the proof for k ≥ 2s − 1 is similar to that of Theorem 1. �

Remark 2. The number s − 1 appearing in (14) is the smallest possible for the
minimal period. To see this consider the periodic sequence {ai} with the minimal
period 1, 2, 1 and s = 4. Then the triangular numbers T1 and T2 are achievable,
but T3 is not.

3. Necessary and sufficient condition for the existence of a Šindel

sequence

Let n ≥ 2 and a be integers. Recall that if the quadratic congruence

x2 ≡ a (mod n)

has a solution x, then a is called a quadratic residue modulo n. Otherwise, a is
called a quadratic nonresidue modulo n.

Lemma 1. If f and h are nonnegative integers, then 8f+1 is a quadratic residue
modulo 2h.

The proof is a consequence of [4, pp. 105–106].

Theorem 3. A periodic sequence {ai} is a Šindel sequence if and only if for any
n ∈ {1, . . . , p} and any j ∈ {1, 2, . . . , an − 1} with an ≥ 2 the number

w = 8
( n∑

i=1

ai − j
)

+ 1

is a quadratic nonresidue modulo s.

Proof: ⇐=: Let a periodic sequence {ai} not be a Šindel sequence. According
to (5), there exist positive integers ℓ, m, and j such that am ≥ 2, j ≤ am − 1, and

(15) Tℓ =
m∑

i=1

ai − j.
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Let n ∈ {1, . . . , p} be such that n ≡ m (mod p). Then by (2), (15), (7), and (3),

(2ℓ+1)2 = 4ℓ2+4ℓ+1 = 8Tℓ+1 = 8
( m∑

i=1

ai−j
)

+1 ≡ 8
( n∑

i=1

ai−j
)

+1 (mod s),

i.e., 8
(∑n

i=1 ai − j
)
+ 1 is a square modulo s. Thus, the condition given in

Theorem 3 is sufficient for {ai} to be a Šindel sequence.
=⇒: Let {ai} be a Šindel sequence with s = 2cd, where c ≥ 0 and d is odd.

Suppose to the contrary that there exist positive integers n, j, and x such that
n ≤ p, an ≥ 2, j ≤ an − 1, x ≤ s, and

(16) w = 8
( n∑

i=1

ai − j
)

+ 1 ≡ x2 (mod s).

From Lemma 1 and (16) there exists y such that

(17)
x2 ≡ w (mod d),

y2 ≡ w (mod 2c+3).

By the Chinese remainder theorem (see [3, p. 15]) there exists an integer u ≥ 3
such that u ≡ x (mod d) and u ≡ y (mod 2c+3). Thus, by (17),

u2 ≡ x2 ≡ w (mod d),

u2 ≡ y2 ≡ w (mod 2c+3).

Since gcd(d, 2c+3) = 1, we see that

(18) u2 ≡ w (mod 2c+3d).

Clearly, u is odd, since w is odd. So let u = 2ℓ+ 1, where ℓ ≥ 1. Then, by (18),
u2 = 4ℓ2 + 4ℓ+ 1 = w + 2c+3dg for some integer g. Hence, since u ≥ 3, we find
by (2), (18), and (16) that

Tℓ =
u2 − 1

8
=

w − 1

8
+ 2cdg ≡

n∑

i=1

ai − j (mod s).

Thus, there exists a positive integer m such that m ≡ n (mod p) and

Tℓ =

m∑

i=1

ai − j,

which contradicts the assumption that {ai} is a Šindel sequence. �

As a byproduct of the proof of Theorem 3, we get the well-known result (see
also [1, p. 15] and Figure 3):
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Corollary 1. A positive integer r is a triangular number if and only if 8r+ 1 is
a square.

Figure 3. The early Pythagoreans knew that if r is a triangular
number, then 8r + 1 is a square. This result is mentioned as early as
about 100 A.D. in Platonic Questions by the Greek historian Plutarch,
see [6, p. 4].

Remark 3. In Theorem 3, we require that

w = 8
( n∑

i=1

ai − j
)

+ 1

be a quadratic nonresidue modulo s for various values of n and j when {ai} is a
Šindel sequence. A sufficient condition for this to occur is that w be a quadratic
nonresidue for some odd prime q dividing s. To see that this condition is not
necessary, consider the periodic sequence {ai} given in Example 1 with p = 11,
s = 25, and the period 1, 2, 2, 1, 4, 1, 4, 1, 4, 1, 4. Then

8
( 5∑

i=1

ai − 2
)

+ 1 = 65,

which is a quadratic nonresidue modulo 25, but is a quadratic residue modulo 5.
Note that 5 is the only odd prime dividing s = 25.

