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F-quasigroups and generalized modules

TomAS KEPKA*, MIcHAEL K. KINYON, J.D. PHILLIPS

Abstract. In Kepka T., Kinyon M.K., Phillips J.D., The structure of F-quasigroups,
J. Algebra 317 (2007), 435-461, we showed that every F-quasigroup is linear over a spe-
cial kind of Moufang loop called an NK-loop. Here we extend this relationship by showing
an equivalence between the class of (pointed) F-quasigroups and the class correspond-
ing to a certain notion of generalized module (with noncommutative, nonassociative
addition) for an associative ring.
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1. Introduction

A quasigroup (Q,-) is a set @ with a binary operation - : Q x Q@ — @, denoted
by juxtaposition, such that for each a,b € @, the equations ax = b and ya = b
have unique solutions x,y € @. In a quasigroup (@, -), there exist transformations
a,B:Q — @ such that za(z) =z = B(x)z for all x € Q. Now (Q, -) is called an
F-quasigroup if it satisfies the equations

x-yz=y- ax)z and zy-x = z0(x) - yx

for all z,y,z € Q.

If (Q,) is a quasigroup, we set M(Q) ={a € Q : za-yx = zy-ax, Vz,y € Q}.
If (Q,-) is an F-quasigroup, then M(Q) is a normal subquasigroup of @ and
Q/M(Q) is a group [3, Lemma 7.5].

We denote by F), the category of pointed F-quasigroups. That is, F, consists
of ordered pairs (@, a), where @ is an F-quasigroup and a € Q. We put Fp, =
[(Q.a) € Fp:a € MQ)}.

A quasigroup with a neutral element is called a loop. Throughout this paper, we
adopt an additive notation convention (Q,+) (with neutral 0) for loops, although
we do not assume that + is commutative. The nucleus of a loop (@, +) is the set

(atz)+y=a+(z+y)
N@Q,+)={acQ:{ (z+a)+y=az+(a+y), Vr,ycQl
(z+y)ta=2+(y+a)

*Partially supported by the institutional grant MSM 0021620839 and by the Grant Agency
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The Moufang center is the set
KQ,+)={aceQ:(a+a)+(x+y)=(a+2)+(a+vy), Yo,y € Q}.

The intersection of the nucleus and Moufang center of a loop is the center
Z(Q,+) = N(Q,+)NK(Q,+). Each of the nucleus, the Moufang center, and the
center is a subloop, and the center is, in fact, a normal subloop [1], [5].

A (Q,+) will be called an NK-loop if for each = € Q, there exist u € N(Q, +)
and v € K(Q,+) such that ¢ = v+ v (= v + u). In other words, ) can be
decomposed as a central product @ = N(Q,+) K(Q,+). It was shown in [3]
that every NK-loop is a Moufang A-loop. A Moufang loop is a loop satisfying
the identity ((z +vy) + )+ 2z =2+ (y + (x + 2)) or any of its known equivalents
[1], [5]. Every Moufang loop is diassociative, that is, the subloop generated by
any given pair of elements is a group [4]. For a loop (Q, +), the inner mapping
group is the stabilizer of 0 in the group of permutations of Q generated by all left
and right translations L,y =  +y = Ryx. An A-loop is a loop such that every
inner mapping is an automorphism [2].

In any Moufang A-loop (Q,+), such as an NK-loop, the nucleus N(Q,+) is
normal (in fact, this is true in any Moufang loop), and Q/N(Q,+) is a com-
mutative Moufang loop of exponent 3. In particular, for each z € @, 3z €
N(Q,+), where 3z = =z +  + . The Moufang center K(Q,+) is also nor-
mal in @ (but this is not necessarily the case in arbitrary Moufang loops), and
Q/K(Q,+) is a group [3, Lemma 4.3]. In an NK-loop (@, +), we also have
2(Q.4) = Z(N(Q+)) = K(N(@,+)) = Z(K(Q,+)) = N(K(Q,+)). In addi-
tion, K(Q,+)={a€Q:a+x=x+a VzeQ}.

The connection between F-quasigroups and NK-loops was established in [3].

Proposition. For a quasigroup (Q, ), the following are equivalent.

1. (Q,) is an F-quasigroup.

2. There exist an NK-loop (Q,+), f,g € Aut(Q,+), and e € N(Q,+) such
that x-y = f(x)+e+g(y) forallz,y € Q, fg = gf, andz+ f(z),z+g(x) €
N(Q,4), —z+ f(z),—x + g(x) € K(Q,+) for all x € Q.

