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Directoids with an antitone involution

I. Chajda, M. Kolař́ık

Abstract. We investigate ⊓-directoids which are bounded and equipped by a unary ope-
ration which is an antitone involution. Hence, a new operation ⊔ can be introduced via
De Morgan laws. Basic properties of these algebras are established. On every such an
algebra a ring-like structure can be derived whose axioms are similar to that of a gene-
ralized boolean quasiring. We introduce a concept of symmetrical difference and prove
its basic properties. Finally, we study conditions of direct decomposability of directoids
with an antitone involution.
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1. Bounded directoids with an antitone involution

The concept of directoid was introduced by J. Ježek and R. Quackenbush [6]
and independently by V.M. Kopytov and Z.I. Dimitrov [7] and B.J. Gardner and
M.M. Parmenter [5]. Recall that a directoid is an algebra D = (D;⊓) of type (2)
satisfying the identities

(D1) x ⊓ x = x;

(D2) (x ⊓ y) ⊓ x = x ⊓ y;

(D3) y ⊓ (x ⊓ y) = x ⊓ y;

(D4) x ⊓ ((x ⊓ y) ⊓ z) = (x ⊓ y) ⊓ z.

Putting x ≤ y if and only if x ⊓ y = x, the relation ≤ is an order on D, the
so-called induced order of directoid D. It was shown in [6] that x⊓y is a common
lower bound of x, y. Also conversely, if (D;≤) is an ordered set where for each
x, y ∈ D their lower bound set L(x, y) = {d ∈ D; d ≤ x and d ≤ y} is non-void,
one can pick up freely an element d ∈ L(x, y) with only one constrain: if x ≤ y
then d must be equal to x. Then, putting x ⊓ y = d, the algebra (D;⊓) is a
directoid. We do not assume the commutativity x ⊓ y = y ⊓ x throughout the
paper.

Supported by the Research and Development Council of the Czech Government via the
project MSM6198959214.
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Lemma 1. A directoid D = (D;⊓) is a semilattice if and only if it satisfies the
condition

(S) (x ≤ a and x ≤ b) ⇒ x ≤ a ⊓ b.

Proof: Of course, (S) is satisfied in every ∧-semilattice. Conversely, let a direc-
toid D = (D;⊓) satisfy (S), let a, b ∈ D and x ∈ L(a, b). Then, by (S), x ≤ a ⊓ b
and hence, a ⊓ b is the greatest lower bound of a, b, i.e. a ⊓ b = inf(a, b). Thus
(D;⊓) is a ∧-semilattice. �

In what follows, we will deal with directoids having a least element 0 and a
greatest element 1. This fact will be expressed by the notation D = (D;⊓, 0, 1).
By an antitone involution on D = (D;⊓, 0, 1) is meant a mapping x 7→ x′ of
D → D such that x′′ = x and x ≤ y ⇒ y′ ≤ x′ where ≤ is the induced order of
D. If D = (D;⊓, 0, 1) has an antitone involution, we will write D = (D;⊓,′ , 0, 1).
Of course, 0′ = 1 and 1′ = 0 is valid in every bounded directoid with an antitone
involution. Due to [7], the operations ⊔ and ⊓ are connected by the absorption
laws.
Let D = (D;⊓,′ , 0, 1). The term operation ⊔ defined via x⊔ y = (x′ ⊓ y′)′ will

be called an assigned operation of D.

Theorem 1. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution,
let ⊔ be the assigned operation. Then:

(i) x ⊓ y = (x′ ⊔ y′)′;
(ii) x ⊔ x = x,
(x ⊔ y) ⊔ x = x ⊔ y,
y ⊔ (x ⊔ y) = x ⊔ y,
x ⊔ ((x ⊔ y) ⊔ z) = (x ⊔ y) ⊔ z;

(iii) x ⊓ (x ⊔ y) = x, x ⊔ (x ⊓ y) = x, x ⊓ (y ⊔ x) = x, x ⊔ (y ⊓ x) = x,
(x ⊔ y) ⊓ x = x, (x ⊓ y) ⊔ x = x, (y ⊔ x) ⊓ x = x, (y ⊓ x) ⊔ x = x.

