Commentationes Mathematicae Universitatis Carolinae

Piroska Csörgö

On loops that are abelian groups over the nucleus and Buchsteiner loops

Commentationes Mathematicae Universitatis Carolinae, Vol. 49 (2008), No. 2, 197--208

Persistent URL: http://dml.cz/dmlcz/119715

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2008

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

On loops that are abelian groups over the nucleus and Buchsteiner loops

Piroska Csörgő

Abstract

We give sufficient and in some cases necessary conditions for the conjugacy closedness of $Q / Z(Q)$ provided the commutativity of Q / N. We show that if for some loop $Q, Q / N$ and $\operatorname{Inn} Q$ are abelian groups, then $Q / Z(Q)$ is a CC loop, consequently Q has nilpotency class at most three. We give additionally some reasonable conditions which imply the nilpotency of the multiplication group of class at most three. We describe the structure of Buchsteiner loops with abelian inner mapping groups.

Keywords: conjugacy closed loops, Buchsteiner loops
Classification: 20D10, 20N05

1. Introduction

Q is a loop if it is a quasigroup with neutral element 1. The mappings $L_{a}(x)=$ $a x$ (left translation) and $R_{a}(x)=x a$ (right translation) are permutations of Q for every $a \in Q$. The permutation group generated by left and right translations $\operatorname{Mlt}(Q)=\left\langle L_{a}, R_{a} \mid a \in Q\right\rangle$ is called the multiplication group of Q. Denote by $\operatorname{Inn}(Q)$ the stabilizer of the neutral element, and call it the inner mapping group of the loop Q.

In this paper we generalize the results obtained in [3] concerning the properties of loops such that the factor loop over the nucleus is an abelian group. The motivation of [3] was the theory of Buchsteiner loops ([2], [6], [7], [9] and partly [10]). We give sufficient and in some cases necessary conditions for the conjugacy closedness of $Q / Z(Q)$ provided the commutativity of Q / N.

Then we study the case of abelian inner mapping group. In 1946 Bruck [1] proved that if Q is a loop of nilpotency class at most two then $\operatorname{Inn} Q$ is abelian. In the nineties Kepka and Niemenmaa [13], [14] showed that a finite loop with abelian inner mapping group must be nilpotent, but they did not establish an upper bound on the nilpotency class of the loop. For a long time the prevailing opinion was that every loop Q with abelian $\operatorname{Inn} Q$ has nilpotency class at most two, i.e. that the converse of Bruck's result is true.

However, in 2004 Csörgő [8] constructed a nilpotent loop of order 128 such that the inner mapping group is abelian and the nilpotency class is equal to three. In this loop the nucleus is a normal subloop, and the factor over the nucleus is
isomorphic to an abelian group. Later Drápal and Vojtěchovský [11] by analyzing the loop of this example developed a method by which they could construct many other examples.

In this paper we shall show (Theorem 3.14) that if Q / N is an abelian group and $\operatorname{Inn} Q$ is also an abelian group, then $Q / Z(Q)$ is a group and Q is nilpotent of class at most three. Note that Drápal and Kinyon [9] produced a Buchsteiner loop of order 128 that is of nilpotency class three and possesses an abelian inner mapping group. Let us also remark that recently Nagy and Vojtěchovský [12] constructed a Moufang 2-loop of order 2^{14} of nilpotency class three with abelian inner mapping group.

We shall also show that some conditions that are satisfied by Buchsteiner loops imply that the nilpotency class of the multiplication group is at most three. We shall then apply our results to Buchsteiner loops with abelian inner mapping groups, giving a structural description for both the loops and their multiplication groups.

We prove our results by applying the theory of connected transversals. This concept was introduced by Niemenmaa and Kepka [13]. Using their characterization theorem we can transform loop theoretical problems into group theoretical problems.

2. Basic definitions and results

Let Q be a loop. Set $A=\left\{L_{c} \mid c \in Q\right\}, B=\left\{R_{d} \mid d \in Q\right\}$. Then A and B are left transversals to $\operatorname{Inn} Q$ in $\operatorname{Mlt} Q,\langle A, B\rangle=\operatorname{Mlt} Q,[A, B] \leq \operatorname{Inn} Q$ and $\operatorname{core}_{\operatorname{Mlt}(Q)} \operatorname{Inn}(Q)=1$ (i.e. the largest normal subgroup of $\operatorname{Mlt} Q$ in $\operatorname{Inn} Q$ is trivial).

Conversely, consider a group G with the following properties: H is a subgroup of G, A and B are left transversals to H in $G . A$ and B are H-connected transversals by definition, if $[A, B] \leq H$.

By a result of Kepka and Niemenmaa [13], the above two situations are equivalent:

Theorem 2.1. A group G is isomorphic to the multiplication group of a loop if and only if there is a subgroup H, for which there exist H-connected transversals A and B such that $\langle A, B\rangle=G$ and $\operatorname{core}_{G} H=1$.

Let Q be a loop and S be a normal subloop of Q. Put $\mathcal{M}(S)=\left\langle L_{c}, R_{c} \mid c \in S\right\rangle$. Then $\mathcal{M}(S) \operatorname{Inn} Q \leq \operatorname{Mlt} Q$ (this is a standard fact). Put $C(S)=\operatorname{core}_{\text {Mlt } Q} \mathcal{M}(S) \operatorname{Inn} Q$. Denote by f the natural homomorphism of Mlt Q onto Mlt $Q / C(S)$. Then $f(A)$ and $f(B)$ are $f(\operatorname{Inn} Q)$-connected transversals in $\operatorname{Mlt} Q / C(S)$ and $\operatorname{Mlt}(Q / S) \cong \operatorname{Mlt} Q / C(S)$.

The permutation group generated by all left translations is called the left multiplication group and we shall denote it by $\mathcal{L}=\mathcal{L}(Q)$. In a similar way the
right multiplication group $\mathcal{R}=\mathcal{R}(Q)$ is generated by all right translations. Let $\mathcal{L}_{1}=\mathcal{L} \cap \operatorname{Inn} Q$, and $\mathcal{R}_{1}=\mathcal{R} \cap \operatorname{Inn} Q$.