Remark 4. Consider the sequence {ai} with period 1, 2, 1, 1, 1, . . . , 1. Note that

w = 8
( 2∑

i=1

ai − 1
)

+ 1 = 17.

By Theorem 3 and the law of quadratic reciprocity one sees that if s is an odd
prime and s ≡ 1, 2, 4, 8, 9, 13, 15 or 16 (mod 17) (see [3, pp. 23–24]), then w is
a quadratic residue modulo s and thus, {ai} is not a Šindel sequence. Other
patterns of the period of periodic sequences {ai} can be similarly investigated.
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4. Construction of the primitive Šindel sequence

Definition 2. A Šindel sequence {a′i} with the minimal period length p + 1 is

said to be composite if there exists a Šindel sequence {ai} and ℓ ∈ N such that

ai = a′i, i = 1, . . . , ℓ − 1,

aℓ = a′ℓ + a′ℓ+1,

ai = a′i+1, i = ℓ+ 1, . . . , p.

Example 3. The period 1, 2, 3, 2, 2, 3, 2 derived from the period 1, 2, 3, 4, 3, 2
of sequence (1) produces a composite Šindel sequence. In other words, the astro-
nomical clock would also work with the small gear corresponding to this composite
Šindel sequence.

Definition 3. A Šindel sequence {ai} is called primitive if it is not composite.

Example 4. By inspection, we can verify that all the sequences from Example 1
are primitive.

The proof of the next theorem contains an explicit algorithm for finding a
primitive Šindel sequence for a given s.

Theorem 4. Let s be a positive integer. Then there exists a unique primitive
Šindel sequence {ai} such that (7) holds for one of its not necessarily minimal
period lengths p.

Proof: Let 1 ≤ b1 < b2 < · · · < bt ≤ s be all the integers such that each 8bn+ 1
is a square modulo s for n = 1, . . . , t. We observe that b1 = 1 and bt = s. Now
choose the period as follows: a1 = b1 and an = bn−bn−1 for n = 2, 3, . . . , t. Then

∀n ∈ {1, 2, . . . , t} : bn =

n∑

i=1

ai.

We claim that {ai} is a Šindel sequence. Note that if n ∈ {1, . . . , t}, an ≥ 2,
and j ∈ {1, 2, . . . , an − 1}, then

bn−1 <

n∑

i=1

ai − j < bn.

Therefore, 8(
∑n

i=1 ai − j)+1 is a quadratic nonresidue modulo s, as 8b1+1, . . . ,
8bt + 1 are all the quadratic residues modulo s. It now follows from Theorem 3
that {ai} is a Šindel sequence.
Moreover, one sees that {ai} is a primitive Šindel sequence having a period

length p = t and satisfying (7). It is also clear by construction that {ai} is the
unique primitive Šindel sequence satisfying (7) for some period length p. �
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Definition 4. The sequence 1, 1, 1, . . . is called a trivial Šindel sequence.

Theorem 5. The primitive Šindel sequence {ai} is trivial if and only if s = 2h

for h ≥ 0.

Proof: ⇐=: By the above construction of the period, the primitive Šindel se-
quence corresponding to s is nontrivial if and only if there exists a positive integer
f ≤ s such that 8f + 1 is a quadratic nonresidue modulo s. By Lemma 1, the
number 8f +1 is always a quadratic residue modulo s = 2h for h ≥ 0. Hence, the
primitive Šindel sequence corresponding to s = 2h is the trivial Šindel sequence.
=⇒: Conversely, assume that s has an odd prime divisor q. Let d be a quadratic

nonresidue modulo q. Since 8 is invertible modulo q, one sees that if z is the inverse
of 8 modulo q and f ≡ z(d−1) (mod q), then 8f+1 ≡ d (mod q). It now follows
that the primitive Šindel sequence corresponding to s is nontrivial. �

We have the following immediate corollaries to Theorems 3, 4, and 5:

Corollary 2. Let {ai} be a periodic sequence with the minimal length p of the
period and s = 2m, where m is a nonnegative integer. Then {ai} is a Šindel
sequence if and only if {ai} is the trivial Šindel sequence.

