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A note on finitely generated

ideal-simple commutative semirings

Vı́tězslav Kala, Tomáš Kepka

Abstract. Many infinite finitely generated ideal-simple commutative semirings are addi-
tively idempotent. It is not clear whether this is true in general. However, to solve the
problem, one can restrict oneself only to parasemifields.

Keywords: semiring, ideal, simple

Classification: 16Y60

It is known that every finitely generated commutative ring is a Hilbert ring.
Using this (and some other classical results) one easily shows that a (commutative)
field is finite provided that it is finitely generated as a ring. Now, a ring is finitely
generated if and only if it is finitely generated as a semiring; a ring is ideal-simple
if and only if it is congruence-simple. Of course, simple commutative rings are
just fields and zero-multiplication rings of finite prime order. Consequently, every
finitely generated simple commutative ring is finite. On the other hand, setting
a⊕ b = min(a, b) and a⊙ b = a+ b for all a, b ∈ Z, we get an infinite commutative
semiring that is both ideal- and congruence-simple and that is finitely generated.
This semiring is additively idempotent and it is known that every infinite finitely
generated congruence-simple commutative semiring is additively idempotent. On
the other hand, it seems to be an open problem whether this remains true in
the ideal-simple case. The aim of this short note is to reduce the question to
a special case of semirings — those whose multiplicative semigroups are groups
(such semirings are called parasemifields in the present note). We are going to
show that the following two statements are equivalent.

(a) Every infinite finitely generated ideal-simple commutative semiring is ad-
ditively idempotent.

(b) Every (commutative) parasemifield that is finitely generated as a semiring
is additively idempotent.

(Notice that (a) implies (b) trivially.)

This work is a part of the research project MSM00210839 financed by MSMT and partly
supported by the Grant Agency of the Czech Republic, grant number 201/05/0002.
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1. Introduction

A semiring is a non-empty set supplied with two associative operations (addi-
tion and multiplication) where the addition is commutative and the multiplication
distributes over the addition from both sides. A semiring is a ring if the addition
defines an abelian group.
Let S be a semiring. A non-empty subset I of S is an ideal if (I+I)∪SI∪IS ⊆

I. The semiring is called ideal-simple if S is non-trivial and I = S whenever I is an
ideal containing at least two elements. The semiring S is called congruence-simple
if there are just two congruences on S.
The following lemma is obvious.

1.1 Lemma. The following conditions are equivalent for a ring R.

(i) R is ideal-simple as a ring.
(ii) R is ideal-simple as a semiring.
(iii) R is congruence-simple as a ring.
(iv) R is congruence-simple as a semiring.

(And then R is called simple.)

Every two element semiring is both ideal- and congruence-simple and it is easy
to see there are exactly ten two element semirings (up to isomorphism). The
following eight of them are commutative:

S1 S2
+ 0 1
0 0 0
1 0 0

· 0 1
0 0 0
1 0 0

+ 0 1
0 0 0
1 0 0

· 0 1
0 0 0
1 0 1

S3 S4
+ 0 1
0 0 0
1 0 1

· 0 1
0 0 0
1 0 0

+ 0 1
0 0 0
1 0 1

· 0 1
0 1 1
1 1 1

S5 S6
+ 0 1
0 0 0
1 0 1

· 0 1
0 0 1
1 1 1

+ 0 1
0 0 0
1 0 1

· 0 1
0 0 0
1 0 1

S7 S8
+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 0

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Notice that S1 and S2 are additively constant, S3, S4, S5 and S6 are additively
idempotent and S7 and S8 are rings. Moreover, S1, S3, S4 and S7 are multiplica-
tively constant and S2, S5, S6 and S8 are multiplicatively idempotent.
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The following lemma is easy to prove.

1.2 Lemma. Let S be a non-trivial semiring containing an element w such that
T = S\{w} is a subgroup of the multiplicative semigroup of S.

(i) If w is multiplicatively neutral (i.e., w = 1S), then T is a subsemiring
of S.