Proof: (i) (x′ ⊔ y′)′ = (x′′ ⊓ y′′)′′ = x ⊓ y.
(ii) x ⊔ x = (x′ ⊓ x′)′ = x′′ = x,
(x ⊔ y) ⊔ x = (x′ ⊓ y′)′ ⊔ x = ((x′ ⊓ y′) ⊓ x′)′ = (x′ ⊓ y′)′ = x ⊔ y,
y ⊔ (x ⊔ y) = y ⊔ (x′ ⊓ y′)′ = (y′ ⊓ (x′ ⊓ y′))′ = (x′ ⊓ y′)′ = x ⊔ y,
x ⊔ ((x ⊔ y) ⊔ z) = (x′ ⊓ ((x′ ⊓ y′) ⊓ z′)) = ((x′ ⊓ y′) ⊓ z′)′ = (x ⊔ y) ⊔ z.
(iii) The absorption laws were proved in [7]. For the reader’s convenience, we
present an easy proof as follows. By using (ii), we compute

x ⊔ (x ⊔ y) = x ⊔ ((x ⊔ y) ⊔ x) = (x ⊔ y) ⊔ x = x ⊔ y

thus x ≤ x ⊔ y whence x ⊓ (x ⊔ y) = x. Similarly we can prove the remaining
absorption laws. �
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Remark 1. The identities x⊔y = (x′ ⊓y′)′ and x⊓y = (x′ ⊔y′)′ will be referred
under the name De Morgan laws because they are formally the same as De Morgan
laws in lattices.

Due to De Morgan laws, (D;⊔) is a directoid again for any D = (D;⊓,′ , 0, 1)
with the assigned operation ⊔. Clearly x ≤ y if and only if x ⊔ y = y.

Example 1. Consider the directed set whose diagram is drawn in Figure 1
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Figure 1

Let us pick up c ⊓ d = a and d ⊓ c = b. Then D = (D;⊓, 0, 1) for D =
{0, a, b, c, d, 1} is a bounded ⊓-directoid. Further, define x 7→ x′ on D as follows

x 0 a b c d 1

x
′ 1 d c b a 0

.

It is clearly an antitone involution on D. For the assigned operation ⊔ we have:

a ⊔ b = (a′ ⊓ b′)′ = (d ⊓ c)′ = b′ = c,

b ⊔ a = (b′ ⊓ a′)′ = (c ⊓ d)′ = a′ = d.

♦

The following example gives an answer to the question whether is it possible
to define an antitone involution on every ⊓-directoid:

Example 2. Consider the ⊓-directoid D = ({0, x, y, z, 1};⊓) depicted in Figure 2
where for binary operation ⊓ we have: x ⊓ y = 0, y ⊓ x = z (and trivially for
comparable elements).
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Figure 2

We show that on this ⊓-directoid it is not possible to define an antitone invo-
lution ′: Clearly, 0′ = 1 and 1′ = 0. If we put x′ = z, then y′ must be equal to y
but z ≤ y implies y = y′ ≤ z′ = x, a contradiction. If we pick x′ = y, then z′ = z
and z ≤ x implies y = x′ ≤ z′ = z, a contradiction. Finally, if x′ = x then for
z′ = z or z′ = y we have x ≤ z or x ≤ y which is a contradiction again.
Note, that if a ⊓-directoid is not commutative, it needs to have at least 2

non-comparable elements x, y such that |L(x, y)| ≥ 2. Thus, the directoid from
Figure 2 is the smallest one which cannot have an antitone involution and hence
also the assigned operation ⊔. ♦

It can be proved dually as in Lemma 1 that a ⊔-directoid (D;⊔) is a ∨-
semilattice if and only if it satisfies the condition

(S’) (a ≤ x and b ≤ x) ⇒ a ⊔ b ≤ x.

Lemma 1 enables us to show that when ⊔ and ⊓ are connected by a stronger
identity such as modularity or distributivity then the resulting structure is a
lattice. A similar result was already shown by J. Nieminen [9] for the so-called
χ-lattices.

Theorem 2. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution
and ⊔ the assigned operation. If D satisfies the modularity laws

x ⊔ (y ⊓ (x ⊔ z)) = (x ⊔ y) ⊓ (x ⊔ z),

x ⊓ (y ⊔ (x ⊓ z)) = (x ⊓ y) ⊔ (x ⊓ z)

then (D;⊔,⊓) is a lattice.