Corollary 3. A periodic sequence {ai} is a primitive Šindel sequence if and only
if for any n ∈ {1, . . . , p} and any j ∈ {1, 2, . . . , an − 1} with an ≥ 2 the number

w = 8
( n∑

i=1

ai − j
)

+ 1

is a quadratic nonresidue modulo s and

v = 8

n∑

i=1

ai + 1

is a quadratic residue modulo s.

Theorem 6. For any k ∈ N there exist ℓ ∈ N and a Šindel sequence {ai} such
that aℓ = k.

Proof: It was stated in Corollary 1 that for r ∈ N, 8r + 1 is a square if and
only if r is a triangular number. Let k = Tk − Tk−1 be given (see (6)). Thus
it suffices by the proof of Theorem 4 to find a positive integer s ≥ Tk such that
8(Tk−1 + j) + 1 is a quadratic nonresidue modulo s for j = 1, 2, . . . , k − 1.
For a fixed j ∈ {1, . . . , k − 1} let

8(Tk−1 + j) + 1 =
v∏

i=1

pαi

i
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be the prime power factorization. Since 8(Tk−1 + j) + 1 is not a square, some
αi is odd. Without loss of generality, we can assume that α1 is odd. Let c1
be a quadratic nonresidue modulo p1. By the Chinese remainder theorem and
Dirichlet’s theorem on the infinitude of primes in arithmetic progressions, one can
find a prime qj ≥ Tk such that qj ≡ 1 (mod 4), qj = c1 (mod p1), and qj ≡ 1
(mod pi) for i ∈ {2, . . . , v}.
Since qj ≡ 1 (mod 4), it follows from the properties of the Legendre symbol

and the law of quadratic reciprocity (see [3, p. 24]) that
(p1

qj

)

=
( qj

p1

)

=
( c1

p1

)

= −1,

and (pi

qj

)

=
(qj

pi

)

=
( 1

pi

)

= 1 for i = 2, 3, . . . , v,

where
(p

q

)
denotes the Legendre symbol for odd primes p and q. Noting that the

Jacobi symbol is multiplicative, we see that

(8(Tk−1 + j) + 1

qj

)

=

v∏

i=1

(pi

qj

)αi

= (−1)α1
v∏

i=2

1αi = −1,

and hence, 8(Tk−1 + j) + 1 is a quadratic nonresidue modulo qj . Now simply let
s be the product of the distinct qj ’s for j ∈ {1, . . . , k − 1}. �

Example 5. The period 1, 2, 3, 4, 5, 3, 3, 7, 2, 3, 3, 9 with minimal period
length p = 12 and s = 45 yields a primitive Šindel sequence {ai} with a large
value of a12 = 9 relative to s.

Theorem 7. There exists a primitive Šindel sequence whose period is the mini-

mal period if and only if s given by (7) is odd.

Proof: =⇒: Let s = 2cd, where c ≥ 1 and d is odd. Since 8f + 1 is a quadratic
residue modulo 2c for all nonnegative integers f by Lemma 1, we have by the
Chinese remainder theorem that 8f +1 is a square modulo s if and only if 8f +1
is a square modulo d. It now follows from the construction given in the proof
of Theorem 4 that the primitive Šindel sequence corresponding to s = 2cd has
the same period, not necessarily minimal, as the period of the primitive Šindel
sequence corresponding to s = d. Hence, we see that for s even, the primitive
Šindel sequence corresponding to s does not have the associated period as its
minimal period.

⇐=: Now let s be odd. If s = 1, the result is trivial. So assume that s ≥ 3 and
let {ai} be the unique primitive Šindel sequence corresponding to s and having
period length p. Let p′ be the minimal period length of the sequence {ai} and let

s′ =

p′
∑

i=1

ai.
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Suppose to the contrary that p′ < p, i.e., s′ < s. For k ∈ N, we let wk =
∑k

i=1 ai.
To obtain a contradiction, it suffices by the proof of Theorem 4 to find a positive
integer n ≤ p such that 8wn+1 is a quadratic nonresidue modulo s. To accomplish
this, we need only find a divisor f of s such that 8wn+1 is a quadratic nonresidue
modulo f .
Since gcd(8, s) = 1, there exists a unique integer b such that 0 ≤ b ≤ s − 1

