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Product of vector measures on topological spaces

SURJIT SINGH KHURANA

Abstract. For i = (1,2), let X; be completely regular Hausdorff spaces, E; quasi-
complete locally convex spaces, E = E1®F3, the completion of the their injective tensor
product, Cy(X;) the spaces of all bounded, scalar-valued continuous functions on X;,
and p; Ej;-valued Baire measures on X;. Under certain conditions we determine the
existence of the E-valued product measure p; ® p2 and prove some properties of these
measures.

Keywords: injective tensor product, product of measures, tight measures, 7-smooth mea-
sures, separable measures, Fubini theorem
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1. Introduction and notations

In this paper, all vector spaces are taken on K (we will call them scalars), the
field of real or complex numbers (R will denote the field of real numbers). For
a Hausdorff completely regular space X, C(X) (resp. Cp(X)) are the spaces of
all scalar-valued continuous (continuous and bounded) functions on X, B(X) and
Bo(X) are the classes of Borel and Baire subsets of X, My (X), Moo(X), M- (X),
M;(X) are resp. o-smooth, separable, T-smooth and tight scalar measures on X.
The elements of M, (X) and M¢(X) extend to Borel measures ([8], [16], [17]);
also there are locally convex topologies By, 8oc, Br, B¢t on Cp(X) which give as
their duals My (X), Moo (X), M-(X), My(X) ([8], [17], [16]). X will denote the
Stone-Cech compactification of X and for an f € Cy(X), f will be its continuous
extension to X.

For i = (1,2), X; will always denote Hausdorff completely regular spaces, E;
Hausdorff locally convex spaces, P; all continuous seminorms on F;, and E =
E1®E>, the completion of the injective tensor product of E; and FE5. For a
pi € Py and f € El, we will say f < p; if f € S; where S; = {h € E] : |h(z)| <
pi(z) Vo € E;}; S; is an equicontinuous, convex and o(E], E;)-compact subset of
E!. With the norm topology on C(S1 x S2), the topology on E is the one induced
by H(Sh&) C(S1 x S2); to prove convergence in E, many times the problem boils
down to C(S7 x S2) and we will say that E can be considered as a subspace of
C(S1xS2). For alocally convex space F with its dual F’ and (z,y) € FxF', (z,y)
will denote y(z); also for a continuous seminorm p on F', V), = {z € F : p(z) < 1}.
N will denote the set of natural numbers.
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Now we come to vector-valued measures. Let F' be a locally convex space with
P the family of all continuous semi-norms on F, A is a o-algebra of subsets of a
set Y, p: A — F a countably additive vector measure. For a p € P, we denote
the p-semi-variation of u by fip,

fip(A) = sup {Ig opl(A):ge€ Vpo}

(here Vp0 is the polar of V}, in the duality (F, F')) [15]. Also we can select a control
measure, \p, for fi, which has the properties:
(i) with norm topology on measures, Ay is in the closed convex hull of {|gop| :
g€ Vpo} ([12, p. 20, proof of Theorem 1));
(ii) |fou| < Ap for every f in F’ with || f||, < 1 (note that || f||, = sup{|f ()] :
z € Vp});
(iii) if Ap(A) = 0 then fip(A) = 0;
(iv) limy (4)—o Ap(A) = 0;
(v) Ap < fip-
We also know that if f: Y — K is a measurable function, B € A and |f| < ¢ on
B, then || [ f dpllp < cfip(B).
LY(u) will denote the space of all y-integrable functions ([12]). For any f €
LY (u), we define fip(f) = sup{|g o ul(|f]) : g € V})} ([12, Lerma 2, p. 23]).

2. Integration of vector-valued functions with respect to vector-valued
measures

Let A be a o-algebra of subsets of a set Y and p : A — FEp a countably
additive measure. A function f : Y — FE9y will be called u-integrable if go o f €
LY(u) for every go € EY and for every A € A, there exists a z € E such that
Jag920 fd(grop) = (91 ®g2,2) ¥V(g1,92) € E] x Ej. We write [, fdu = z.
The collection of all y-integrable f : Y — Fo will be denoted by L'(u, Fa). It is
easily verified that L'(u, F3) is a vector space and for every f € L'(u, F3) and
for every A € A, fxa € LY(u, Ea); also p : LY(u, Eo) — E, u(f) = [ fdpu, is
linear. For ¢ = (1,2), for a function f : Y — E; and for a p; € P;, the function
1 fllps : Y — [0,00) is defined by ||, (1) = /0)llps.

We first prove the following result.

Theorem 1. Let u : A — Ej be countably additive and f : Y — FE3 be u-
integrable. Then v(A) = fA fdu is countably additive.