We refer to the data (Q,+, f, g, e) of the proposition as being an arithmetic
form of the F-quasigroup (Q,-). If (Q,a) is a pointed F-quasigroup in Fp, then
there is an arithmetic form such that a = 0 is the neutral element of (Q, +).

The purpose of this paper is to extend the connection between (pointed) F-
quasigroups and NK-loops further by showing an equivalence of classes between
Fp and a certain notion of generalized module for an associative ring. Thus the
study of (pointed) F-quasigroups effectively becomes a part of ring theory. The
generalization we require weakens the additive abelian group structure of a module
to an NK-loop structure.



F-quasigroups and generalized modules

Definition. Let R be an associative ring, possibly without unity. A generalized
(left) R-module is an NK-loop (@, +) supplied with an R-scalar multiplication
R x Q@ — @ such that the following conditions are satisfied: for all a,b € R,
z,y €Q, z€ NQ,+), and w € K(Q,+),

1. a(z +y) = ax + ay,
(a4 bz = ax + b,
a(bx) = (ab)z,
ax € K(Q,+),
az € N(Q,+), and
there exists an integer m such that mw + aw € Z(Q, +).

S W

Here mw = w + - -+ + w (m terms) is unambiguous by diassociativity.

If Q is a generalized R-module, then define the annihilator of @ to be Ann(Q) =
{a € R:aQ = 0}. Clearly, Ann(Q) is an ideal of the ring R.

In order to state our main result, we need to describe a particular ring. Let
S = Z[x,y, u, v] be the polynomial ring in four commuting indeterminates x, y, u,
and v over the ring Z of integers. Put R = Sx + Sy + Su + Sv, so that R is
the ideal generated by the indeterminates. Clearly, R is a free commutative and
associative ring (without unity) freely generated by the indeterminates.

Let M denote the category of generalized R-modules @ such that:

1. 2z+x2€ N(Q,+),2z+yz € N(Q,+) for all z € Q,
2. X 4+ u+xu € Ann(Q), and
3. y+v+yveAn(Q).

Further, let M), be the category of pointed objects from M. That is, M, consists
of ordered pairs (Q,e), where Q € M and e € Q. Put M,, = {(Q,e) € Fp:e €
N(Q,+)}, the category of nuclearly pointed objects from M, and put M, =
{(Q,e) € Fp e € Z(Q,+)}, the category of centrally pointed objects from M.

Our main result is the following equivalence between pointed F-quasigroups
and generalized R-modules.

Main Theorem. The classes F;, and My, are equivalent. The equivalence re-
stricts to an equivalence between Fy, and M_.

2. Quasicentral endomorphisms

In this section, let (Q,+) denote a (possibly non-commutative) diassociative
loop. We endow the set End(Q, +) of all endomorphisms of (@, +) with the stan-
dard operations of addition, negation, and composition, viz., for f,g € End(Q, +),
[+ g is defined by (f +g)(z) = f(z) +g(x), —f is defined by (- f)(z) = —f(z) =
f(=z), and fg is defined by fg(z) = f(g(z)) for all x € Q.

An endomorphism f of (Q,+) is called central if f(Q) C Z(Q,+). We denote
the set of all central endomorphisms of (Q,+) by ZEnd(Q,+). The verification
of the following result is easy and omitted.
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Lemma 2.1. Let f,g,h € ZEnd(Q,+) be given. Then:

f+g€ZEndQ,+),
f+@+h)=(f+g)+hand f+g=g+f,
the zero endomorphism of (Q),+) is central,
—f € Z&nd(Q,+),

f+(=f)=0and f+0=f,

fg € ZEnd(Q,+).

AN e

Corollary 2.2. Z&nd(Q,+) is an associative ring (possibly without unity) with
respect to the standard operations.

Let m be an integer. An endomorphism f of (Q,+) is called m-quasicentral
if me + f(z) € Z(Q,+) for all x € @ (in which case mz + f(z) = f(x) + mx).
An endomorphism is called quasicentral if it is m-quasicentral for at least one
integer m. We denote by QEnd(Q, +) the set of all quasicentral endomorphisms
of (Q,+). The following is an obvious consequence of these definitions.

Lemma 2.3. 1. An endomorphism is 0-quasicentral if and only if it is central,
2. Z&End(Q,+) C Q&End(Q,+), and
3. the identity automorphism, Idg, of (Q,+) is (—1)-quasicentral.

Lemma 2.4. Let f,g € End(Q,+).