Proof: Suppose x, y, a ∈ D, x, y ≤ a. Then x = a ⊓ x, y = a ⊓ y and hence
x⊔ y = (a ⊓ x) ⊔ (a ⊓ y) = a⊓ (x⊔ (a ⊓ y)) = a⊓ (x⊔ y) thus x⊔ y ≤ a. In other
words, it satisfies (S’) and hence (D;⊔) is a ∨-semilattice. Dually it can be shown
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that also (D;⊓) is a ∧-semilattice. Due to Theorem 1, ⊓ and ⊔ are connected
with the absorption laws, i.e. (D;⊔,⊓) is a lattice. �

Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution and ⊔ its
assigned operation. If ⊓ is commutative, i.e. x⊓ y = y ⊓ x then also ⊔ is commu-
tative and (D;⊔,⊓) is the so-called λ-lattice as defined in [10]. Moreover, every
χ-lattice (defined in [9], [8]) is a particular case of λ-lattice. In our investigation
we do not assume commutativity of ⊓ and hence our algebras are more general.
Nevertheless, we are still able to prove a result which holds for lattices, i.e.:

Theorem 3. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution
and ⊔ the assigned operation. Then

m(x, y, z) = ((x ⊓ y) ⊔ (z ⊓ y)) ⊔ (x ⊓ z)

is the majority term on D and hence the congruence lattice ConD is distributive.

Proof: m(x, x, y) = ((x ⊓ x) ⊔ (y ⊓ x)) ⊔ (x ⊓ y) = (x ⊔ (y ⊓ x)) ⊔ (x ⊓ y) =
x ⊔ (x ⊓ y) = x,
m(x, y, x) = ((x ⊓ y) ⊔ (x ⊓ y)) ⊔ (x ⊓ x) = (x ⊓ y) ⊔ x = x,
m(y, x, x) = ((y⊓x)⊔ (x⊓x))⊔ (y ⊓x) = ((y⊓x)⊔x)⊔ (y ⊓x) = x⊔ (y ⊓x) = x.

�

2. Derived quasirings

The concept of a (boolean) quasiring was introduced firstly for orthomodular
lattices and ortholattices and then for bounded lattices with an antitone involution
in [4], [1], [2]. We are going to introduce similar ring-like structures for directoids
with an antitone involution.

By a D-quasiring is meant an algebra R = (R; +, ·, 0, 1) of type (2, 2, 0, 0)
satisfying the dentities

(Q1) (x · y) · x = x · y;

(Q2) y · (x · y) = x · y;

(Q3) x · ((x · y) · z) = (x · y) · z;

(Q4) x · 0 = 0;

(Q5) x · 1 = x;

(Q6) x+ 0 = x;

(Q7) 1 + (1 + x · y) · (1 + y) = y.

Remark 2. Due to (Q3) with y = z = 1 and (Q5), we obtain immediately that
a D-quasiring satisfies the identity

(I) x · x = x.
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Hence, for every D-quasiring R = (R; +, ·, 0, 1), (R; ·, 0, 1) is a bounded direc-
toid with 0 and 1, thus R may be considered as a partially ordered set (R;≤)
with smallest element 0 and greatest element 1 where ≤ is the induced order of
(R; ·, 0, 1, ) i.e. for every x, y ∈ R, the order ≤ is defined by x ≤ y if and only if
x · y = x.

Lemma 2. Let (R; +, ·, 0, 1) be a D-quasiring. Then x 7→ 1 + x is an antitone
involution on R.

Proof: Denote by x′ = x+ 1. If we put x = y in (Q7) and apply (I), we obtain
the identity

(N) 1 + (1 + x) = x

proving that x′′ = x. Suppose x ≤ y, i.e. x = x · y. Then, from (Q7), we have

1 + (1 + x) · (1 + y) = y,

whence
(1 + (1 + x) · (1 + y))′ = y′,

i.e.
1 + (1 + (1 + x) · (1 + y)) = 1 + y.

By (N) we obtain
(1 + x) · (1 + y) = 1 + y

which yields (1 + y) ≤ (1 + x), i.e. y′ ≤ x′. Thus the operation ′ is an antitone
involution on R. �

Theorem 4. Let R = (R; +, ·, 0, 1) be a D-quasiring. Define

x ⊓ y = x · y, x′ = 1 + x and x ⊔ y = 1 + (1 + x) · (1 + y).