(ii) If w is multiplicatively absorbing but not additively absorbing, then w is
additively neutral (i.e., w = 0S) and either S is a division ring or T is a
subsemiring of S.

(iii) If |S| ≥ 3 and w is neither multiplicatively neutral nor multiplicatively
absorbing then there exists v ∈ T such that wx = vx and xw = xv for
every x ∈ S.

2. Introduction continued

Only commutative semirings will be dealt with in the rest of the paper, and
hence the word ‘semiring’ will always mean a commutative semiring.
In this note, a semiring S will be called a parasemifield if the multiplicative

semigroup of S is a non-trivial group. Clearly, each parasemifield is ideal-simple
(in fact, ideal-free).
A non-trivial semiring S will be called a semifield if there exists an element

w ∈ S such that w is multiplicatively absorbing (then w is determined uniquely)
and the set S\{w} is a subgroup of the multiplicative semigroup of S. Clearly,
every semifield is ideal-simple.
We have the following basic classification of ideal-simple semirings (see e.g. [1,

11.2]):

2.1 Theorem. A semiring S is ideal-simple if and only if it is of at least (and
then just) one of the following five types:

(1) S ≃ S1, S3, S4;
(2) S is a zero-multiplication ring of finite prime order;
(3) S is a field;
(4) S is a proper semifield;
(5) S is a parasemifield.

2.2 Proposition ([1, 14.3]). Every infinite finitely generated congruence-simple
semiring is additively idempotent.

2.3 Proposition ([1, 14.5]). No infinite finitely generated ideal-simple semiring
is additively cancellative.

2.4 Example. (i) The parasemifield Q+ × Q+ (where Q denotes the field of
rational numbers) is ideal-simple but not congruence-simple.

(ii) Denote by W the set of real numbers of the form m−n
√
2, where m, n are

non-negative integers and m+ n ≥ 1. Put a⊕ b = min(a, b) and a⊙ b = a+ b for
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all a, b ∈ W . Then W (⊕,⊙) is an infinite finitely generated congruence-simple
semiring that is not ideal-simple. This semiring is additively idempotent and
multiplicatively cancellative.

3. Semifields

In the following three lemmas, let S be a non-trivial semiring and let w ∈ S
be such that T = S\{w} is a subgroup of the multiplicative semigroup S(·).
3.1 Lemma. If 1T w = w then Sw = w (i.e., w is multiplicatively absorbing)
and S is a semifield.

Proof: If aw = v 6= w for some a ∈ T , then w = 1T w = a−1aw = a−1v ∈ T ,
a contradiction. Consequently, Tw = w and it remains to show that ww = w.
Assume that ww = u ∈ T . Then 1T = u−1u = u−1ww = ww = u according to

the preceding part of the proof, and therefore ww = 1T and a = a1T = aww =
ww = 1T for every a ∈ T . Thus we have shown that S = {w, 1T } and that S has
the following multiplication table:

w 1T
w 1T w
1T w 1T

Therefore w(w + 1T ) = ww +w1T = 1T +w, a contradiction since wz 6= z for
every z ∈ S. �

3.2 Lemma. Assume that 1T w = z ∈ T and ww ∈ T . Then

(i) T is a subsemiring of S;
(ii) if |T | = 1 then S ≃ S1, S3, S4, S7;.
(iii) if |T | ≥ 2 then T is a parasemifield (and so T is infinite);
(iv) aw = az for every a ∈ T ;
(v) ww = zz;
(vi) Sw ⊆ T and T is an ideal of S;
(vii) if a ∈ T then either w + a = z + a ∈ T or w + a = w and z + a = z;
(viii) if w + w ∈ T then w + w = z + z;
(ix) if w + w = w then S is additively idempotent.