and 8b + 1 ≡ 0 (mod s). Simply let b ≡ −z (mod s), where z is the inverse of 8
modulo s. Since 0 is a square modulo s, we see by the construction in the proof
of Theorem 4 that 8wk + 1 ≡ 0 (mod s) for some k ∈ {1, 2, . . . , p}. Let m be an
integer such that 1 ≤ m ≤ p′ and m ≡ k (mod p′). Then 8wm + 1 ≡ 0 (mod s′).
Since s′ < s, there exists an odd prime q such that q | s

s′ =
p
p′ . First, suppose

that q ∤ s′. Consider the q integers

(19) 8wm + 1, 8wm+p′ + 1, 8wm+2p′+1, . . . , 8wm+(q−1)p′ + 1.

Noting that

(20) (8wm+jp′ + 1)− (8wm+ip′ + 1) = 8(j − i)s′

for 0 ≤ i < j ≤ q − 1 and that gcd(8s′, q) = 1, we find that the q numbers in
(19) are incongruent modulo q. Let e be a quadratic nonresidue modulo q. Then
8wm+jp′+1 ≡ e (mod q) for some j ∈ {0, 1, 2, . . . , q−1}, which is a contradiction,

since q | s and m+ jp′ ≤ m+ (q − 1)p′ ≤ p.
Finally, we treat the remaining case in which qα‖s′ and qα+1 | s for some odd

prime q and integer α ≥ 1, where qα‖s′ means that qα | s′ but qα+1 ∤ s′. Then
8wm+1 ≡ 0 (mod qα). By (20) and the fact that qα‖s′, we see that the q integers
in (19) are congruent to

(21) 0, qα, 2qα, . . . , (q − 1)qα (mod qα+1)

in some order. To complete the proof, it suffices to demonstrate that at least one
of the q numbers in (21) is a quadratic nonresidue modulo qα+1. If α is odd, then
clearly qα is a quadratic nonresidue modulo qα+1.
Now suppose that α is a positive even integer, qα‖r, and r is a quadratic residue

modulo qα+1. Then

r ≡
(
aqα/2)2 = a2qα (mod qα+1)

for some integer a such that q ∤ a. If

a2qα ≡ hqα (mod qα+1),

then
a2 ≡ h (mod q).

Let u be a quadratic nonresidue modulo q and suppose that 0 ≤ u ≤ q − 1. Then
uqα is a quadratic nonresidue modulo qα+1. �
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5. Computer results

We developed a program that generates the primitive Šindel sequence for a
given s. It is based on the numerical algorithm presented in the proof of Theo-
rem 4. By this theorem we know that the primitive Šindel sequence is uniquely
determined for each positive integer s.

s Primitive Šindel sequences

1 1

2 1 1

3 1 2

4 1 1 1 1

5 1 2 2

6 1 2 1 2

7 1 2 3 1

8 1 1 1 1 1 1 1 1

9 1 2 3 3

10 1 2 2 1 2 2

11 1 2 1 2 4 1

12 1 2 1 2 1 2 1 2

13 1 1 1 3 2 2 3

14 1 2 3 1 1 2 3 1

15 1 2 3 4 3 2

16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

17 1 1 1 1 2 4 1 4 2

18 1 2 3 3 1 2 3 3

19 1 1 1 3 1 2 1 5 2 2

20 1 2 2 1 2 2 1 2 2 1 2 2

21 1 2 3 1 3 3 2 6

22 1 2 1 2 4 1 1 2 1 2 4 1

23 1 2 2 1 3 1 3 2 5 1 1 1

24 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

25 1 2 2 1 4 1 4 1 4 1 4

The above table shows values of all primitive Šindel sequences for s = 1, . . . , 25.
From this table we observe the property guaranteed by Theorem 5, namely that
trivial primitive Šindel sequences appear only when s = 2h for some h ≥ 0. We



Construction of Šindel sequences 387

also see that there does not exist a primitive Šindel sequence with the minimal
period for s even, which is stated by Theorem 7. The structure of sequences
corresponding to s = 13 and s = 19 is discussed in Remark 4. We verified that
no primitive Šindel sequence for s ≤ 1000 and s 6= 15 has such a nice symmetry
property as the clock sequence in (1), which was used to construct the bellworks
of the Prague horologe (see Figure 4).

Figure 4. A detail of the bellworks of the astronomical clock. The
catch is in the slot between the segments corresponding to 8 and 9
hours on the large gear.
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