Proposition 2.2.

$$
\begin{aligned}
& \mathcal{L}_{1}=\left\langle L_{x y}^{-1} L_{x} L_{y} \mid x, y \in Q\right\rangle \\
& \mathcal{R}_{1}=\left\langle R_{y x}^{-1} R_{x} R_{y} \mid x, y \in Q\right\rangle
\end{aligned}
$$

and $\operatorname{Inn} Q$ is generated by $\mathcal{L}_{1} \cup \mathcal{R}_{1} \cup\left\{T_{x} \mid x \in Q\right\}$ where $T_{x}=R_{x}{ }^{-1} L_{x}$ for all $x \in Q$.

We say that Q is an A_{l}-loop $\left(A_{r}\right.$-loop) if $\mathcal{L}_{1} \leq$ Aut $Q\left(\mathcal{R}_{1} \leq\right.$ Aut $\left.Q\right)$. A loop Q is an $A_{r, l}$-loop if it is both an A_{r}-loop and an A_{l}-loop.

The left, middle and right nucleus of a loop Q are defined, respectively, by

$$
\begin{aligned}
N_{\lambda}=N_{\lambda}(Q):=\{a \in Q \mid a \cdot x y=a \cdot x y & \text { for all } x, y \in Q\}, \\
N_{\mu}=N_{\mu}(Q):=\{a \in Q \mid x \cdot a y=x a \cdot y & \text { for all } x, y \in Q\}, \\
N_{\varrho}=N_{\varrho}(Q):=\{a \in Q \mid x \cdot y a=x y \cdot a & \text { for all } x, y \in Q\} .
\end{aligned}
$$

The intersection

$$
N=N(Q)=N_{\lambda} \cap N_{\mu} \cap N_{\varrho}
$$

is called the nucleus of Q.
Proposition 2.3. Let Q be a loop. Then
i) $\quad C_{\operatorname{Mlt} Q}(\mathcal{R})=\left\{L_{c} \mid c \in N_{\lambda}\right\}$, $C_{\text {Mlt } Q}(\mathcal{L})=\left\{R_{d} \mid d \in N_{\varrho}\right\} ;$
ii) if $\mathcal{R} \unlhd \operatorname{Mlt} Q$ then $C_{\operatorname{Mlt} Q}(\mathcal{R}) \unlhd \operatorname{Mlt} Q$ and $N_{\lambda} \unlhd Q$;
iii) if $\mathcal{L} \unlhd \operatorname{Mlt} Q$ then $C_{\mathrm{Mlt} Q}(\mathcal{L}) \unlhd \operatorname{Mlt} Q$ and $N_{\varrho} \unlhd Q$;
iv) $A^{*} A=A, B^{*} B=B$, where $A^{*}=C_{\mathrm{Mlt} Q}(\mathcal{R}), B^{*}=C_{\mathrm{Mlt} Q}(\mathcal{L})$.

Proof: i), ii), iii): see [6, Lemma 1.7]. iv) is trivial.
Proposition 2.4. Let Q be a loop and let G_{0} be the normal closure of $\operatorname{Inn} Q$ in Mlt Q. Suppose that $\operatorname{Inn} Q<K \unlhd \operatorname{Mlt} Q$. Then
i) Mlt Q / K is abelian;
ii) $\operatorname{Mlt} Q / G_{0}$ is abelian, $G_{0}=(\operatorname{Mlt} Q)^{\prime} \operatorname{Inn} Q$;
iii) $G_{0} \leq K$.

Proof: i) Let $a K$ and $b K$ be arbitrary elements of Mlt Q / K with $a \in A, b \in B$. Our statement follows from $[A, B] \leq \operatorname{Inn} Q<K$.
ii) By i) Mlt Q / G_{0} is abelian, whence $(\operatorname{Mlt} Q)^{\prime} \operatorname{Inn} Q \leq G_{0}$. Using
$(\operatorname{Mlt} Q)^{\prime} \operatorname{Inn} Q \unlhd \operatorname{Mlt} Q$, our statement follows.
iii) We have $K \geq(\operatorname{Mlt} Q)^{\prime}$ by i), whence $K \geq(\operatorname{Mlt} Q)^{\prime} \operatorname{Inn} Q$.

The center of $Z(Q)$ is defined by $Z(Q)=\{a \in N \mid x a=a x$ for all $x \in Q\}$. By putting $Z_{0}=1, Z_{1}=Z(Q)$ and $Z_{i} / Z_{i-1}=Z\left(Q / Z_{i-1}\right)$ we obtain a series of normal subloops of Q. If Z_{n-1} is a proper subloop of Q but $Z_{n}=Q$, then Q is centrally nilpotent of class n.

A loop Q is left conjugacy closed (LCC loop) if the left translations re closed under the conjugation, i.e. $L_{a} L_{b} L_{a}{ }^{-1}=L_{c}$ for all $a, b \in Q$, respectively, Q is right conjugacy closed (RCC loop) if $R_{a} R_{b} R_{a}{ }^{-1}=R_{d}$ for all $a, b \in Q$. A loop Q is conjugacy closed (CC loop) if it is an LCC and an RCC loop.

3. Buchsteiner loops and loops that are abelian modulo the nucleus

Buchsteiner loops are defined by the identity

$$
\begin{equation*}
x \backslash(x y \cdot z)=(y \cdot z x) / x \tag{B}
\end{equation*}
$$

Here $a \backslash b$ denotes the unique solution x to $a x=b$, while b / a denotes the unique solution y to $y a=b$. We call (B) the Buchsteiner law since Hans-Hennig Buchsteiner initiated their study in [2].

Rewriting the Buchsteiner law (B) in terms of translations immediately yields
Lemma 3.1. Q is a Buchsteiner loop, the Buchsteiner law is equivalent to each of the following:

$$
\begin{array}{ll}
L_{x}^{-1} R_{z} L_{x}=R_{x}^{-1} R_{z x} & \text { for all } x, z \in Q \\
R_{x}^{-1} L_{y} R_{x}=L_{x}^{-1} L_{x y} & \text { for all } x, y \in Q
\end{array}
$$

Proposition 3.2. Let Q be a Buchsteiner loop. Then the following statements are true.
i) $\quad \mathcal{L}=\langle A\rangle \unlhd \operatorname{Mlt} Q$,
$\mathcal{R}=\langle B\rangle \unlhd \operatorname{Mlt} Q$,
$[A, B]=\mathcal{R}_{1}=\mathcal{L}_{1}$.
ii) The nucleus $N \unlhd Q$ and

$$
N=N_{\lambda}=N_{\mu}=N_{\varrho}
$$

Put $A_{0}=\left\{L_{c} \mid c \in N\right\}, B_{0}=\left\{R_{d} \mid d \in N\right\}$. Then

$$
\begin{array}{ll}
A_{0}=C_{\mathrm{Mlt} Q}(\mathcal{R}), & A_{0} \unlhd \operatorname{Mlt} Q \\
B_{0}=C_{\mathrm{Mlt} Q}(\mathcal{L}), & B_{0} \unlhd \operatorname{Mlt} Q
\end{array}
$$

iii) Q / N is an abelian group of exponent four (an example in which this exponent is achieved is constructed in [6]).
iv) Q is an $A_{r, l}$-loop.
v) $Q / Z(Q)$ is a CC loop.