PRrROOF: For i = (1,2), fix p; € P; and let

Si = {g € B sup(lg(p; (0, 1)) < 1}
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E can be considered as a subspace of C(S7 x S3). Suppose that {4,} C A and
that the sets in A, are pairwise disjoint. For for any (g1, g2) € S1 X Sz and for
any M C N, we have

<gl®g2,u(nEJMAn)>=/U @ Ndoen =Y [ @endaon

neM An neM

Thus the mapping A : 2N — C(S; x S3), A(M) = v(Upenr An), is countably
additive for pointwise topology on C'(S1 x S2). By ([9, Theorem 2.1, p.163]), it

is countably additive with norm topology on C(S7 x S3). This proves the result.
O

Theorem 2. Suppose {f,} is a sequence in L'(u, E3), f : Y — Fo and f, — f,
in By, pointwise a.e. [11]. Assume that for any ps € Py, there is ¢p, € L'(u) such
that || fnllps < |épsl, a-e. [u] for all n. Then f € L' (u, E2) and [ fndu — [ fdpu,
inE

PrOOF: Take a p; € P1, a pg € P> and an A € A. For any g2 < p2, |ga2 o f|] <

|fps |, a.e. [1] and so gy o f € L(1). We first prove that fip, (g2 o (fn — f)) — 0,
uniformly for go < po. If this is not true then, by taking a subsequence of {fy},
if necessary, and again denoting it by {f,}, there is a ¢ > 0 and a sequence
{95} C Ej, g8 < po for all n, such that fip, (g5 o (fn — f)) > c for all n. But

|95 o (fn — [)] < 2¢p, a.e. [u] for all n, and g o (fn — f) — 0, a.e. [u]. By the
dominated convergence theorem ([12, Theorem 2, p. 30]), this is a contradiction.

This implies fip, (g2 © (xa(fn — f))) — 0, uniformly for ga < pa.
Now take a g1 < p; and gg < pa. We have

)<91®g2,/A(fn—fm)du>‘ = ‘[4920(fn—fm)d(g1ou)
< [ lg2o (u= D dlgron) + [ 920 (= Dl d(lgr o )
A A

Sﬂp1(92o(fn—f))+ﬂp1(g2o(fm—f))

which goes to 0 uniformly for go < pp. If z = lim [ A fndp, then it is a simple
verification that [, fdu = z, f € LY(u, B) and [ fndu — [ fdu, in E. This
proves the result. O

Corollary 3. FEs-valued simple functions are in L'(y, Eo). If an f : Y — Fy is
the pointwise limit, a.e. [u], of a sequence of uniformly bounded simple functions
in L(u, Bg), then f € L (u, Eg).

PROOF: Obviously every Fo-valued simple function is in L!(u, E3). Take a py €
P,. There exists an M > 0 such that || fu||p, < M for all n. By Theorem 1, the
result follows. O
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Before the next theorem, we set some notations. For i = (1,2), let ¥; be some
sets, A; be o-algebras of subsets of Y; and y; : A; — E; be countably additive
measures. It is well-known ([3]) that there is a unique countably additive product
measure 4 : Ay X Ay — E1®FEs such that pu(A; x Ag) = p1(A1) ® uz(As) for
every A; € A; for i = (1,2) (we will derive this result as a consequence of one
of our theorems). An example is given in [5, Theorem 12, p.336] which shows
that the classical Fubini theorem does not work for the injective tensor product
11 ® puo. With these notations, the following weak form of Fubini theorem is easy
to prove.

Theorem 4. Let f(y1,y2) € L'(1) (1 = p1 ® pg) and suppose, for i = (1,2),
that there are ¢:(yz) € L (u5) such that |f(y1,y2)| < |éx (y1)llé(y2)] on i x Ya.
Then

(i) for every y1 € Y1, ha(y1) = [ f(y1,- d,ug is in LY(pu1, E2) and for every

y2 € Yo, hi(y2) = [ f(-,y2) dpy is in LY (p, E);
(ii) [hodur = [hydus = ffd p1 @ p12).

PrOOF: First we will prove that ho(yp) exists for every y; € Y7. As for every

y1 € Y1, [f(y1,9)] < [d1(y1)llé2(-)] by ([12, Theorem 1, p 27]) [y, ) is po-
integrable and so for each y1 € Yi, hy : Y1 — Fo, h2 y1 = [ fy1,-)dpa is

well-defined and for any go € E2, g20h2(y1) = [ f(v1,-) d(g2 o p2). Now we want
to prove that ho € L (u1, Es).

Take an A € A;. For any (g1,92) € By X Ej, (91,92) ot = (910 p11) @ (92 0 p12)
on A1 x As (4; € A;) and since both are countably additive, they are equal on

A1 x Ag. Now x4 f € L' (i) and so y 4 f is integrable relative to (g1 0u1)®(g20u2).
Let [xafdu=z.