Then D(R) = (R;⊓,′ , 0, 1) is a bounded directoid with an antitone involution
where ⊔ is the assigned operation.

Proof: As mentioned in Remark 2, (R;⊓, 0, 1) is a bounded directoid. By
Lemma 2, ′ is an antitone involution on R. Further, using (N), we compute

x′ ⊔ y′ = 1 + (1 + x′) · (1 + y′) = 1 + x · y = (x ⊓ y)′

and

x′ ⊓ y′ = (1 + x) · (1 + y) = 1 + (1 + (1 + x) · (1 + y)) = (x ⊔ y)′,

thus D(R) satisfies De Morgan laws and hence ⊔ is the assigned operation. �
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Theorem 5. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution
and ⊔ the assigned operation. Define

x+ y = (x ⊔ y) ⊓ (x ⊓ y)′ and x · y = x ⊓ y.

Then R(D) = (D; +, ·, 0, 1) is a D-quasiring. Moreover, R(D) satisfies the fol-
lowing correspondence identity

(Cor1) (1 + (1 + x) · (1 + y)) · (1 + x · y) = x+ y.

Proof: Since (D;⊓, 0, 1) is a bounded ⊓-directoid, the identities (Q1)–(Q5) hold.
The identity (Q6) is evident. Evidently, 1 + x = (1 ⊔ x) ⊓ (1 ⊓ x)′ = 1 ⊓ x′ = x′.
For (Q7) we use the properties of an antitone involution to compute

1 + (1 + x · y) · (1 + y) = ((x ⊓ y)′ ⊓ y′)′ = y′′ = y.

Using the De Morgan laws we obtain

(1 + (1 + x) · (1 + y)) · (1 + x · y) = (x′ ⊓ y′)′ ⊓ (x ⊓ y)′

= (x ⊔ y) ⊓ (x ⊓ y)′ = x+ y

which is just the identity (Cor1). �

Theorem 6. Let D = (D;⊓,′ , 0, 1) be a bounded directoid with an antitone
involution. Then D(R(D)) = D.
Let R = (R; +, ·, 0, 1) be a D-quasiring satisfying the correspondence identity
(Cor1). Then R(D(R)) = R.

Proof: Evidently, the operation meet coincides in both D(R(D)) and D. Hence,
it remains to prove ∪ = ⊔ and x⋆ = x′ where ∪ is the binary operation and ⋆ the
antitone involution of D(R(D)). We have

x⋆ = 1 + x = (1 ⊔ x) ⊓ (1 ⊓ x)′ = 1 ⊓ x′ = x′

and
x ∪ y = 1 + (1 + x) · (1 + y) = (x′ ⊓ y′)′ = x ⊔ y.

Analogously, the multiplicative operations coincide in the both R(D(R)) and R.
To prove R(D(R)) = R we need only to show that also ⊕ = + where ⊕ is the
additive operation in R(D(R)). Applying (Cor1) we compute

x⊕ y = (x ⊔ y) ⊓ (x ⊓ y)′ = (1 + (1 + x) · (1 + y)) · (1 + x · y) = x+ y.

�
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Example 3. Consider the ⊓ directoid D with an antitone involution ′ and as-
signed operation ⊔ from Example 1 (see Figure 1).

The operation tables of theD-quasiringR(D) corresponding to D are as follows
(see Theorem 5):

· 0 a b c d 1

0 0 0 0 0 0 0

a 0 a 0 a a a

b 0 0 b b b b

c 0 a b c a c

d 0 a b b d d

1 0 a b c d 1

+ 0 a b c d 1

0 0 a b c d 1

a a a c a d d

b b d b c b c

c c a c b d b

d d d b c a a

1 1 d c b a 0

Note that · and + are not commutative. ♦

Remark 3. Let us consider the directoid D = (D;⊓,′ , 0, 1) of Example 1. One
can pick a ⊔ b = d and b ⊔ a = c (and trivially for comparable elements). The
resulting structure (D;⊔) is clearly a ⊔-directoid again but ⊔ is not the assigned
operation of D. Evidently, the De Morgan laws are not satisfied. On the contrary
the structure L = (D;⊔,⊓,′ , 0, 1) still induces a D-quasiring R(L) via x ·y = x⊓y
and x + y = (x ⊔ y) ⊓ (x ⊓ y)′. However, (Cor1) is not satisfied and hence
R 6= R(L(R)).