Proof: i) See [6, Corollary 1.3].
ii) See [6, Corollary 1.6, Corollary 1.8].
iii) See [6, Theorem 7.14].
iv) See [6, Corollary 5.4].
v) See [3, Theorem 3.5].

Buchsteiner loops are modulo the nucleus abelian groups. We shall now state their further basic properties.

Lemma 3.3. Let Q be a loop such that $N \unlhd Q, Q / N$ is an abelian group. Set $A_{0}=\left\{L_{c} \mid c \in N\right\}, B_{0}=\left\{R_{d} \mid d \in N\right\}$. Let $G=\operatorname{Mlt} Q$ and $H=\operatorname{Inn} Q$. Then the following statements are true.
i) $\operatorname{core}_{G} A_{0} H \supseteq[A, B] \cup(\langle A\rangle \cap H) \cup(\langle B\rangle \cap H)$.
ii) Put $G_{1}=A_{0} H=B_{0} H$.

Then $G_{1} \unlhd G$ and G / G_{1} is abelian.
iii) $Z\left(G_{1}\right)=Z(G) \times\left(Z\left(G_{1}\right) \cap H\right)$.
iv) $A_{0} \unlhd G, B_{0} \unlhd G$.
v) $A_{0} B_{0} \leq C_{G}([A, B])$.
vi) Suppose $h \in H \cap \operatorname{Aut} Q, a \in A, b \in B$. Then $h^{a}=h \alpha_{0}, h^{b}=h \beta_{0}$ with $\alpha_{0} \in A_{0}, \beta_{0} \in B_{0}$.
vii) If $h \in H \cap$ Aut Q, then $h \in C_{G}([A, B])$.

Proof: i) By $N \unlhd Q$, we have $A_{0} H \leq G, B_{0} H \leq G$. Using Q / N is abelian it follows core ${ }_{G} A_{0} H \supseteq[A, B] \cup(\langle A\rangle \cap H) \cup(\langle B\rangle \cap H)$.
ii) By i) clearly $\langle A\rangle \cap A_{0} H \unlhd\langle A\rangle$. Let $a \in A, b \in B \cap a H$. Then using $[A, B] \leq H$ we get $\left(a^{-1} b\right)^{a^{*}} \in A_{0} H$ for every $a^{*} \in A$, in similar way $\left(a^{-1} b\right)^{b^{*}} \in B_{0} H\left(=A_{0} H\right)$ for every $b^{*} \in B$. Since $G=\langle A, B\rangle$ and $H=$ $\left\langle a^{-1} b,\langle A\rangle \cap H,\langle B\rangle \cap H \mid a \in A, b \in B \cap a H\right\rangle$ by Proposition 2.2 we can conclude that $G_{1} \unlhd G$.
iii) Using $Z\left(G_{1}\right) \leq N_{G}(H)$ and $N_{G}(H)=Z(G) \times H$ (see [13, Proposition 2.7]) it follows easily.
iv) By [3, Lemma 1.7] and by i) $A_{0} \unlhd\langle A\rangle$. Since $A_{0} \leq C_{G}(B)$ (see Proposition 2.3) and $\langle A, B\rangle=G$ it follows $A_{0} \unlhd G$. In a similar way $B_{0} \unlhd G$ holds.
v) Using $A_{0} \unlhd G$ and $A_{0} \leq C_{G}(B)$ we can see easily $A_{0} \leq C_{G}([A, B])$, and similarly $B_{0} \leq C_{G}([A, B])$.
vi) By [3, Lemma 1.2] $a^{h} \in A, b^{h} \in B$. Since $G_{1} \unlhd G, A_{0} \unlhd G, B_{0} \unlhd G$, and $A_{0} A=A, B_{0} B=B$ we get our statement.
vii) Using vi) and $A_{0} \leq C_{G}(\langle B\rangle), B_{0} \leq C_{G}(\langle A\rangle)$ it follows easily.

The conjugacy closed loops (CC loops) Q satisfy the following properties:

$$
\langle A\rangle \unlhd \operatorname{Mlt} Q, \quad\langle B\rangle \unlhd \operatorname{Mlt} Q,
$$

Q is an $A_{r, l}$-loop, furthermore $N \unlhd Q, Q / N$ is an abelian group.

In [3] we studied the converse of this result, i.e. those loops satisfying these conditions and we got that they are very close to the CC loops:

Proposition 3.4 ([3, Theorem 3.1]). Let Q be a loop such that $N \unlhd Q,\langle A\rangle \unlhd$ $\operatorname{Mlt} Q,\langle B\rangle \unlhd \operatorname{Mlt} Q, Q$ is an $A_{l, r}$-loop. If Q / N is an abelian group, then $Q / Z(Q)$ is conjugacy closed.

In fact, we have proved a somewhat stronger result as well:
Proposition 3.5 ([3, Proposition 3.2]). Let Q be an $A_{r, l}$-loop in which the nucleus is normal and Q / N is an abelian group. If $[A, B] \leq$ Aut Q, then $Q / Z(Q)$ is a conjugacy closed loop.

As the Buchsteiner loops satisfy these conditions we get
Corollary 3.6 ([3, Theorem 3.5]). Let Q be a Buchsteiner loop. Then $Q / Z(Q)$ is a conjugacy closed loop.