1. If f is m-quasicentral and g is n-quasicentral, then fg is (—mn)-quasi-
central.

2. If f,g € QEnd(Q,+), then fg € QEnd(Q, +).

ProOF: For (1): Fix x € Q. Since f is m-quasicentral, g(mxz) + fg(x) = mg(z) +
fg(z) € Z(Q,+). Since g is n-quasicentral, —mnz —mg(z) = —(g(mz) + nmx) €
Z(Q,+). Consequently,

—mnz + fg(x) = ([=mnx —mg(z)] + mg(z)) + fg()
= [-mnx —mg(z)] + [mg(z) + fg(x)] € Z(Q, +).

Thus, fg is (—mn)-quasicentral, as claimed.
(2) follows immediately from (1). O

Lemma 2.5. Assume that (Q,+) is commutative, let f,g € End(Q,+) be m-
quasicentral and n-quasicentral, respectively. Then

1. —f is (—m)-quasicentral,
2. f+ g is an (m + n)-quasicentral endomorphism.

In particular, for f,g € Q&End(Q,+), —f, f + g € QEnd(Q,+).
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PROOF: (1) is clear. For (2), set z = (—mz — f(x)) + (—my — f(y)) + (—mz —
g(x)) + (—my — g(y)). Then z € Z(Q, +). It follows that

2+ (f+9)(x+y) =2+ ([f2) + W]+ [9(z) + 9(y)]) = —ma — my — nz — ny
= —mzx —nx —my —ny =z + ([f(z) + g(=)] + [f(v) + 9(v)])
=2+ ((f +9)(=@) + (f +9)(¥))-

Thus f 4 g € End(Q, +). Similarly, (m +n)z + (f + g)(z) = [mz + f(z)] + [nz +
g(x)] € Z(Q,+). That is, (2) holds. O

Lemma 2.6. Assume that (Q,+) is commutative and let f,g,h € QEnd(Q,+).
Then

g+h)=(f+g)+h,
=0, and

PRrROOF: (1), (3), and (4) are obvious. For (2): There exist m,n,k € Z such that
mz+ f(z),nz+g(x), kz+h(z) € Z(Q,+). Sety = (—f(z)—ma)+(—g(z) —nz)+
(=h(x)—kz). Theny € Z(Q,+) and y+ (f(z)+ (g9(z)+h(x))) = —(m+n+k)x =
y+ ((f(z) + g(x)) + h(x)) for all z € Q. O

Corollary 2.7. If (Q,+) is commutative, then QEnd(Q, +) is an associative ring
with unity.

We conclude this section with a straightforward observation.

Lemma 2.8. Assume that for k € {1,2,3}, kx € Z(Q,+) for all x € Q. Then

1. every quasicentral endomorphism is m-central for some m € {0,1,—1},

2. if f € QEnd(Q,+) N Aut(Q,+), then f~1 € QEnd(Q, +).

3. Special endomorphisms of NK-loops

In this section, let (Q,+) be an NK-loop. We denote by N, K, and Z the
underlying sets of N(Q,+), K(Q,+), and Z(Q,+), respectively. As noted in §1,
Z(Q,+)=Z(N,+)=Z(K,+)and Z=NNK.

An endomorphism f of (Q,+) will be called special if f(Q) C K, fl|k is a
quasicentral endomorphism of (K, +), and f(N) C N. Then f|y is a central
endomorphism of (N,+) and f(N) C Z. We denote by SEnd(Q, +) the set of
special endomorphisms of (Q, +).

Lemma 3.1. Let f,g,h € SEnd(Q,+). Then

fg € SEnd(Q, +),

[+9e€SEndQ,+),and f+g=g+ f,
f+(@g+h)=(f+g) +h,

—f€8End(Q,+), f+(—f)=0,and f +0= f.

=
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PrOOF: For (1), use Lemma 2.4.
For (2): Take z,y € Q. Then x = a+band y = c+d for some a,c € N,b,de K
so that

u=(f+g)(r+y) = flz+y)+g(z+y)=I[f(z)+ fW)]+ )+ g(y)]
= [(f(a) + £(b)) + (f(c) + f(d)] + [(9(a) + g(b)) + (g(c) + g(d))]

and

v=(f+g)@) +(f+9) () =[f(z) +g@)] + [f(y) + 9(v)]
= [(f(a) + £(b)) + (g(a) + g®O)] + [(f(c) + f(d)) + (9(c) + g(d))].