3. Symmetrical difference

Definition 1. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution
and ⊔ the assigned operation. Let a, b ∈ D. The element a is called a complement
of b if a ⊓ b = 0 and a ⊔ b = 1.

Remark 4. If a is a complement of b then b need not be a complement of a; see
the following

Example 4. A bounded ⊓-directoid with an antitone involution ′ is depicted in
Figure 3 where c ⊓ d = a, d ⊓ c = 0 and 0′ = 1, a′ = d, b′ = c.

Then a is a complement of b but b is not a complement of a since

a ⊔ b = (a′ ⊓ b′)′ = (d ⊓ c)′ = 0′ = 1,

but

b ⊔ a = (b′ ⊓ a′)′ = (c ⊓ d)′ = a′ = d.
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Figure 3

Analogously, d is a complement of c but not vice versa. On the other hand, b is
a complement of c and c is a complement of b. Of course, 0 is a complement of 1
and 1 is a complement of 0. ♦

Lemma 3. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution and
⊔ the assigned operation. Let R(D) = (D; +, ·, 0, 1) be the induced D-quasiring.
Then

(a) a+ b = 1 if and only if a is a complement of b;
(b) a+ b = a ⊔ b if and only if a ⊔ b ≤ a′ ⊔ b′;
(c) if a ≤ b then a+ b = b ⊓ a′.

Proof: (a) Assume a + b = 1. Then (a ⊔ b) ⊓ (a ⊓ b)′ = 1, i.e. a ⊔ b = 1 and
(a ⊓ b)′ = 1, hence a ⊓ b = 0 thus a is a complement of b. The converse is trivial.

(b) If a ⊔ b = a + b = (a ⊔ b) ⊓ (a ⊓ b)′ then a ⊔ b ≤ (a ⊓ b)′ = a′ ⊔ b′. The
converse is evident.

(c) If a ≤ b then a+ b = (a ⊔ b) ⊓ (a ⊓ b)′ = b ⊓ a′. �

Definition 2. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution
and ⊔ the assigned operation. By a symmetrical difference of x, y is meant the
term function

x△y = (x′ ⊓ y) ⊔ (x ⊓ y′).

We can get a mutual relationship between the symmetrical difference and the
operation + of the induced D-quasiring as follows:

Lemma 4. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution and
⊔ the assigned operation. Then x△y = (x+ y′)′ and x+ y = (x△y′)′.

Proof: Using the De Morgan laws, we infer directly

(x△y′)′ = ((x′ ⊓ y′) ⊔ (x ⊓ y))′ = (x ⊔ y) ⊓ (x ⊓ y)′ = x+ y
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and

(x+ y′)′ = ((x ⊔ y′) ⊓ (x ⊓ y′)′)′ = (x ⊔ y′)′ ⊔ (x ⊓ y′)

= (x′ ⊓ y) ⊔ (x ⊓ y′) = x△y.

�

Lemma 5. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution and
⊔ the assigned operation. Then

(a) x△y = 0 if and only if x′ is a complement of y;
(b) x△x = 0 if and only if x′△x′ = 0 if and only if x′ is a complement of x;
(c) 1△x = x△1 = x′.

Proof: (a) Assume x△y = 0. Then (x′ ⊓ y) ⊔ (x ⊓ y′) = 0 thus also x′ ⊓ y = 0
and x ⊓ y′ = 0, whence x′ ⊔ y = (x ⊓ y′)′ = 0′ = 1, i.e. x′ is a complement of
y. Conversely, if x′ is a complement of y then x′ ⊓ y = 0 and x′ ⊔ y = 1, i.e.
x ⊓ y′ = (x′ ⊔ y)′ = 1′ = 0 and hence x△y = 0.
(b) The first implication follows directly from the definition of symmetrical

difference and (a) immediately yields the second.
(c) 1△x = (1′ ⊓ x) ⊔ (1 ⊓ x′) = x′; analogously x△1 = x′. �

We are able to show that the symmetrical difference can also serve as an addi-
tive operation in a certain induced D-quasiring.