In Proposition 3.5 the requirement that Q is an $A_{r, l}$-loop seems to be too strong. In case of $[A, B] \leq$ Aut Q we shall obtain an exact description when $Q / Z(Q)$ is conjugacy closed. For this aim we need the following subsets for a loop Q :

$$
\begin{aligned}
& L_{F}(Q)=\left\{L_{z}^{-1} L_{x}^{L_{y}} \mid L_{z}^{-1} L_{x}^{L_{y}} \in \operatorname{Inn} Q, x, y \in Q\right\} \\
& R_{F}(Q)=\left\{R_{w}^{-1} R_{x} R_{y} \mid R_{w}^{-1} R_{x}^{R_{y}} \in \operatorname{Inn} Q, x, y \in Q\right\}
\end{aligned}
$$

In the following statements A_{0}, B_{0} are defined as in Lemma 3.3.
Proposition 3.7. Let Q be a loop such that $N \unlhd Q$ and Q / N is an abelian group. Suppose $[A, B] \leq$ Aut Q. Then $Q / Z(Q)$ is a CC loop if and only if $L_{F}(Q) \subseteq \operatorname{Aut} Q$ and $R_{F}(Q) \subseteq \operatorname{Aut} Q$.

Proof: Let $G=\operatorname{Mlt} Q, H=\operatorname{Inn} Q$.
Let $h^{*} \in L_{F}(Q)$ be arbitrary. Lemma 3.3 i), ii) give that there exist $\alpha_{1}, \alpha_{2} \in A$ such that $\alpha_{1}^{\alpha_{2}}=\alpha_{1} \delta h^{*}$ with $\delta \in A_{0}$. Then $\alpha_{1}^{\alpha_{2}^{-1}}=\alpha_{1}\left(\left(h^{*}\right)^{-1}\right)^{\alpha_{2}^{-1}}\left(\delta^{-1}\right)^{\alpha_{2}^{-1}}$. Using $A_{0} \unlhd G$ (see Lemma 3.3 iv)) we get $\alpha_{1}^{\alpha_{2}^{-1}}=\alpha_{1} \gamma\left(\left(h^{*}\right)^{-1}\right)^{\alpha_{2}^{-1}}$ with $\gamma \in A_{0}$.
i) First suppose $L_{F}(Q) \subseteq$ Aut Q and $R_{F}(Q) \subseteq$ Aut Q. Since $h^{*} \in L_{F}(q)$ it follows $h^{*} \in$ Aut Q, whence using Lemma 3.3 vi) we can conclude $\left(\left(h^{*}\right)^{-1}\right)^{\alpha_{2}^{-1}}=$ $\gamma_{0}\left(h^{*}\right)^{-1}$ with $\gamma_{0} \in A_{0}$, consequently $\alpha_{1}^{\alpha_{2}^{-1}}=\alpha_{1} \alpha_{0}\left(h^{*}\right)^{-1}$ with $\alpha_{0} \in A_{0}$. Set $h=\left(h^{*}\right)^{-1}$, clearly $h \in \operatorname{Aut} Q$. Let $\beta \in B$. We have $\alpha_{1}^{\beta}=\alpha_{1} h_{1}, \beta^{\alpha_{2}}=\beta h_{0}$ with $h_{1}, h_{0} \in[A, B]$. Then $\alpha_{1}^{\beta}=\alpha_{1} \beta^{\alpha_{2}} h_{0}^{-1}=\alpha_{1} h_{1}$. Thus $\alpha_{1}^{\beta}=\alpha_{1} \alpha_{2}^{-1} \beta \alpha_{2} h_{0}^{-1}=$ $\left(\alpha_{1} \alpha_{0} h\right)^{\beta \alpha_{2} h_{0}^{-1}}$. Using Lemma 3.3 vi$), h^{\beta}=h \beta_{0}$ holds with $\beta_{0} \in B_{0}$. Hence $\alpha_{1}^{\beta}=\left(\alpha_{1} h_{1} \alpha_{0} h \beta_{0}\right)^{\alpha_{2} h_{0}^{-1}}=\left(\alpha_{1} h_{1}^{h \alpha_{2}} \beta_{0}\right)^{h_{0}^{-1}}$. As $h_{1}, h_{0} \in[A, B]$, Lemma 3.3 vii), v), vi) imply $\alpha_{1}^{\beta}=\alpha_{1} \alpha^{*} h_{1} \alpha^{* *} \beta_{0}=\alpha_{1} h_{1}$, where $\alpha^{*}, \alpha * * \in A_{0}$. Using

Lemma 3.3 v), we can again conclude that $\beta_{0} \in B_{0} \cap A_{0}$. Since $A_{0} \cap B_{0} \subseteq Z(G)$, whence $h^{\beta} \in h Z(G)$. As $\alpha_{1}{ }^{\alpha_{2}^{-1}}=\alpha_{1} \alpha_{0} h$ and $\beta \in B$ is arbitrary we get $h \in$ $\operatorname{core}_{G} Z(G) H$. Thus $Q / Z(Q)$ is left conjugacy closed. In a similar way $Q / Z(Q)$ is an RCC loop, consequently $Q / Z(Q)$ is a CC loop.
ii) Suppose $Q / Z(Q)$ is a CC loop. Then $R_{F}(Q) \cup L_{F}(Q) \subseteq \operatorname{core}_{G} Z(G) H$. Since $h^{*} \in L_{F}(Q)$ we have $\left(\left(h^{*}\right)^{-1}\right) \in \operatorname{core}_{G} Z(G) H$, consequently $\left(\left(h^{*}\right)^{-1}\right)^{\alpha_{2}^{-1}}=$ $\left(h^{*}\right)^{-1} \widetilde{h} z$ with $\widetilde{h} \in H, z \in Z(G) \cap\left(A_{0} H\right)$. Thus $\alpha_{1}^{\alpha_{2}^{-1}}=\alpha_{1} \gamma z\left(h^{*}\right)^{-1} \widetilde{h}$. Put $\gamma z=$ $\alpha_{0} \in A_{0}, h=\left(h^{*}\right)^{-1} \widetilde{h}$, so $\alpha_{1}^{\alpha_{2}^{-1}}=\alpha_{1} \alpha_{0} h$. Clearly $h \in \operatorname{core}_{G}(Z(G)) H$. Given $\beta \in B$, we have $\alpha_{1}^{\beta}=\alpha_{1} h_{1}, \beta^{\alpha_{2}}=\beta h_{0}$ with $h_{1}, h_{0} \in H \cap[A, B]$. Then $\alpha_{1}{ }^{\beta}=$ $\alpha_{1}{ }^{\beta_{2} h_{0}^{-1}}=\alpha_{1} h_{1}$. Let us use the same notation and repeat the steps of part i), then we get $\alpha_{1}^{\beta}=\alpha_{1} h_{0}^{-1} h_{1} h_{2} h_{0}^{-1}\left(h^{-1} h^{\beta}\right)^{\alpha_{2} h_{0}^{-1}}$. Since $h^{-1} \in \operatorname{core}_{G} Z(G) H$, Lemma 3.3 vi) implies $h^{\beta}=h z h_{2}$ with $z \in Z(G), h_{2} \in H$, whence $\left(h^{-1} h^{\beta}\right)^{\alpha_{2} h_{0}^{-1}}$ $=\left(z h_{2}\right)^{\alpha_{2} h_{0}^{-1}}$ with $\alpha_{01} \in A_{0}$. As $h_{1}=\alpha_{1}^{-1} \alpha_{1}^{\beta} \in[A, B]$ it follows $h_{1} \in \operatorname{Aut} Q$, using Lemma 3.3 vii) we can conclude $h_{1}^{h}=h_{1}$, whence $h_{1}{ }^{\alpha_{2} h_{0}^{-1}}=\left(h_{1} \widetilde{\alpha}\right)^{h_{0}^{-1}}$ with $\widetilde{\alpha} \in A_{0}$ by Lemma 3.3 vi$)$. Hence $\alpha_{1}{ }^{\beta}=\alpha_{1} \alpha_{01} h_{1} \widetilde{\alpha} h_{2} \alpha_{2} h_{0}^{-1}=\alpha_{1} h_{1}$ with $\alpha_{01} \in$ A_{0}. Since $A_{0} \unlhd G$ we can conclude $h_{2}=e$, i.e. $h^{\beta}=h z$. As $\beta \in B$ is arbitrary we get $h \in \operatorname{Aut} Q$. We have $\alpha_{1}^{\alpha_{2}^{-1}}=\alpha_{1} \alpha_{0} h$, whence $\alpha_{1}^{\alpha_{2}}=\alpha_{1}\left(h^{-1}\right)^{\alpha_{2}}\left(\alpha_{0}^{-1}\right)^{\alpha_{2}}$. Using $A_{0} \triangleleft G$ and $h^{-1} \in \operatorname{Aut} Q \cap \operatorname{core}_{G}(Z(G)) H$ it follows $\alpha_{1}^{\alpha_{2}}=\alpha_{1} \xi z h^{-1}$ with $\xi \in A_{0}$. On the other hand we have $\alpha_{1}^{\alpha_{2}}=\alpha_{1} \delta h^{*}$, whence $h^{*}=h^{-1}$, and we can conclude $L_{F}(Q) \subseteq$ Aut Q. We can show similarly $R_{F}(Q) \subseteq$ Aut Q.