The restrictions f|y and g|y are central endomorphisms of (N, +), and it follows
that f(N) U g(N) C Z(N,+) = Z(Q,+). Thus, f(a), f(c),g(a),g(c) € Z and
in order to check that v = v it is sufficient to show that (f(b) + f(d)) + (9(b) +
g(d)) = (f(b) + g(b)) + (f(d) + g(d)). However, the latter equality holds, since
the restrictions f|x and g|k are quasicentral endomorphisms of the commutative
loop (K, +) and Corollary 2.7 applies.

We have shown that f + ¢ € End(Q,+). The facts that f + g is special and
f+g=g+ [ are easily seen, using Lemma 2.6 applied to the loop (K, +).

For (3): Using the facts that (@, +) is an NK-loop and f(N)Ug(N)UR(N) C Z,
it is enough to show that f(u)+ (g(u)+h(u)) = (f(u)+g(u))+h(u) for allu € K.
Now we proceed similarly as in the proof of Lemma 2.6.

Finally, (4) is easy. O

+
+

Corollary 3.2. SEnd(Q,+) is an associative ring (possibly without unity).
An endomorphism f of (Q,+) will be said to satisfy condition (F) if

—z+ f(zx) e K and x4+ f(x) eN

for all x € Q. Then f(K) C K and f(N) C N.

Lemma 3.3. Let f € End(Q,+) satisfy (F). Define h : Q — Q by h(z) =
—x + f(z) for all x € Q. Then h € SEnd(Q, +).

ProoOF: First we check that h € End(Q,+). Fix z,y € Q with z = a + b,
y=c+d,a,c € N, bdec K. Set u= h(zx+vy), v=nh(z)+h(y), and w =
(a—f(a)) + (c = f(e)) + (=b—=f(b)) + (=d — f(d)). Then w € Z,

u=(—y—2)+ flz+y) = ((=d=c)+(=b—a))+((f(a) + f(0)) + (f(c) + F(d))

and

v=(=z+f(2)+(=y+fv) = (=b—a)+(f(a)+F (1) +((=d—c)+(f(c)+ f(d)))-
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On the other hand,

u+tw=[(—d—c)+ (=b—a)]+ [(a —b) + (c — d)]
=[(-d—c)=0b+[-a+(a—b)]+ (c—d)
=[(=d—c) = b]+[(c—d) - b]
=[(—d—c)+ (c—d)] —2b
=—-2d—2b
= —-2(b+d)

=[(=b-a)+(a=0)]+[(=d—c) + (c - d)]

=v+w.

Consequently, u = v, so that h € End(Q,+), as claimed. Further, it follows
immediately from the definition of h that A(Q) C K and h(N) C N (then h(N) C
Z). Finally, 2a 4+ h(a) = a + f(a) € Z for all a € K, and therefore h|g is a 2-
quasicentral endomorphism of (K, +). Thus h € SEnd(Q, +). O

Lemma 3.4. Let f,g € End(Q,+) satisfy (F). Define h,k : Q — Q by h(z) =
—z + f(x) and k(x) = —x + g(x) for all x € Q. Then hk = kh if and only if
fa=gf.

PROOF: By Lemma 3.3, h € End(Q, +), and hence
hk(z) = h(—z + g(x)) = —h(z) + hg(z) = (= f(z) + =) + (—g(z) + fg(2)).
On the other hand,

kh(z) = =h(z) + gh(z) = (= f(z) + ) + (—g(2) + 9/ (z))

by the definition of h and k. The result is now clear. (]

Lemma 3.5. Let f,g € Aut(Q,+) satisfy (F'). Define h,k,p,q : Q@ — Q by
h(z) = —z+f(2), k(z) = —z+g(z), p(z) = —z+ f~Y(z), and ¢(z) = —z+g 1 (z)
for all x € Q). Then

1. h,k,p,q € SEnd(Q,+),

2. hp=ph and h+p+ hp =0,

3. kq=qk and k+ q+ kq =0, and

4. if fg= gf, then the endomorphisms h, k,p,q commute pairwise.

PrOOF: (1) follows from Lemma 3.3.