Theorem 7. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution
and ⊔ the assigned operation. Let△ be the symmetric difference. Then R∗(D) =
(D;△,⊓, 0, 1) is a D-quasiring.

Proof: It is trivial to verify the axioms (Q1)–(Q5). For (Q6) we have

x△0 = (x′ ⊓ 0) ⊔ (x ⊓ 0′) = 0 ⊔ x = x.

It remains to prove (Q7). By Lemma 5 (c) we have

1△(1△(x ⊓ y)) ⊓ (1△y) = ((x ⊓ y)′ ⊓ y′)′ = y′′ = y.

�

Lemma 6. LetD = (D;⊓,′ , 0, 1) be a directoid with an antitone involution and ⊔
the assigned operation. The D-quasiring R∗(D) = (D;△, ·, 0, 1) with x ·y = x⊓y
satisfies the identity

(Cor2) 1△(1△(1△x) · y) · (1△x · (1△y)) = x△y.
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Proof: By using Lemma 5 (c) and the De Morgan laws we compute

1△(1△(1△x) · y) · (1△x · (1△y)) = ((x′ ⊓ y)′ ⊓ (x ⊓ y′)′)′

= (x′ ⊓ y) ⊔ (x ⊓ y′) = x△y.
�

The following result is a counterpart of Theorem 6 and can be proved analo-
gously:

Theorem 8. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution, ⊔
the assigned operation and △ the symmetrical difference. Then D(R∗(D)) = D.
Let R = (R;△, ·, 0, 1) be a D-quasiring satisfying (Cor2). Then R∗(D(R)) = R.

4. A decompositions of directoids

Define aC b if b = (b⊓a)⊔ (b⊓a′). An element a ∈ D is called central if aC x
and a′ C x for each x ∈ D. Denote by C(D) the set of all central elements of a
directoid D = (D;⊓,′ , 0, 1). Hence,

(C) a ∈ C(D) iff x = (x ⊓ a) ⊔ (x ⊓ a′) = (x ⊓ a′) ⊔ (x ⊓ a)

for each x ∈ D.

Lemma 7. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution and
⊔ the assigned operation. Then

(a) if b ≤ a then aC b;
(b) 0, 1 ∈ C(D);
(c) if a ∈ C(D) then a′ is a complement of a and a is a complement of a′;
(d) if a ∈ C(D) then

(x ⊔ a′) ⊓ (x ⊔ a) = x = (x ⊔ a) ⊓ (x ⊔ a′)

for each x ∈ D.

Proof: (a) If b ≤ a then (b ⊓ a) ⊔ (b ⊓ a′) = b ⊔ (b ⊓ a′) = b.
(b) Of course, x = (x ⊓ 1) ⊔ (x ⊓ 0) = (x ⊓ 0) ⊔ (x ⊓ 1) for each x ∈ D.
(c) Take x = 1 in (C). Then

1 = (1 ⊓ a) ⊔ (1 ⊓ a′) = a ⊔ a′

and
1 = (1 ⊓ a′) ⊔ (1 ⊓ a) = a′ ⊔ a.

Due to De Morgan laws, we have that a′ is a complement of a and vice versa.
(d) We compute

(x ⊔ a′) ⊓ (x ⊔ a) = (x′ ⊓ a)′ ⊓ (x′ ⊓ a′)′ = ((x′ ⊓ a) ⊔ (x′ ⊓ a′))′ = x′′ = x.

The second equation can be shown analogously. �
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Definition 3. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution
and ⊔ the assigned operation. Denote by Is(D) the set of all elements a ∈ D such
that

(i) (x ⊓ y) ⊓ a = (x ⊓ a) ⊓ (y ⊓ a), (x ⊓ y) ⊓ a′ = (x ⊓ a′) ⊓ (y ⊓ a′);
(ii) (x ⊔ y) ⊓ a = (x ⊓ a) ⊔ (y ⊓ a), (x ⊔ y) ⊓ a′ = (x ⊓ a′) ⊔ (y ⊓ a′).

It is clear that 0, 1 ∈ Is(D) in any case.

Remark 5. It is immediate that a ∈ Is(D) if and only if a′ ∈ Is(D) and a ∈ C(D)
if and only if a′ ∈ C(D).