Proof: If a, b ∈ T are such that a + b = w, then w = a + b = a1T + b1T =
(a + b)1T = w1T = z, a contradiction. Thus T + T ⊆ T and T is a subsemiring
of S. Further, aw = a1T w = az, a ∈ T, and ww = ww1T = wz = zz. The rest is
easy. �

3.3 Lemma. Assume that 1T w = z ∈ T and ww = w. Then

(i) T is a subsemiring of S;
(ii) if |T | = 1 then S ≃ S2, S5, S6, S8;
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(iii) if |T | ≥ 2 then T is a parasemifield (and so T is infinite);
(iv) z = 1T ;
(v) wv = v for every v ∈ S (i.e., w = 1S);
(vi) T is an ideal of S;
(vii) if a ∈ T then either w + a = 1T + a ∈ T or w + a = w and 1T + a = 1T ;
(viii) if w + w ∈ T then w + w = 1T + 1T ;
(ix) if w + w = w then S is additively idempotent.

Proof: Similar to that of 3.2. �

3.4 Lemma. Let S be a non-trivial semiring and let w1, w2 ∈ S be such that both
T1 = S\{w1} and T2 = S\{w2} are subgroups of the multiplicative semigroup
S(·). Then either w1 = w2 or |S| = 2 and S ≃ S2, S5, S6, S8.

Proof: Assume that w1 6= w2. If |S| = 2 then S = {1T1 , 1T2}, and hence S
is multiplicatively idempotent. If |S| ≥ 3 then T1 ∩ T2 6= ∅. Now, w1 ∈ T2
and there is a ∈ T2 such that w1a ∈ T1 ∩ T2. Moreover, w1ab = 1T1 for some
b ∈ T1 and cw1 = 1T2 for some c ∈ T2. Then c1T1 = cw1ab = 1T2ab = ab and
1T21T1 = w1c1T1 = w1ab = 1T1 . Similarly we get 1T21T1 = 1T2 , and therefore
1T1 = 1T2 = 1T is a multiplicatively neutral element of S. Then every element
from S has an inverse, and so S is a group, a contradiction (see 3.1 and 3.2). �

3.5 Proposition. Let S be a non-trivial semiring and let w ∈ S be such that
the set S\{w} is a subgroup of S(·). Then S is a semifield (i.e., Sw = w) in each
of the following cases:

(1) 1T w = w;
(2) ww = w and 1T w 6= 1T ;
(3) S 6≃ S1, S7, S is not additively idempotent and Q+ is not isomorphic to a

subsemiring of S;
(4) S is finite, S 6≃ S1, S7 and S is not additively idempotent.

Proof: Combine 3.1, 3.2 and 3.3. �

4. Semifields continued

4.1. Let T be a parasemifield. Then 0 /∈ T ; let S = T ∪ {0}, x+ 0 = x = 0 + x
and x0 = 0 = 0x for every x ∈ S. In this way we get a semifield (containing T as
a semiring), which will be denoted X(T ) in the sequel.

4.1.1 Lemma. (i) X(T ) is additively idempotent (resp. additively cancellative)
if and only if T is such.

(ii) A subset M of X(T ) generates X(T ) as a semiring if and only if 0 ∈ M
and M ∩ T generates T as a semiring (then |M | ≥ 2).

(iii) X(T ) is a finitely generated semiring if and only if T is such.
(iv) X(T ) is not a one-generated semiring; it is a two-generated semiring if and

only if T is a one-generated semiring.
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Proof: Easy to see. �

4.2. Let A(·) be a non-trivial abelian group, o /∈ A, S = A∪{o}, x+o = o = o+x,
x ∈ S; a + a = a and a + b = o, a, b ∈ A, a 6= b. Moreover, xo = o = ox, x ∈ S.
In this way we get an additively idempotent semifield which will be denoted
as V(A(·)).
4.2.1 Lemma. (i) A subset M of V(A(·)) generates V(A(·)) as a semiring if

and only if M ∩ A generates A(·) as a semigroup.
(ii) V(A(·)) is a finitely generated semiring if and only if A(·) is a finitely
generated group.

(iii) V(A(·)) is a one-generated semiring if and only if A(·) is a one-generated
semigroup. This is equivalent to the fact that A(·) is a finite cyclic group.