We give another sufficient condition for the conjugacy closedness of $Q / Z(Q)$.
Proposition 3.8. Let Q be a loop such that $N \unlhd Q, Q / N$ is an abelian group. Suppose $L_{F}(Q) \cup R_{F}(Q) \subseteq Z(\operatorname{Inn} Q)$. Then $Q / Z(Q)$ is a CC loop.

Proof: Let $G=\operatorname{Mlt} Q$ and $H=\operatorname{Inn} Q$. We have $B_{0} \leq C_{G}(\langle A\rangle)$ whence $B_{0} \leq$ $C_{G}\left(L_{F}(Q)\right)$ whence $L_{F}(Q) \subseteq Z(H)$ implies $L_{F}(Q) \subseteq Z\left(B_{0} H\right)$. Since $B_{0} H \unlhd G$ (see Lemma 3.3 i)) it follows $Z\left(B_{0} H\right) \unlhd G$. By Lemma 3.3 iii) $Z\left(B_{0} H\right)=$ $Z(G) \times\left(Z\left(B_{0} H\right) \cap H\right)$, consequently $L_{F}(Q) \subseteq Z\left(B_{0} H\right) \cap H \leq \operatorname{core}_{G} Z(G) H$, i.e. $Q / Z(Q)$ is left conjugacy closed. In a similar way we get that $Q / Z(Q)$ is an RCC loop too.

In case $[A, B] \leq$ Aut Q the sufficient condition for the conjugacy closedness of $Q / Z(Q)$ in the previous proposition can be proved to be necessary.
Proposition 3.9. Let Q be a loop such that $N \unlhd Q, Q / N$ is abelian group. Suppose that $[A, B] \leq$ Aut Q. Then $Q / Z(Q)$ is conjugacy closed if and only if $L_{F}(Q) \cup R_{F}(Q) \subseteq Z(\operatorname{Inn} Q)$.
Proof: Let $G=\operatorname{Mlt} Q, H=\operatorname{Inn} Q$.
i) Suppose first $L_{F}(Q) \cup R_{F}(Q) \subseteq Z(\operatorname{Inn} Q)$. Then Proposition 3.8 implies our statement.
ii) Suppose $Q / Z(Q)$ is a CC loop. Let $\alpha_{1}, \alpha_{2} \in A$. Then using Lemma 3.3 ii) we get $\alpha_{1}{ }^{\alpha_{2}}=\alpha_{1} \alpha_{0} h$ with $\alpha_{0} \in A_{0}, h \in H \cap\langle A\rangle$. Clearly $h \in L_{F}(Q)$, since $L_{F}(Q) \subseteq$ Aut Q by Proposition 3.7, it follows $h^{a} \in h A_{0}$ for every $a \in A$ (see Lemma 3.3 vi$)$). The conjugacy closedness of $Q / Z(Q)$ implies $h \in \operatorname{core}_{G} Z(G) H$, whence $h^{a} \in h Z(G)$. Similarly $h^{b} \in h Z(G)$ for every $b \in B$. As $G=\langle A, B\rangle$ we can conclude $h \in Z(\operatorname{Inn} Q)$, whence clearly $L_{F}(Q) \subseteq Z(\operatorname{Inn} Q)$. In a similar way we get $R_{F}(Q) \subseteq Z(\operatorname{Inn} Q)$.

In case of Buchsteiner loops we have a necessary and sufficient condition that $Q / Z(Q)$ is a group:

Proposition 3.10 ([9, Lemma 7.2]). Let Q be a Buchsteiner loop. Then $Q / Z(Q)$ is a group, i.e. $A(Q) \leq Z(Q)$ if and only if $[A, B] \leq Z(\operatorname{Inn} Q)$.

We generalize this result in the following way:
Proposition 3.11. Let Q be a loop such that $N \unlhd Q, Q / N$ is an abelian group and $[A, B] \leq Z(\operatorname{Inn} Q)$. Then $Q / Z(Q)$ is a group, i.e. $A(Q) \leq Z(Q)$.