((91,92), 2 / /f Y1,) 2°u2))XAd(910u1) = /XA(920h2(y1))d(910M1)~

So hg € LY(p1, B) and [ fdu = [ hadui. The case of by can be dealt with in a
similar way. 0

Corollary 5. Let f(y1,y2) € L'(u1 ® po) be bounded. Then for every y; €
Y1, ha(y1) = [ f(y1,-)dpg is in L'(p, E2) and for every ya € Ya, hi(y2) =
J I Coy2) dpn s in L' (u, Br) and [hodpy = [ hydp = [ f d(m1 © pa).

PrRoOOF: The result follows from Theorem 4. O

3. Product of vector-valued measures on compact Hausdorff spaces

For a compact Hausdorff space X, M (X) will denote all scalar-valued regular
Borel measures on X and for a quasi-complete locally convex space F, M (X, F')
will denote all F-valued regular Borel measures on X. There is a one-to-one
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correspondence between p € M (X, F) and the weakly compact linear operator
p:C(X) — F ([13]).

The proof of the following lemma is obvious and well-known.

Lemma 6. Fori = (1,2), let X; be compact Hausdorfl spaces and u; € M(X;).
Then, with injective tensor product topology on C(X1) ® C(X2) (same as norm
topology), the linear continuous mapping p1 ® pe : C(X1) ® C(Xq2) — K ([7,
p. 348)), when uniquely, continuously extended to p1 ® po : C(X1 x X2) — K, is
the product measure (11 ® 2.

Theorem 7. Fori = (1,2), let X; be compact Hausdorff spaces and p; : C(X;) —
FE; be weakly compact linear mappings. Then the linear mapping p; ® po :
C(X1)®C(X2) — E is continuous (with respect to the norm topology on C(X1)®
C(X32)) and weakly compact. When extended to C(X1 x X3), the linear, weakly
compact mapping 1 ® pe : C(X1 x X9) — E represents a regular Borel measure
with the properties:

(i) u(fif2) = pi(f1) ® pa(fe) for any fi € C(X1) and any fa € C(X2);
(ii) for Borel sets B; C X; (for i = (1,2)), u(B1 X Ba) = p1(B1) ® ua(B2);
(iii) for any (g1,92) € F} x E and an f € C(X1 x X2),

/fdu1®u2) 91®g2 /fd g10 1) ® (g2 0 p2)),

where ((g1 o 11) ® (g2 o u2)) is the usual product of the scalars measures
(91 0 p1) and (g2 © p2).

PROOF: The continuity follows from [7, p.348]. For i = (1,2), let .S; be equicon-
tinuous, convex and U(EZ{ , E;)-closed subsets of E{ We consider E to be a sub-
space of C(S1 x S2). To prove weak compactness of the operator, take a uni-
formly bounded sequence {f,} C C(X1) ® C(X2) such that fyfm = 0 for every
n and for every m with n # m ([2, Corollary 17, p. 160]); we have to prove that
(21 ®p2)(fn) — 0. Suppose this is not true. This means, by taking a subsequence
of {fn}, if necessary, and again denoting it by {fy}, that there are sequences
{0} € S, i = (1,2), and a ¢ > 0 such that ((¢} o 1) @ (62 o u2))(fn) > ¢ for
all n. Putting gn(x1) = (¢2 o p2)(fn(z1,-)), we see that g, is uniformly bounded
and g, — 0 pointwise on X7. Since the set {(¢Lou1)} is relatively weakly compact
in M(X1), we get (¢k o p11)(gn) — 0, which is a contradiction.

Considering 1 ® o as an E-valued regular Borel measure on X x Xa, proofs
of the properties (i), (ii), (iii) are routine verifications ([11]). O

Now we derive from the above theorem the main result of ([3]).

Theorem 8 ([3]). For i = (1,2), let Y; be some sets A; be c-algebras of subsets
of Y; and u; : A; — E; be countably additive measures. Then there is a unique
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countably additive product measure i : Ay x Ay — E1®@F3 such that Ay x Ag) =
p1(A1) ® pa(Ag) for every A; € A; (i = (1,2)).

PRrROOF: For i = (1,2), let
B;={f:Y; — K| f bounded and A;- measurable}.

As in [10], there are compact Hausdorff spaces }72-, in which Y; are dense such that
C(ffi)‘yi = B,;. There is a one-to-one, onto, linear, order-preserving, sup-norm
preserving mapping from C(Y;) to B;. Thus we get measures i; : C(Y;) — E;.
By Theorem 7, we get the product measure pu = iy @ jip : C(Y] x Ya) — E.
This can be considered as a regular Baire measure. Take a compact G5 subset
C CYixYy \ Y1 X Ya. There is a sequence {f,} C C(i;l X 3;2) such that
fn | xo. Because of the norm-denseness of C(Y1) ® C(Yz) in C(Y; x Y3), there is
a norm-bounded sequence {h;,} C C(Y1) ® C(Y3) such that h, — x¢, pointwise
on };1 X 3;2.