(iv) V(A(·)) is generated by a two-element set containing the unit element if
and only if A(·) is a finite cyclic group (see (iii)).

Proof: Easy to see. �

4.3. Let T be a parasemifield, o /∈ T , S = T ∪ {o}, x+ o = o+ x = xo = ox = o
for every x ∈ S. In this way we get a semifield which will be denoted as U(T ).

4.3.1 Lemma. (i) U(T ) is additively idempotent if and only if T is such.
(ii) A subset M of U(T ) generates U(T ) as a semiring if and only if o ∈ M
and M ∩ T generates T as a semiring (then |M | ≥ 2).

(iii) U(T ) is a finitely generated semiring if and only if T is such.
(iv) U(T ) is not a one-generated semiring; it is a two-generated semiring if and

only if T is a one-generated semiring.

Proof: Easy to see. �

4.4. Let T be a parasemifield and let the multiplicative group T (·) be a proper
subgroup of an abelian group A(·), o /∈ A. Put S = A ∪ {o} and define
a) x+ o = o = o+ x, x ∈ S;
b) a+ b = o, a, b ∈ A, a−1b /∈ T ;
c) c+ d = (1T + c−1d)c(= (1T + d−1c)d), c, d ∈ A, c−1d ∈ T .

Moreover, put xo = o = ox, x ∈ S. In this way we get a semifield which will
be denoted as W(T, A(·)).
4.4.1 Lemma. (i) T is a subsemiring of W(T, A(·)).
(ii) W(T, A(·)) is additively idempotent if and only if T is such.
(iii) A subsetM of W(T, A(·)) generates it as a semiring if and only if M\{o}

generates S.

Proof: Easy to see. �
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4.4.2 Lemma. If the semiring W(T, A(·)) is generated by a1, . . . , am ∈ A, m ≥
1, then the factorgroup A(·)/T (·) is generated by the cosets a1T, . . . , amT as
a semigroup.

Proof: Let a ∈ A. Then a = b1 + · · ·+ bn, n ≥ 1, bj = a
k1,j
1 · · · akm,j

m , ki,j ≥ 0.
If b−1j1

bj2 /∈ T for some 1 ≤ j1 < j2 ≤ n, then bj1 + bj2 = o and so a = o,

a contradiction. Thus b−1j1
bj2 ∈ T , and so bj = cjb1, cj ∈ T . Then a = cb1,

c = c1 + · · ·+ cn and aT = b1T . The rest is clear. �

4.4.3 Lemma. Let a1, . . . , am ∈ A, m ≥ 1, be such that the factorgroup
A(·)/T (·) is generated by the cosets a1T, . . . , amT as a semigroup. Denote by
B the subsemigroup of A(·) generated by the elements a1, . . . , am. Then for

every a ∈ A there are b ∈ B and c ∈ T such that a = bc.

Proof: Obvious. �

4.4.4 Lemma. If W(T, A(·)) is a finitely generated semiring then T is also.

Proof: Let the semiring be generated by a1, . . . , am ∈ A, m ≥ 1. Denote by B
the subsemigroup of A(·) generated by these elements. Then C = BB−1 ∩ T is a
finitely generated subgroup of T (·), and hence the subsemiring T1 of T generated
by C is a finitely generated semiring. It remains to show that T = T1.
Let a ∈ T . Then a = b1 + · · ·+ bn, n ≥ 1, bj ∈ B, bj = cjb1, cj = bjb

−1
1 ∈ C

(see the proof of 4.4.2), and therefore a = cb1, c = c1 + · · ·+ cn ∈ T1. Of course,
b1 = c−1a ∈ B ∩ T ⊆ C ⊆ T1 and so a, b1, . . . , bn ∈ T1. �

4.4.5 Lemma. W(T, A(·)) is a finitely generated semiring if and only if T is a
finitely generated semiring and A(·)/T (·) is a finitely generated group.
Proof: Combine 4.4.2, 4.4.3 and 4.4.4. �

