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Product of vector measures on topological spaces

Surjit Singh Khurana

Abstract. For i = (1, 2), let Xi be completely regular Hausdorff spaces, Ei quasi-
complete locally convex spaces, E = E1⊗̆E2, the completion of the their injective tensor
product, Cb(Xi) the spaces of all bounded, scalar-valued continuous functions on Xi,
and µi Ei-valued Baire measures on Xi. Under certain conditions we determine the
existence of the E-valued product measure µ1 ⊗ µ2 and prove some properties of these
measures.
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1. Introduction and notations

In this paper, all vector spaces are taken on K (we will call them scalars), the
field of real or complex numbers (R will denote the field of real numbers). For
a Hausdorff completely regular space X , C(X) (resp. Cb(X)) are the spaces of
all scalar-valued continuous (continuous and bounded) functions on X , B(X) and
B0(X) are the classes of Borel and Baire subsets of X , Mσ(X), M∞(X), Mτ (X),
Mt(X) are resp. σ-smooth, separable, τ -smooth and tight scalar measures on X .
The elements of Mτ (X) and Mt(X) extend to Borel measures ([8], [16], [17]);
also there are locally convex topologies βσ, β∞, βτ , βt on Cb(X) which give as

their duals Mσ(X), M∞(X), Mτ (X), Mt(X) ([8], [17], [16]). X̃ will denote the

Stone-Čech compactification of X and for an f ∈ Cb(X), f̃ will be its continuous

extension to X̃.
For i = (1, 2), Xi will always denote Hausdorff completely regular spaces, Ei

Hausdorff locally convex spaces, Pi all continuous seminorms on Ei, and E =
E1⊗̆E2, the completion of the injective tensor product of E1 and E2. For a
pi ∈ Pi and f ∈ E′

i, we will say f ≤ pi if f ∈ Si where Si = {h ∈ E′
i : |h(x)| ≤

pi(x) ∀x ∈ Ei}; Si is an equicontinuous, convex and σ(E′
i, Ei)-compact subset of

E′
i. With the norm topology on C(S1×S2), the topology on E is the one induced
by

∏

(S1,S2)
C(S1×S2); to prove convergence in E, many times the problem boils

down to C(S1 × S2) and we will say that E can be considered as a subspace of
C(S1×S2). For a locally convex space F with its dual F ′ and (x, y) ∈ F×F ′, 〈x, y〉
will denote y(x); also for a continuous seminorm p on F , Vp = {x ∈ F : p(x) ≤ 1}.
N will denote the set of natural numbers.
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Now we come to vector-valued measures. Let F be a locally convex space with
P the family of all continuous semi-norms on F , A is a σ-algebra of subsets of a
set Y , µ : A → F a countably additive vector measure. For a p ∈ P , we denote
the p-semi-variation of µ by µ̄p,

µ̄p(A) = sup
{

|g ◦ µ|(A) : g ∈ V 0p

}

(here V 0p is the polar of Vp in the duality 〈F, F ′〉) [15]. Also we can select a control
measure, λp, for µ̄p which has the properties:

(i) with norm topology on measures, λp is in the closed convex hull of {|g◦µ| :

g ∈ V 0p } ([12, p. 20, proof of Theorem 1]);

(ii) |f ◦µ| ≪ λp for every f in F ′ with ‖f‖p ≤ 1 (note that ‖f‖p = sup{|f(x)| :
x ∈ Vp});

(iii) if λp(A) = 0 then µ̄p(A) = 0;
(iv) limλp(A)→0 µ̄p(A) = 0;

(v) λp ≤ µ̄p.

We also know that if f : Y → K is a measurable function, B ∈ A and |f | ≤ c on
B, then ‖

∫

B f dµ‖p ≤ cµ̄p(B).

L1(µ) will denote the space of all µ-integrable functions ([12]). For any f ∈
L1(µ), we define µ̄p(f) = sup{|g ◦ µ|(|f |) : g ∈ V 0p } ([12, Lemma 2, p. 23]).