For i = (1,2), let S; be o(E!, E;)-closed, convex and equicontinuous subsets
of El. E can be considered as a subspace of C(S x S3). Since p is a weakly
compact mapping, {u(hy,) : n € N} is relatively weakly compact in E and so its
weak convergence is the same as pointwise convergence on S1 x Sa. For g; € S;,

((91,92), 1(C)) = lim [ hypd((g1 0 fi1) ® (g2 © fi2))-

n—~o0

Now (g1 0 pu1) ® (g2 o pi2) is the product measure, (hn)(y;xy,) € B1 ® Ba and
hn, — 0 on Y7 xYa. This gives ((g1, g2), #(C)) = 0 and so pu(C) = 0. By regularity,
1(Q) = 0, for every Baire set Q C Yy x ?Q\Yl xY5. Now (Bo(l;l X 3;2))0(3/1 xYa) D
Aj x Ay and so for a P € A; x Ay, there is a Baire set Py in Y] x Ys such that
PyNn (Y1 x Y2) = P; now we can define (u3 ® p2)(P) = u(Py). The required
properties are easily verified. (I

4. Product of vector-valued 7-smooth measures on completely regular
Hausdorff spaces

For a completely regular Hausdorff space X and a quasi-complete locally convex
space F, a countably additive p : B(X) — F'is called 7-smooth if for an increasing
net {Vo} of open subsets of X, u(J, Va) = limp(Vy). This p gives rise to
a weakly compact linear map p : Cp(X) — F with the property that for every
fEeF, foue M;(X). Conversely if a weakly compact linear map p : Cp(X) — F
has the property for every f € F', fou € M;(X), then it is easy to prove that
such a p gives a unique 7-smooth Borel measure. To prove this, we get a linear,
continuous, weakly compact [ : C(X ) — F and so fi can be considered as a
regular Borel measure on X. Also we have B(X) N X = B(X). Take a closed set
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C C X\ X; there exists a net {fo} C C(X) such that fo | xo. This means,
in (Cp(X),Br), that (fa)x — 0 ([17]). Thus for every closed set C' C X\ X,
a(C) = 0, and so, by regularity, for every p € P, ﬁp(B) = 0, for all Borel sets
B ¢ X\ X. For any Borel set A C X, define v(A) = ji(B), B being any
Borel subset of X with BN X = A. It is a routine verification that v is well-
defined, countably additive and for any f € Cy(X), [ fdv = [ fdu. Also by the
regularity of fi, it can be easily verified that v 1s 7-smooth. Other things need

routine verification.
The set of all F-valued 7-smooth measures on X will be denoted by M, (X, F').

The following result is well-known ([1]); we give a different proof.

Lemma 9. (a) For i = (1,2), let p; € M(X;). Then there is a unique u €

M7 (X1 x X2) such that pu(f1f2) = p1(f1) ® pa(fe) for any f1 € Cy(X1)
and any fy € Cy(X2). Also for any f € Cp(X1 x X2),

u(f //fwydm())dm //fwydm )duz(y)~

(b) For any p-integrable f : X1 x Xo — K, for pi-almost all x1, f(x1,-) Is
pao-integrable and for pg-almost all xa, f(-,x2) is uj-integrable, and

w6 = [ ([ sra dnaten)) dusten) = [ ([ faran) dus@) dua(es).

PROOF: (a) We break up the proof into several stepS'

L. For any f € Cy(X1 x X2), the function h(z) = [ f(z,y) dua(y) is in Cp(X7).
Using the m-additivity of usg, it is easy to verlfy thls

IL. First assume that for i = (1,2), p; € M (X;). If fo | 0in Cp(X7 x Xo)
and ha(z) = [ fa(z,y)du2(y) then hoy | 0 in Cp(X1). This means, for f €
Ch e X, o S et w7y =[] T o) doa(s) s (o o )
J(J f(z,y) dpa(x)) duz(y) are in M (X1 x Xa). Also vy = vg on Cy(X1)@Ch(X2).

In the general case, the real and the imaginary parts of p; can be written as the
difference of positive elements of M;"(X;) and so the above result holds without
the positivity of p1 and pa.