Proof: Let $G=\operatorname{Mlt} Q, H=\operatorname{Inn} Q$. By Lemma 3.3 ii) $G / A_{0} H$ is abelian. We show $[A, B] \leq Z\left(A_{0} H\right)$. By Lemma 3.3 v) $A_{0} \leq C_{G}([A, B])$. The condition $[A, B] \leq Z(H)$ implies $[A, B] \leq Z\left(A_{0} H\right)$. Since $Z\left(A_{0} H\right)=\left(Z(G) \cap A_{0}\right) \times$ $\left(Z\left(A_{0} H\right) \cap H\right)$ and $A_{0} H \unlhd G$, by Lemma 3.3 iii), ii) it follows $Z\left(A_{0} H\right) \unlhd G$. Thus we get $Z\left(A_{0} H\right) \leq \operatorname{core}_{G} Z(G) H$, consequently $Q / Z(Q)$ is a group.

In case $[A, B] \leq$ Aut Q the above mentioned sufficient condition can be proved to be necessary.

Proposition 3.12. Let Q be a loop such that $N \unlhd Q, Q / N$ is an abelian group and $[A, B] \leq$ Aut Q. Then $Q / Z(Q)$ is a group if and only if $[A, B] \leq Z(\operatorname{Inn} Q)$.

Proof: Let $G=\operatorname{Mlt} Q$ and $H=\operatorname{Inn} Q$.
i) First suppose $[A, B] \leq Z(\operatorname{Inn} Q)$. Then our statement follows by Proposition 3.11.
ii) Suppose $Q / Z(Q)$ is a group. Then $[A, B] \leq \operatorname{core}_{G} Z(G) H$. Since $[A, B] \leq$ Aut $Q \cap H$, using Lemma 3.3 v) we get $t^{a} \in t A_{0}$ for every $t \in[A, B]$ and $a \in A$. Consequently $t^{a} \in t Z(G)$. Similarly we get $t^{b} \in t Z(G)$ for every $b \in B$. As $G=\langle A, B\rangle$ we can conclude that $t \in Z(H)$, i.e. $[A, B] \leq Z(H)$.

In the following we study the case of abelian inner mapping group.
Proposition 3.13. Let Q be a Buchsteiner loop with abelian inner mapping group. Then
i) $Q / Z(Q)$ is a group;
ii) Q is nilpotent of class at most three.

Proof: i) See Proposition 3.10.
ii) Since a CC loop with abelian inner mapping group is nilpotent of class at most two [5, Proposition 2.5], our statement follows.

We analyze the general case:
Theorem 3.14. Let Q be a loop with abelian inner mapping group such that $N \unlhd Q$ and Q / N is an abelian group. Then the following statements are true.
i) $Q / Z(Q)$ is a group.
ii) Q is nilpotent of class at most three.

Proof: i) See Proposition 3.11.
ii) See the proof of Proposition 3.13 ii).

In case of abelian inner mapping group under the conditions of Proposition 3.5 we can prove more, namely the nilpotency of class at most three of the multiplication group.

For this aim we need the following
Lemma 3.15. Let Q be a loop with abelian inner mapping group such that $N \unlhd Q$ and Q / N is an abelian group. Let $G=\operatorname{Mlt} Q, H=\operatorname{Inn} Q$, and G_{0} is the normal closure of H in G. Then
i) $h^{a} \in h\left(Z(G) \cap G_{0}\right), h^{b} \in h\left(Z(G) \cap G_{0}\right)$ for every $h \in H \cap \operatorname{Aut} Q$ and $a \in A, b \in B$;
ii) $a_{1}{ }^{a} \in a_{1}\left(Z(G) \cap G_{0}\right)$ for every $a_{1} \in A_{0} \cap G_{0}, a \in A$.

Proof: i) Let $h \in H \cap$ Aut Q. Then $h^{a^{-1}} \in h A_{0}$ by Lemma 3.3 vi). Since $A_{0} \unlhd G$ (see Lemma 3.3 iv)) and $G_{0} \unlhd G$ we get $h^{a^{-1}} \in h A_{0} \cap G_{0}$. Clearly $A_{0} H \geq G_{0}$, whence $G_{0}=\left(A_{0} \cap G_{0}\right) H$, consequently $h^{a^{-1}} \in h\left(A_{0} \cap G_{0}\right)$. Let $b \in B \cap a H$, in a similar way we can show $h^{b^{-1}} \in h\left(B_{0} \cap G_{0}\right)$. The commutativity of H implies $h^{a^{-1} b}=h$, whence $h^{a^{-1}}=h^{b^{-1}} \in h\left(A_{0} \cap B_{0}\right)$. Since $A_{0} \cap B_{0} \subseteq Z(G)$ we get $h^{a} \in h\left(Z(G) \cap G_{0}\right), h^{b} \in h\left(Z(G) \cap G_{0}\right)$ for every $a \in A, b \in B$.
ii) By Theorem 3.14 we have that $Q / Z(Q)$ is of nilpotency class at most two. Hence clearly $Q / Z(Q) / Z(Q / Z(Q))$ is an abelian group. Let $U=\operatorname{core}_{G} Z(G) H$. Then $\operatorname{Mlt}(Q / Z(Q))=\operatorname{Mlt} Q / U$. Let Z^{*} be the inverse image of $Z(\operatorname{Mlt} Q / U)$. Since $Q / Z(Q) / Z(Q / Z(Q))$ is an abelian group it follows $Z^{*} \operatorname{Inn} Q \unlhd \operatorname{Mlt} Q$. By Proposition 2.4 iii,$G_{0} \leq Z^{*} \operatorname{Inn} Q$. Applying $Z(\operatorname{Mlt} Q) \subseteq A \cap B$ for $Z(\operatorname{Mlt} Q / Z(Q))$ we get $b_{1}^{-1} a_{1} \in U \cap H$ for every $a_{1} \in G_{0} \cap A_{0}, b_{1} \in B \cap a_{1} H$. Thus $\left(b_{1}^{-1} a_{1}\right)^{a} \in b_{1}^{-1} a_{1} U$ for every $a \in A$. We have $b_{1} \in G_{0} \cap B_{0} \leq C_{G}(A)$, whence $a_{1}{ }^{a} \in a_{1} U$. Since $U=\operatorname{core}_{G} Z(G) H$ it follows $a_{1}^{a}=a_{1} z_{1} h_{1}$ with $z_{1} \in Z(G)$, $h_{1} \in U \cap H$. As $A_{0} \unlhd G$ (see Lemma 3.3 iv)), $a_{1}{ }^{a}=a_{1} z_{1}$ holds. $G_{0} \unlhd G$ implies $z_{1} \in Z(G) \cap G_{0}$.