Lemma 8. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution and
⊔ the assigned operation. Then

(a) if a ∈ Is(D) then x ≤ y ⇒ x ⊓ a ≤ y ⊓ a;
(b) if a ∈ C(D) ∩ Is(D) then

(x ⊓ a)′ ⊓ a = x′ ⊓ a and (x ⊓ a′)′ ⊓ a′ = x′ ⊓ a′.

Proof: (a) If x ≤ y then x⊓y = x and, by (i) of Definition 3, x⊓a = (x⊓y)⊓a =
(x ⊓ a) ⊓ (y ⊓ a) thus x ⊓ a ≤ y ⊓ a.
(b) Of course, (x ⊓ a)′ ⊓ a = (x′ ⊔ a′) ⊓ a. By (ii) of Definition 3, we have

(x′ ⊔ a′) ⊓ a = (x′ ⊓ a) ⊔ (a′ ⊓ a) and, due to Lemma 7(c), a′ ⊓ a = 0. Hence
(x ⊓ a)′ ⊓ a = x′ ⊓ a. The second equality is established similarly. �

Theorem 9. Let D = (D;⊓,′ , 0, 1) be a directoid with an antitone involution
and ⊔ the assigned operation. Let a ∈ C(D) ∩ Is(D). Define

x∗ = x′ ⊓ a and x+ = x′ ⊓ a′.

Then D1 = ((a];⊓,
∗ , 0, a) and D2 = ((a

′];⊓,+ , 0, a′) are bounded directoids with
an antitone involution and D is isomorphic to D1 ×D2 where the isomorphism is
defined by ϕ(x) = (x ⊓ a, x ⊓ a′).
Conversely, let D be isomorphic with D1 × D2 where D1, D2 are directoids

with an antitone involution. Then there exists a ∈ C(D) ∩ Is(D) such that
D1 ∼= ((a],⊓,

∗ , 0, a) and D2 ∼= ((a
′],⊓,+ , 0, a′).

Proof: Evidently, if x, y ∈ (a] then x ⊓ y ≤ x ≤ a thus also x ⊓ y ∈ (a], i.e.
((a];⊓) is a directoid as well as ((a′];⊓).
Let x ∈ (a]. Then x ≤ a, i.e. x ⊔ a = a and, by Lemma 7(d),

x∗∗ = (x′ ⊓ a)′ ⊓ a = (x ⊔ a′) ⊓ (x ⊔ a) = x.

Thus D1 = ((a];⊓,
∗ , 0, a) is a bounded directoid with the involution ∗. Since

x ≤ y implies y′ ≤ x′ and a ∈ Is(D), also

y∗ = y′ ⊓ a ≤ x′ ⊓ a = x∗



Directoids with an antitone involution 567

by (a) of Lemma 8, thus this involution is antitone. Similarly it can be shown for
D2 = ((a

′];⊓,+ , 0, a′).

Now, define ϕ : D → D1 × D2 by ϕ(x) = (x ⊓ a, x ⊓ a′). Moreover, define
ψ : D1 ×D2 → D by ψ((x, y)) = x ⊔ y. Since a ∈ C(D), we infer

ψ(ϕ(x)) = (x ⊓ a) ⊔ (x ⊓ a′) = x,

i.e., ϕ is an injective mapping. Suppose (x, y) ∈ D1 ×D2. Then x ≤ a, y ≤ a′

and by (ii) of Definition 3, we have

ϕ(ψ((x, y))) = ϕ(x ⊔ y) = ((x ⊔ y) ⊓ a, (x ⊔ y) ⊓ a′)

= ((x ⊓ a) ⊔ (y ⊓ a), (x ⊓ a′) ⊔ (y ⊓ a′)) = (x ⊔ (y ⊓ a), (x ⊓ a′) ⊔ y).

Since a, a′ ∈ Is(D), y ≤ a′ we obtain (according to (a) of Lemma 8) that

y ⊓ a ≤ a′ ⊓ a = 0

and therefore y⊓a = 0. Analogously, x⊓a′ = 0. Hence, ϕ(ψ((x, y))) = (x⊔0, 0⊔
y) = (x, y). Thus, ϕ is a bijection and ψ = ϕ−1.