For (2): We have ff~! = f~1f and hence hp = ph by Lemma 3.4. Now, put
A =h+p+hp. Then A is a (special) endomorphism of (Q,+) and A(z) = [—z+
f@))+[—z+ @) +[(—=f (@) +2)+ (= f(z)+)]. Clearly, N C ker(A)(= {u €
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Q : A(u) = 0}). On the other hand, if z € K, then —z + f(z), —z + f~(z) € Z
and the equality A(z) = 0 is clear, too. Thus, N UK C ker(A4). But (Q,+) is an
NK-loop and ker(A) is a subloop of (Q,+). It follows ker(4) = @ and A = 0.
(3) is proven similarly to (2).
For (4), combine (2), (3), and Lemma 3.4. O

4. The equivalence

We now turn to the proof of the Main Theorem. First, recall the definition
of generalized module over a ring R, and observe that the conditions (1), (4),
(5), and (6) of the definition imply that for each a € R, the transformation
@ — Q;x — ax is a special endomorphism of (Q, 4). Recall also the ring R, which
is the ideal of S = Z[x,y, u, v] freely generated by the commuting indeterminates
X,y,u, and v.

First, take (Q,a) € Fp. As described in §1, let (Q,+, f, g, €) be the arithmetic
form of the F-quasigroup (@, -) such that a = 0 in (@, +). Then f,g € Aut(Q,+)
satisfy condition (F'). Further, define o, u, ¥, v : Q — Q by p(z) = —x + f(x),
w(z) = —z+f1(z), Y(x) = —z+g(x), and v(z) = —z+g~ () for all z € Q. By
Lemma 3.5, the special endomorphisms ¢, ¥, i1, and v of the loop (@, +) commute
pairwise, and ¢ + p + ou = 0 = 1 + v + Yr. Consequently, these endomorphisms
generate a commutative subring of the ring SEnd(Q, +) (see Corollary 3.2) and
there exists a (uniquely determined) homomorphism A : R — S&nd(Q,+) such
that A(x) = ¢, A(y) = ¢, A(u) = i, and A(v) = v. The homomorphism A induces
an R-scalar multiplication on the loop (Q,+), and the resulting generalized R-
module will be denoted by Q. By Lemma 3.5, A\(x+u+xu) = 0= ANy +v+yv),
and so x + u+xu,y + v+yv € Ann(Q). Also, since f, g satisfy (F'), we have
22+ Ax)z =224 ¢(2) = 2+ f(2) € N(Q,+) and similarly 2z + A(y)z € N(Q, +)
for all z € Q. It follows that Q € M. Now define p : F, — My, by p(Q,a) =
(Q, e), and observe that (Q,e) € M, if and only if e € Z(Q, +).

Next, take (Q,e) € M, and define f,g : Q@ — Q by f(z) = z + xz and
g(z) = z+yzforall z € Q. We have f(z+y) = (z+y)+(xz+xy) and f(z)+f(y) =
(r+xz)+ (y +xy). Further, z = uj +v1, y = ug + v for some uy,u2 € N(Q,+),
v1,v3 € K(Q,+), and hence, f(z+y) = (u1+ug+v1+v2)+(xug +xus+xv1+%x02),
and f(z)+ f(y) = (u1 +xu1 +v1 +x01) + (ug +xXug +v1 + xv2). But xu,xus €
Z(Q,+), and so in order to show f(x+y) = f(x)+ f(y), it is enough to check that
(v1 +v2)+ (xv1 +xv2) = (v1 +xv1)+ (v2 + xv2). However, —2v1 —xv; € Z(Q,+)
and —2vy — xvg € Z(Q,+), and so the latter equality is clear.

We have proven that f € End(Q,+), and the proof that g € End(Q,+) is
similar. Now by definition of generalized module, —z + f(z) = xz € K(Q,+)
and —z + g(x) = yx € K(Q,+) for all € Q. By definition of M, z + f(z) =
2z +xz € N(Q,+) and z+ g(z) = 2z + yx € N(Q, +) for all z € Q. This means
that both f and g satisfy (F') and it follows from Lemma 3.4 that fg = gf.
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Define h : Q — Q by h(z) = z+ux for x € Q. We have uz+xz+xuzr = 0, and
so xz +xuz = —uz. Now, fh(z) = h(z) +xh(z) = (r+uz) + (xz +xuz) = (z+
ur) —uz =z and fh = Idg. Similarly, hf = Idgp and we see that f € Aut(Q,+).
Similarly, g € Aut(Q,+).

We have that f,g € Aut(Q,+), and e € @ satisfy the conditions of the Propo-
sition of §1, and so defining a multiplication on @ by xy = f(x) + e+ g(y) for all
z,y € Q gives an F-quasigroup. Define o : M,, — F,, by 0(Q, e) = (Q,0).

It is easy to check that the operators p and ¢ represent an equivalence between
Fp and My,. Further, 0 € M(Q) if and only if e € Z(Q,+), so that p and o
restrict to an equivalence between F, and M,. This completes the proof of the
Main Theorem.
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