We return to our statement.

Theorem 3.16. Let Q be an $A_{r, l}$-loop with abelian $\operatorname{Inn} Q$ such that $N \unlhd Q, Q / N$ is an abelian group. Suppose $[A, B] \leq$ Aut Q. Then Q and Mlt Q are nilpotent of class at most three.

Proof: By Theorem $3.14 Q$ is nilpotent of class at most three.
Let $G=\operatorname{Mlt} Q, H=\operatorname{Inn} Q$. Let $M=\langle A\rangle[A, B]$. We show $M \unlhd G$. Using that $[A, B] \leq$ Aut Q and that H is abelian, Lemma 3.15 i) implies $Z(G)[A, B] \unlhd G$. Since $Z(G) \leq\langle A\rangle$ it follows $M \leq G$. We have $\langle A\rangle \cap H \leq$ Aut $Q,[A, B] \leq$ Aut Q. Using $\langle A, B\rangle=G$ and Lemma 3.15 i), we get $M \unlhd G$.

Let $Z_{1}=Z(G) \cap G_{0}\left(G_{0}\right.$ is the normal closure of H in $\left.G\right), D=G_{0} \cap M$ and $A_{1}=$ $G_{0} \cap A_{0}$. We show $D / Z_{1} \leq Z\left(G / Z_{1}\right)$. Using Lemma 3.15 ii), $A_{1} \leq C_{G}(B)$ and $G=\langle A, B\rangle$ we can conclude $A_{1} Z_{1} / Z_{1} \leq Z\left(G / Z_{1}\right)$. As $D \cap H=(\langle A\rangle \cap H)[A, B]$ and $(\langle A\rangle \cap H)[A, B] \leq$ Aut Q, Lemma 3.15 i) implies $D / Z_{1} \leq Z\left(G / Z_{1}\right)$. Since $G / M \cong H / H \cap M$ it follows G / M is abelian. Using G / G_{0} is abelian too we get $G^{\prime} \leq M \cap G_{0}=D$, consequently G / D is abelian. Thus G is nilpotent of class at most three.

Using the previous result we describe the structure of Buchsteiner loop with abelian inner mapping groups. For this aim we need the following:

Proposition 3.17 ([9, Lemma 7.2, Proposition 7.3]). If Q is a Buchsteiner loop with abelian inner mapping group, then Q / N is an elementary abelian 2-group.

Corollary 3.18. Let Q be a Buchsteiner loop with abelian $\operatorname{Inn} Q$, let $A_{0}=$ $\left\{L_{c} \mid c \in N\right\}$. Then $\operatorname{Mlt} Q / A_{0} \operatorname{Inn} Q$ is an elementary abelian 2-group.

Proof: The structure of the multiplication group of the factorloop and Proposition 3.17 imply this statement.

Proposition 3.19. Let Q be a Buchsteiner loop with abelian $\operatorname{Inn} Q$. Then the following statements are true.
i) Q and Mlt Q are nilpotent of class at most three.
ii) $a a^{b} \in A_{0}$ for every $a \in A, b \in B \cap a \operatorname{Inn} Q$, where $A_{0}=\left\{L_{c} \mid c \in N\right\}$.
iii) $\langle A\rangle \cap \operatorname{Inn} Q$ is an elementary abelian 2-group.

Proof: i) By Theorem $3.14 Q$ is nilpotent of class at most three. We have Q is an $A_{r, l}$ loop, $N \unlhd Q, Q / N$ is an abelian group, $[A, B]=\langle A\rangle \cap \operatorname{Inn} Q=\langle B\rangle \cap \operatorname{Inn} Q$ (see Proposition 3.2) whence $[A, B] \leq \operatorname{Aut} Q$, so we can apply Theorem 3.16.
ii) See the definition of Buchsteiner loops and Corollary 3.18.
iii) By ii) $a a^{b} \in A_{0}$ for every $a \in A, b \in B \cap a \operatorname{Inn} Q$. Let $b_{1} \in B$ be arbitrary. Clearly $a^{b}=a h, a^{b_{1}}=a h_{1}$ with $h, h_{1} \in \operatorname{Inn} Q$, whence $a a^{b}=\left(a a^{b}\right)^{b_{1}}=$ $a h_{1} a h_{1} h^{b}=a^{2} h_{1}{ }^{a} h_{1} h^{b}$. Lemma 3.15 i) implies $h_{1}{ }^{a}=h_{1} z_{1}, h^{b}=h z$ with $z_{1} z \in$ $Z(\operatorname{Mlt} Q)$. Hence $\left(a a^{b}\right)^{b_{1}}=a^{2} h h_{1}^{2} z_{1} z=a a h$. Thus $h_{1}^{2}=e$.

We give a characterization theorem about the Buchsteiner loops with abelian inner mapping group.

Theorem 3.20. Let Q be a loop. Then Q is a Buchsteiner loop with abelian inner mapping group if and only if $Q=Q_{1} \times Q_{2}$, where Q_{1} is a Buchsteiner loop with abelian inner mapping of order 2^{t} and Q_{2} is a group of odd order with abelian inner mapping group. Additionally Mlt $Q=\operatorname{Mlt} Q_{1} \times \operatorname{Mlt} Q_{2}$ where $\operatorname{Mlt} Q_{1} \in \operatorname{Syl}_{2}(\operatorname{Mlt} Q)$.

Proof: i) Clearly, if $Q=Q_{1} \times Q_{2}$ with the given properties, then Q is a Buchsteiner loop with abelian $\operatorname{Inn} Q$.
ii) Conversely suppose Q is a Buchsteiner loop with abelian $\operatorname{Inn} Q$. Let $G=$ Mlt $Q, H=\operatorname{Inn} Q$. By Proposition 3.19 i) G is nilpotent of class at most three. So $G=S \times T$, where $S \in \operatorname{Syl}_{2}(G)$.