It remains to prove that ϕ is a homomorphism. Clearly,

ϕ(b) ⊓ ϕ(c) = (b ⊓ a, b ⊓ a′) ⊓ (c ⊓ a, c ⊓ a′)

= ((b ⊓ a) ⊓ (c ⊓ a), (b ⊓ a′) ⊓ (c ⊓ a′)) = ((b ⊓ c) ⊓ a, (b ⊓ c) ⊓ a′) = ϕ(b ⊓ c)

according to (i) of Definition 3. Further, using of Lemma 8(b), we obtain

ϕ(b)′ = (b ⊓ a, b ⊓ a′)′ = ((b ⊓ a)∗, (b ⊓ a′)+)

= ((b ⊓ a)′ ⊓ a, (b ⊓ a′)′ ⊓ a′) = (b′ ⊓ a, b′ ⊓ a′) = ϕ(b′).

Hence, ϕ is an isomorphism of D onto D1 ×D2.

Conversely, let D1 = (D;⊓,
∗ , 01, 11) and D2 = (D;⊓,

+ , 02, 12) be directoids
with antitone involutions and D is isomorphic to D1×D2. It is an easy exercise to
verify that elements a = (11, 02) and (01, 12) belong to C(D1×D2)∩ Is(D1×D2)
and (01, 12) = a′ in D1 × D2. Of course, D1 ∼= D1 = ((a];⊓,

∗ , (01, 02), a) and
D2 ∼= D2 = ((a

′];⊓,+ , (01, 02), a
′) and hence also D ∼= D1 ×D2. �

Remark 6. If D = (D;⊓,′ , 0, 1) is a semilattice with an antitone involution then
every element satisfies (i) of Definition 3 and (a) of Lemma 8.
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Example 5. Let D = (D;⊓,′ , 0, 1) be the ⊓-directoid with an antitone involution
as shown in Example 4 (see Figure 3). Let ⊔ be its assigned operation. Then
b /∈ C(D) and c /∈ C(D), because

d 6= (d ⊓ b) ⊔ (d ⊓ b′) = b ⊔ 0 = b

and
d 6= (d ⊓ c) ⊔ (d ⊓ c′) = 0 ⊔ b = b.

Due to Lemma 7(c) also a /∈ C(D), d /∈ C(D). Further, elements c and d do not
belongs to Is(D), since

a = a ⊓ c = (a ⊓ d) ⊓ c 6= (a ⊓ c) ⊓ (d ⊓ c) = a ⊓ 0 = 0

and
d = 1 ⊓ d = (a ⊔ b) ⊓ d 6= (a ⊓ d) ⊔ (b ⊓ d) = a ⊔ b = 1.

Hence also b = c′ /∈ Is(D) and a = d′ /∈ Is(D). Thus C(D) = Is(D) = {0, 1}.
On the contrary, let Figure 3 be now the Hasse diagram of the lattice L =

(L;∧,∨) with a two binary operations join and meet. Then L is as a direct
product of the two-element and three-element chains.

For the non-trivial decomposition of directoid let us see the following

Example 6. Consider the ⊓-directoid D = (D;⊓) whose diagram is drawn in
Figure 4 where m ⊓ n = k, n ⊓m = l, s ⊓ t = q, t ⊓ s = r and trivially for the
other couples.
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Define an antitone involution x 7→ x′ on D as follows

x 0 k l p q r

x′ 1 t s o n m
.

One can easily check that a = p, a′ = o ∈ C(D) ∩ Is(D). Therefore, D ∼=
D1 ×D2 for D1 = ((a],⊓,

∗ , 0, a) and D2 = ((a
′],⊓,+ , 0, a′).
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[6] Ježek J., Quackenbush R., Directoids: algebraic models of up-directed sets, Algebra Uni-
versalis 27 (1990), 49–69.

[7] Kopytov V.M., Dimitrov Z.I., On directed groups, Siberian Math. J. 30 (1989), 895–902;
(Russian original: Sibirsk. Mat. Zh. 30 (1988), no. 6, 78–86).

[8] Leutola K., Nieminen J., Posets and generalized lattices, Algebra Universalis 16 (1983),
344–354.

[9] Nieminen J., On distributive and modular χ-lattices, Yokohama Math. J. 31 (1983), 13–20.
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