4.4.6 Remark. Assume that W(T, A(·)) is generated by a single element s as a
semiring, denote 1W = 1W(T,A(·)). We have s ∈ A; B = {s, s2, s3, . . . } is the sub-
semigroup ofA(·) generated by s andBB−1 = {. . . , s−3, s−2, s−1, 1W, s, s2, s3, . . . }
is the subgroup generated by s. Notice that s 6= 1W.
(i) For every a ∈ A there are m ≥ 1 and 1 ≤ k1 ≤ · · · ≤ km such that

a = sk1 + sk2 + · · · + skm = sk1b, b = 1W + sk2−k1 + · · · + skm−k1 . Since
a 6= o, we have sk2−k1 , . . . , skm−k1 ∈ T and so b ∈ T . Moreover, if a ∈ T then
sk1 = ab−1 ∈ T and consequently sk1 , sk2 , . . . , skm ∈ T .

(ii) It follows from (i) that D = B ∩ T 6= ∅ and so D is a subsemigroup
and C = DD−1 a subgroup of T (·). Consequently, there is n ≥ 0 such that
C = {. . . , s−3n, s−2n, s−n, 1W, sn, s2n, s3n, . . . }.
(iii) Denote by T1 the subsemiring of T generated by s−n and sn. It follows

from (i) and (ii) that T1 = T . Consequently, n ≥ 1 and T is a two-generated
semiring.
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(iv) The factorgroup A(·)/T (·) is generated by the coset sT as a semigroup.
Thus A(·)/T (·) is a finite cyclic group.
(v) Proceeding similarly as above, one can show that (iii) and (iv) remain true

if W(T, A(·)) is generated by 1W and s as a semiring.

4.5 Theorem. Let S be a semifield and let w ∈ S be such that w is multiplica-
tively absorbing and T = S\{w} is a subgroup of S(·). Then just one of the
following eight cases takes place:

(1) S ≃ S2 (and w is bi-absorbing);
(2) S ≃ S5 (and w is additively neutral);
(3) S ≃ S6 (and w is bi-absorbing);
(4) T is a subparasemifield of S and S ≃ X(T ) (and w is additively neutral);
(5) |S| ≥ 3 and S ≃ V(T (·)) (and w is bi-absorbing and S is additively
idempotent);

(6) T is a subparasemifield of S and S ≃ U(T ) (and w is bi-absorbing);
(7) T1 = {a ∈ T |a + 1T 6= w} is a subparasemifield of S, T1 6= T , and

S ≃ W(T1, T (·)) (and w is bi-absorbing);
(8) S is a field.

Proof: Easy (use 3.1, 3.2 and 3.3). �

5. Summary

5.1 Summary. Combining 2.1, 4.5, 4.1.1 (i), (iii), 4.2, 4.3.1 (i), (iii), 4.4.1(ii)
and 4.4.4, we conclude that the following two assertions are equivalent.

(a) Every infinite finitely generated ideal-simple semiring is additively idem-
potent.

(b) Every parasemifield that is finitely generated as a semiring is additively
idempotent.

5.2 Remark. Let F be a field. If F is a finitely generated ring then F is finite. If
F is finite then the multiplicative group F\{0} is cyclic, and hence F is generated
by one element as a semiring.

5.3 Remark. Let S be a one-generated ideal-simple semiring. Combining 2.1,
4.5, 4.1.1(iv), 4.2.1(iii), 4.3.1(iv), 4.4.6 and 5.2, we get that one of the following
cases takes place:

(1) S ≃ S1, S3, S4;
(2) S is a zero multiplication ring of finite prime order;
(3) S is a finite field;
(4) S ≃ V(A(·)), where A(·) is a non-trivial finite cyclic group;
(5) S ≃ W(T, A(·)), where T is a two-generated parasemifield and A(·)/T (·)
is a (non-trivial) finite cyclic group;

(6) S is a parasemifield.
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