L. For any 1 € M (X1 x X3), consider Cy,(X1 x X3) with the norm induced by
LY (p1). Then Cy(X1) ® Cy(X2) is dense in Cpy(X71 x X2). Suppose this is not true.
Then there is a g € L°(p) such that [ hgdp = 0 for every h € Cp(X1) ® Cp(X2),
but [ fgdp # 0 for some f € Cp(X1 x X2). Since pg = gu € M7 (X1 x Xo),
o = 0 on Cp(X1) ® Cp(X2). This means that for an open set V3 x Vo C X7 X Xo,
po(V1 x Vo) = 0. Thus uo(V) = 0 for every open set V' C X7 x X5 and so
to = 0 on Cy(X7 x X9). From this it follows that g = 0 a.e. [v] and so we have
a contradiction.
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IV. Since v1 = 9 on Cb(Xl) & Ob(XQ), by II, III v; = v on Cb(Xl X Xg).
This is the product measure and we denote it by (11 ® uz).

(b) The problem can be easily reduced to positive u1, pa. Suppose first that
f is a real-valued, bounded and lower semi-continuous. Take a bounded net
{fa} C Cp(X1 x X3), fa T f. Tt is easily verified that, for all z1, f(x1,-) is
po-integrable and for all xa, f(-,z2) is pi-integrable, and

w6 = [ ([ #ra dnaten)) dusten) = [ ([ faran) dus @) dua(es).

Let F ={f: X1 x Xo — K : f Borel measurable, ||f|| <1} and Fo={f e F: f
satisfies the conditions of (b)}. It is a simple verification that Fy is sequentially
closed in F. Combining this with the fact that the lower semi-continuous f with
If]l < 1 are in Fp, we easily see that F = Fy. Combining these results, we
see that Fubini theorem holds for any bounded, Borel measurable, p-integrable
f: X1 x X9 — K. Suppose a bounded, non-negative f : X1 x X9 — K is such
that f = 0, p-almost everywhere. We get a Borel measurable, bounded, non-
negative function fp : X1 x X9 — K such that f < fo = 0 p-almost everywhere
and so Fubini theorem holds for f; this means that Fubini theorem holds for any
bounded, p-integrable function f : X1 x X9 — K. Now let h: X1 x Xo — K be
p-integrable and h > 0. For an n € N, put hy, = inf(h,n). This means that

p(h) = lim a(hy) = lim / ( / o dpy ) dpz = lim / ( / sz d
e () = [ ([ dur) s = [ ( [ 1o .

So [ hdp is finite almost everywhere and integrable relative to pg and also
[ hdus is finite almost everywhere and integrable relative to p1. Hence, Fubini
theorem holds for all p-integrable functions f: X7 x X9 — K. ]

For proving the next theorem, we need the following result:

Lemma 10. (a) Let v € M} (X1 x X3). Then, in L1 (v), the closed unit ball of
Cp(X1) ® Cp(X2) is dense in the closed unit ball of Cy(X1 x Xa2).
(b) For any f € Cy(X1 x X2), || fl| <1, there is a net { fo} in the closed unit
ball of Cy(X1) ® Cp(X2) such that fo — f, pointwise on M, (X1 x X3).

PRrROOF: (a) We will make use of the following well-known result which follows
easily from the regularity of measure:

Let p be a finite, positive, regular Borel measure on a compact Hausdorff
space Y. Then, in Lj(u), the closed unit ball of C'(Y) is dense in the set of all
scalar-valued, Borel measurable functions, bounded by 1, on Y.
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We assume v(1) = 1. Fix an f € Cp (X1 X X3) with |f| < 1. By Lemma 9, III,
there is a sequence { f,} C Cp(X1)®Cp(X2) such that v(|fn — f|) — 0. By taking
a subsequence, if necessary, we assume that f, — f a.e. [v].

Denote the Borel set B = {x € (X1 x X2) : lim fp(z) exists and is finite}
and define g : (X1 x X3) — K as g(z) = lim fy,(z) if it exists and is finite,
and 0 otherwise. Then g is Borel measurable, v(B) = 1, |gxp| < 1 a.e. [v] and
f=gxB ae. V] 3 3

Define the linear, continuous, and positive mapping fi : C'(X;) ® C(X3) — K,
A fref?) =v(Y flof?). Since C(X1)®C(X3) is norm-dense in C'(X1 x X3),
this uniquely extends to a linear, continuous, and positive mapping /i : C (X 1 X
Xg) — K which may be considered as a regular Borel measure on X 1X X2 Since v
is 7-smooth, for any bounded Borel measurable function A : X1 X X2 — K, a(h) =

v(h(x, ><X2)) From fi(|fn — fm|) — 0, by taking a subsequence if necessary, we
get that fn is convergent a.e. [fi] on X1 x X. Let By be the Borel subset of
X1 x X5 on which fn is convergent and is finite and define g : (X' 1 X Xg) — K as
go(x) = lim f,, () if it exists and is finite, and 0 otherwise. gq is Borel measurable.
We also have ji(Bg) =1 = v(B), Bg N (X1 x X3) D B, and goxg = gxB- Thus
there is a sequence {hy} in the closed unit ball of C'(X1) ® C(X2) such that
fi(|lhn — goxB,|) — 0. Translating to v, there is a sequence wn = (hn)|(x, x x»)
in the closed unit ball of Cy(X1) ® Cp(X2) such that v(Jw, — gxp|) — 0 and so
v(|wp, — f|) — 0. This completes the proof.