First we show $S=(S \cap A)(S \cap H)$. Let $S_{1} \in \operatorname{Syl}_{2}(\langle A\rangle)$. Since $\langle A\rangle \unlhd G$ (see Proposition 3.2) it follows $S_{1} \unlhd G$. Let $S_{0} \in \operatorname{Syl}_{2}(H)$, then $S_{1} S_{0} \leq G$. Using $\langle A\rangle H=G$ we can conclude $S_{1} S_{0}=S \in \operatorname{Syl}_{2}(G)$. As $\langle A\rangle \cap H$ is an elementary abelian 2-group (see Proposition 3.19 iii)). $S \geq\langle A\rangle \cap H$ holds, whence $S_{1}=$ $S \cap\langle A\rangle=(S \cap A)(\langle A\rangle \cap H)$. We have $S=S_{1} S_{0}$, consequently $S=(S \cap A)(S \cap H)$. In a similar way $S=(S \cap B)(S \cap H)$.

Since $G / A_{0} H$ is an elementary abelian 2-group (see Corollary 3.18) and $S \geq$ $\langle A\rangle \cap H$ we can conclude $T \leq A_{0} H$ and $T_{1}=T \cap\langle A\rangle \leq A_{0}$. As G is nilpotent and T is a Hall subgroup of G, by Hall's theorems $T_{1} \unlhd G$. We have $H=S_{0} \times T_{0}$ where $T_{0} \leq T$ is a Hall subgroup of H. Using $T \leq A_{0} H, A_{0} \cap H=1$ and $A_{0} \unlhd G$ it follows $T=T_{1} \cdot T_{0}=\left(T \cap\left\langle A_{0}\right\rangle\right)(T \cap H)$. Similarly $T=\left(T \cap B_{0}\right)(T \cap H)$.

Let

$$
\begin{array}{ll}
A_{S}=S \cap A, & A_{T}=T \cap A_{0} \\
B_{S}=S \cap B, & B_{T}=T \cap B_{0}
\end{array}
$$

Since $A_{0} A=A, B_{0} B=B$ we have $A_{T} A_{S} \subseteq A, B_{T} B_{S} \subseteq B$. Clearly $\left|A_{T} A_{S}\right|=$ $\left|A_{T}\right|\left|A_{S}\right|,\left|B_{T} B_{S}\right|=\left|B_{T}\right|\left|B_{S}\right|$. Using $G=S \times T, S=(S \cap A)(S \cap H)=$ $(S \cap B)(S \cap H), T=\left(T \cap A_{0}\right)(T \cap H)=\left(T \cap B_{0}\right)(T \cap H)$ we get $A=A_{T} A_{S}$, $B=B_{T} B_{S}$.

Let

$$
\begin{aligned}
& Q_{1}=\left\{c \in Q \mid L_{c} \in S\right\} \\
& Q_{2}=\left\{d \in Q \mid L_{d} \in T\right\} .
\end{aligned}
$$

As $S H \leq G$ and $T H \leq G$ we can conclude Q_{1} and Q_{2} are normal subloops of Q. We show Mlt $Q_{1}=S$ and Mlt $Q_{2}=T$. By Niemenmaa and Kepka's theorem [13] it is enough to show:
í1) $\left.\left.\langle S \cap A, S \cap B\rangle=S, \quad \mathrm{i}_{2}\right) \operatorname{core}_{S}(S \cap H)=1, \mathrm{i}_{3}\right)[S \cap A, S \cap B] \leq S \cap H$,
$\left.\left.\left.\mathrm{j}_{1}\right)\left\langle T \cap A_{0}, T \cap B_{0}\right\rangle=T, \mathrm{j}_{2}\right) \operatorname{core}_{T}(T \cap H)=1, \mathrm{j}_{3}\right)\left[T \cap A_{0}, T \cap B_{0}\right] \leq T \cap H$.

We have $\langle A, B\rangle=G$, since $A=A_{T} A_{S}, B=B_{T} B_{S}$ and $\left.G=S \times T \mathrm{i}_{1}\right)$ and j_{1}) are true.
$G=S \times T$ implies $\operatorname{core}_{S}(S \cap H) \leq S \cap C_{G}(T)$ and $\operatorname{core}_{S}(S \cap H) \unlhd G$. Using $\operatorname{core}_{G} H=1$ we get $\operatorname{core}_{S}(S \cap H)=1$. In a similar way j_{2}) follows.
i_{3}) and j_{3}) are consequences of $[A, B] \leq H$.
Clearly Q_{1} is a Buchsteiner loop of order 2^{t} with abelian $\operatorname{Inn} Q_{1}(=S \cap H)$.
Since Mlt $Q_{2}=\left(T \cap A_{0}\right)(T \cap H), T \cap\langle A\rangle \leq A_{0}, A_{0} \unlhd \operatorname{Mlt} Q$ it follows that Q_{2} is a group of odd order with abelian $\operatorname{Inn} Q_{2}(=T \cap H)$.

Acknowledgment. The author is grateful to the referee for useful comments and suggestions.

References

[1] Bruck R.H., Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245-354.
[2] Buchsteiner H.H., O nekotorom klasse binarnych lup, Mat. Issled. 39 (1976), 54-66.
[3] Csörgő P., Drápal A., On loops rich in automorphisms that are abelian modulo the nucleus, submitted.
[4] Csörgő P., On connected transversals to abelian subgroups and loop theoretical consequences, Arch. Math. (Basel) 86 (2006), 499-516.
[5] Csörgő P., Drápal A., Left conjugacy closed loops of nilpotency class two, Results Math. 47 (2005), 242-265.
[6] Csörgő P., Drápal A., Kinyon M.K., Buchsteiner loops, submitted.
[7] Csörgő P., Drápal A., Buchsteiner loops and conjugacy closedness, submitted.
[8] Csörgő P., Abelian inner mappings and nilpotency class greater than two, European J. Combin. 28 (2007), 858-867.
[9] Drápal A., Kinyon M., Buchsteiner loops: Associators and constructions, submitted.
[10] Drápal A., Jedlička P., On loop identities that can be obtained by a nuclear identification, submitted.
[11] Drápal A., Vojtěchovský P., Explicit constructions of loops with commuting inner mappings, submitted.
[12] Nagy G.P., Vojtěchovský P., Moufang groups with commuting inner mappings, submitted.
[13] Niemenmaa M., Kepka T., On multiplication groups of loops, J. Algebra 135 (1990), 112122.
[14] Niemenmaa M., Kepka T., On connected transversals to abelian subgroups in finite groups, Bull. London Math. Soc. 24 (1992), 343-346.

Eötvös University, Department of Algebra and Number Theory, Pázmány Péter sétány $1 / \mathrm{C}, \mathrm{H}-1117$ Budapest, Hungary
E-mail: ska@cs.elte.hu
(Received October 15, 2007, revised February 12, 2008)