(b) Putting P = M (X1 x X3), we see that P is filtering upwards with natural
order. Take a A € P and an n € N. By (a), there is function f(an) in the closed
unit ball of Cp(X1) ® Cp(X2) such that A(|f — fxn)l) < 5. Taking o = (A, n),
the result follows. g

Now we come to the product of vector-valued 7-smooth measures:

Theorem 11. Fori = (1,2), let u; € M- (X;, E;). Then

(a) there exists a unique p € M(X1 x X9, E1®FEs) such that u(fifz) =
p1(f1) ® pa(fe) for any f1 € Cy(X1) and any fo € Cp(X3); also for Borel
sets B; C X; (i = (1,2)), u(B1 x Ba) = p1(B1) ® po(Bz). This measure
W is denoted by p1 @ pa.

(b) (Fubini-type result) Take an f(x1,22) € L'(1) and suppose, fori = (1,2),
that there are ¢;(x;) € L (u1;) such that |f(z1,22) < |¢1(21)||p2(22)| on
X1 X Xg. Then

(i) for every z1 € X1, h2 z1) = | f( :El, Ydusg is in L'(py, E2) and for
every v € Xo, hi(x2) = [ f(-,x2) duy is in L (g, F);
(i) [hoduy = [hidus = [ fdp.
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PRrROOF: (a) By Theorem 7, p is defined on Cj,(X1) ® Cy(X2) and the closed unit
ball B, of Cy(X1) ® Cp(X2), is mapped into a relatively weakly compact subset
of E. Thus the closure of (¢ ® pu2)(B) in E, denoted by Q, is convex and weakly
compact. For i = (1,2), let S; be equicontinuous, convex, U(EZ{,Ei)—compact
subsets of E/. Considering E C C(S1 x S2), the pointwise and weak topologies
on @ are identical. For an h € Cp(X1 X X3), define

j(h) : 1 x S — K, {(g1,92), p(h)) = / hd((g1 0 11) ® (g2 0 2)).

Now assume that [|h|| < 1. Using Lemma 10, take a net {ho} C B such that
ha — h, pointwise on M, (X1 x X2). Since ((g1 0 p1) ® (g2 0 pn2)) € M- (X1 x Xo)
(Lemma 9), u(h) € Q@ C C(S1 x S2). Thus the mapping p = p1 ® ug : Cp(X1 %
X2) — FE is weakly compact. Now @ C C(S1 x S2) and is weakly compact,
so weak and pointwise topologies, on C'(S7 X S2), coincide on . Since for any
(91,92) € E1 X Eg, (g1,92)op = ((g1011) @ (g202)) € M7 (X1 % X2), we get that
for every ¢ € E', pop € M-(X1x X3). This proves that u;@us € M, (X1x Xs, E).

(b) First we will prove that ha(z1) exists for every 1 € X;. As for every
x1 € Xi, [f(z1,°)] < [¢1(21)[é2(-)] by [12, Theorem 1, p.27], f(x1,-) is po-
integrable and so for each z1 € X1, hy : X1 — Eg, ho(z1) = [ f(z1,-) dpa is
well-defined and for any g2 € Ef, gaoha(z1) = [ f(z1,-) d(g2 0 p2). Now we want
to prove that ho € L (u1, Es).

Take an A € A;. For any (g1, 92) € E] x E},

(91,92) o = (g1 0 1) ® (g2 © pi2)
on Cy(X1) ® Cp(X2) and, since both are 7-smooth,

(91,92) o = (g1 © 1) @ (92 © p2)

on Cp(X7 x X3); and so, as T7-smooth measures, they are equal.
Now xaf € L'(x) and so x4 f is integrable relative to (g1 o p11) @ (g2 o p2).
Let [ xafdu =z

((91,92), 2) :/(/f(xlv')d(920ﬂ2))XAd(910H1) = /XA(920h2(I1))d(910u1)-

So hg € LY (1, Ba) and [ fdpu = [ haduy. The case of hy can be dealt with in a
similar way. (|

5. Product of vector-valued tight measures on completely regular
Hausdorff spaces

For i = (1,2), let u; € M(X;) ([17], [8]). Then u; € M-(X;). By Lemma 9,
= p1 @ pua € M (X1 x Xo). It is easy to see that u € My (X1 x X2). To prove
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this, we see that |p| < |pu1]|®|p2| and, for any compact subsets C; C X; (i = 1,2),
X1 xXo\Cp xCo C ((X1\C1) X Xo) U (X1 x (X2\ C2)). This means that
(X1 x X2\ C1 x O2) < [p1|(X1\ C1)lp2l(X2) + [pa|(X1)[p2] (X2 \ C2) and from
this it follows that p € M(X; x Xa).

For a completely regular Haurdorff space X, and a locally convex space F, a
measure p : B(X) — F is called tight if for every f € F', f opu € My(X); this
does imply that, in the original topology of F, it is inner regular by the compact
subsets of X ([13]). The set of all F-valued tight measures on X will be denoted
by My(X, F).

Now we prove the main theorem of this section.

Theorem 12. (a) For i =(1,2), let u; € My(X;, E;). Then there exists a
unique p1 € M¢(X1 x Xo, E) such that u(f1f2) = p1(f1) ® pa(fz) for any
f1 € Cy(X1) and any fo € Cyp(X2); also for Borel sets B; C X; (i = (1,2)),
w(B1 X Ba) = pu1(B1) ® pua(B2). This measure u is denoted by p1 ® pa.
(b) (Fubini-type result) Take an f(x1,22) € L'(1) and suppose, fori = (1,2),
there are ¢;(x;) € L' (n;) such that | f(z1,22)| < |¢1(21)||¢2(22)| on X1 x
. Then
() for every 1 € X1, h2 z1) = | f( :vl, Ydusg is in L'(py, E2) and for
every xo € X2, hi(v2) = [ f(-,22) duy is in L (ug, F1);
(i) [hodur = [hiduz = [ fdp.

PROOF: (a) By Theorem 11, there is a unique measure p1 Q@uo € M, (X1 x Xo, E).
The only thing to be verified is that pu; ® pe € My(X; x Xa, E). For i = (1,2),
fix p; € P; and let

Si={g € Bf:1glp; (0,1 < 1}

E can be considered as a subspace of C'(S1 X S2). Since pu = p1 ® pg has relatively
weakly compact range in F1®Fs, the weak topology on the range is identical with
the pointwise topology on S x Sa. Since for any (g1,92) € S1 X S2, (g1 0 p1) ®
(g2 0 p2) € M(X71 x X2), u is tight in the weak topology and so it is tight ([13]).

(b) This follows from Theorem 11(b). O

6. Product of vector-valued measures when both are not 7-smooth

It is shown in [1] for 4 = (1,2) and p; € My(X;), unless both pg and po are
in M-(X1) and M-(X3), the product measure may not exist in My (X; x X3) for
which the Fubini theorem works for functions in Cp(X7 x X32). In this section
we consider some special cases and prove the existence of product Baire measures
satisfying some form of Fubini’s theorem.
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In this section we suppose that X» is compact and the measures we consider on
X1 are in Moo (X1) ([17], [8]); in [17] Moo is denoted by M and these measures are
called separable measures. First we make some comments on separable measures
on a completely regular Hausdorff space X:

Let {fo} be an e.b. set (that is, uniformly bounded equicontinuous subset of
Cp(X)) such that f, — 0, pointwise on X. If a u € My(X) has the property that
1(fo) — 0 for all such e.b. sets, then u € My (X). For a quasi-complete locally
convex space F', Moo (X, F') denotes those linear weakly compact i : Cp(X) — F
which have the property that f o u € My (X) for all f € F'. There is a locally
convex topology, called S0, on Cp(X) such that p : Cp(X) — K is in Mso(X)
iff p is continuous ([17]); this topology is Mackey. So if a linear, weakly compact
p 2 Cp(X) — F has the property that fou € M (X, F) for all f € F', then
w: (Cp(X), Boo) — F is continuous with weak topology on F' and, since B is
Mackey, it is also continuous in the original topology on F.

We start with a lemma.

Lemma 13. Let f € Cp(X1 X X2), with ||f|| < 1, and € > 0. Then there is a
partition of unity {go} in X1 and {hq} C C(X3) with ||ha| < 1 for all a, such
that [[f — >, gahal < e.

PROOF: As in [8, p.201], define a continuous semimetric d on X7, d(z,y) =
supy, |f(z,r2) — f(y, z2)|. Proceeding as in [8, p.201], we get the result. O

Lemma 14. Let f € Cp(X1 x Xo) with ||f]] < 1, p1 € Mo(X1) and ps €
M(X2) = Moo (X2). Then the functions [ f duy and [ f dug are Baire measurable

" [ ([ sdm)dua= [ ( [ saus) du.

PrROOF: In Lemma 13, take ¢ = % There is a partition of unity {g} in X3

and {hl} C C(X2) with ||h2|| <1 for all « such that || f — fn|l < % where fp, =
Yoo 9ahl. Now [ frndus =Y, chhl, where ¢ = [ gl dui, is continuous on Xo
and so [ f du is Baire measurable; in a similar way, it is easily seen that [ f dusg is
Baire measurable. Now it is easily verified that [([ fdu1)due = [([ fdps2) dur.

O

Lemma 15. Let {fo} C Cyp(X1 % X2) be an e.b. set and € > 0. Then there is a
partition of unity {gg} in X1 and {hg} C C(X2) with ||hZ| <1 for all o, 3 and
such that || fa — 323 gﬁth < e for all a.

PROOF: As in Lemma 14, define a continuous metric d on Xi, d(z,y) =
SUP(5,a) | fa (2, 22) = fa(y, 22)|. As in Lemma 13, we get the result. O
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Theorem 16. Given u1 € Moo(X1) and ug € M(Xz2), there is a unique Baire
measure p = 11 Q pug € Moo (X1 X X2) such that

(a) for any f € Cy(X1 x X2), [([ fdp2)dp = [([ fdu1)dpg; in particular
J(fif2)d(p1 ® po) = ([ frdu)([ faduz), for f1 € Cy(X1) and fo €
Cp(X2);

(b) for Baire sets B; C X; (i = (1,2)), (n1®p2)(B1 X Bg) = p1(B1) @ p2(B2);

(¢) for any p-integrable f : X1 x X9 — K, for pj-almost all x1, f(x1,-) Is
pao-integrable and for pg-almost all xa, f(-,x2) is uj-integrable, and

w0 = [ ([ fora) duaten)) dusten) = [ ([ £ore0) dis @) (o).

PROOF: (a) Define [ fd(p) = [ fd(u1 ®p2) = [([ fdur)dus. By Lemma 14, it
is also equal to [([ fdu2)dp1. To prove that p € Moo (X1 x X2), take an e.b. set
{fa} C Cp(X1 x X2) such that |f,| < 1 for all & and f, — 0, pointwise. Fix
n € N. By Lemma 15, there is partition of unity {gg,} in X1 and {3, } C C(X2)
with |[h§ | < 1 for all a and § such that || fo — Y 595005, < 5. Now the
set ¢ = Zﬁ gﬁ,nh%,n is an e.b. set and is pointwise convergent to, say ¢ (note
that n is fixed). It is easy to see that [([ ¢adu1)dus — [([ ¢du1)dug. Also
|[fa — dal < % and so |¢] < % This proves that [ fo dui dug — 0.

(b) This follows form the regularity properties of measures and (a).

(c) The proof is very similar to Lemma 9(b). O

To extend the above theorem to the vector case, we start with a lemma:

Lemma 17. (a) Fixa pu € MI(Xy x X2) and consider on Cy(X1 x Xo) the
topology induced by L1(u). Then the closed unit ball of Cy(X1)® Cy(X2)
is dense in the closed unit ball of Cy(X1 x Xa2).

(b) For any f € Cy(X1 x X2), || f]| <1, there is a net { fq} in the closed unit
ball of Cp(X1) ® Cy(X2), such that fo — f, pontwise on Moo (X1 x X3).

PROOF: (a) We assume u(1) = 1. Fix an f in the unit ball of Cp,(X7 x X3) and an
e > 0. By Lemma 13, there is partition of unity {gq} in X1 and {ha} C C(X2)
with ||ho|| < 1 for all a such that ||f — ", gahall < €. Since p € Moo(X1 x X2),
there is a finite subset J C I such that (3 ,cp\s) < e Let h =3 ¢ gaha.

We have
ulf —hl S€+u(‘ > gaha‘) §a+u( > ga) < 2e.
acl\J acl\J
This proves the result.
(b) The proof is very similar to Lemma 10(b). O

Now we prove the vector form of Theorem 16.
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Theorem 18. Suppose pu1 € Moo(X1, E1) and po € M (X2, E3) (note that Xy is
compact). Then

(a) there exists a unique pu € Moo(X1 X Xa, E) such that u(f1f2) = p1(f1)
® pa(fo) for any f1 € Cy(X1) and any fo € Cy(X2); also for Baire sets
B; C X; (i =(1,2)), u(By x B2) = u1(B1) ® pua(Bg). This measure p is
denoted by j11 ® 2.
(b) (Fubini-type result) Take an f(x1,22) € L'(1) and suppose, fori = (1,2),
there are ¢i(x;) € L' (u;) such that | f(z1,22)| < |¢1(21)||¢2(22)| on X1 x
. Then
() for every 1 € X1, h2 (z1) = [ f( a:l, Ydpug is in L'(py, F3) and for
every x3 € Xo, hi(22) = [ f(-,2) duy is in L (ug, Ey);
(ii) fhgdul —fhld,ug —ffdu.

PrOOF: Using Theorem 16 and Lemma 17, the proof is similar to that of Theo-
rem 11.

O
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