2. Integration of vector-valued functions with respect to vector-valued

measures

Let A be a σ-algebra of subsets of a set Y and µ : A → E1 a countably
additive measure. A function f : Y → E2 will be called µ-integrable if g2 ◦ f ∈
L1(µ) for every g2 ∈ E′

2 and for every A ∈ A, there exists a z ∈ E such that
∫

A g2 ◦ f d(g1 ◦ µ) = 〈g1 ⊗ g2, z〉 ∀ (g1, g2) ∈ E′
1 × E′

2. We write
∫

A f dµ = z.

The collection of all µ-integrable f : Y → E2 will be denoted by L1(µ, E2). It is
easily verified that L1(µ, E2) is a vector space and for every f ∈ L1(µ, E2) and
for every A ∈ A, fχA ∈ L1(µ, E2); also µ : L1(µ, E2) → E, µ(f) =

∫

f dµ, is
linear. For i = (1, 2), for a function f : Y → Ei and for a pi ∈ Pi, the function
‖f‖pi : Y → [0,∞) is defined by ‖f‖pi(y) = ‖f(y)‖pi.

We first prove the following result.

Theorem 1. Let µ : A → E1 be countably additive and f : Y → E2 be µ-

integrable. Then ν(A) =
∫

A f dµ is countably additive.

Proof: For i = (1, 2), fix pi ∈ Pi and let

Si =
{

g ∈ E′
i : sup(|g(p

−1
i ([0, 1]))|) ≤ 1

}

.
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E can be considered as a subspace of C(S1 × S2). Suppose that {An} ⊂ A and
that the sets in An are pairwise disjoint. For for any (g1, g2) ∈ S1 × S2 and for
any M ⊂ N, we have

〈

g1⊗ g2, ν
(

⋃

n∈M

An

)〉

=

∫S
n∈M An

(g2 ◦ f) d(g1 ◦µ) =
∑

n∈M

∫

An

(g2 ◦ f) d(g1 ◦µ).

Thus the mapping λ : 2N → C(S1 × S2), λ(M) = ν(
⋃

n∈M An), is countably
additive for pointwise topology on C(S1 × S2). By ([9, Theorem 2.1, p. 163]), it
is countably additive with norm topology on C(S1 × S2). This proves the result.

�

Theorem 2. Suppose {fn} is a sequence in L1(µ, E2), f : Y → E2 and fn → f ,

in E2, pointwise a.e. [µ]. Assume that for any p2 ∈ P2, there is φp2 ∈ L1(µ) such

that ‖fn‖p2 ≤ |φp2 |, a.e. [µ] for all n. Then f ∈ L1(µ, E2) and
∫

fn dµ →
∫

f dµ,

in E.

Proof: Take a p1 ∈ P1, a p2 ∈ P2 and an A ∈ A. For any g2 ≤ p2, |g2 ◦ f | ≤
|φp2 |, a.e. [µ] and so g2 ◦ f ∈ L1(µ). We first prove that µ̄p1(g2 ◦ (fn − f))→ 0,
uniformly for g2 ≤ p2. If this is not true then, by taking a subsequence of {fn},
if necessary, and again denoting it by {fn}, there is a c > 0 and a sequence
{gn
2 } ⊂ E′

2, gn
2 ≤ p2 for all n, such that µ̄p1(g

n
2 ◦ (fn − f)) > c for all n. But

|gn
2 ◦ (fn − f)| ≤ 2φp2 a.e. [µ] for all n, and gn

2 ◦ (fn − f) → 0, a.e. [µ]. By the
dominated convergence theorem ([12, Theorem 2, p. 30]), this is a contradiction.
This implies µ̄p1(g2 ◦ (χA(fn − f)))→ 0, uniformly for g2 ≤ p2.
Now take a g1 ≤ p1 and g2 ≤ p2. We have

∣

∣

∣

〈

g1 ⊗ g2,

∫

A
(fn − fm) dµ

〉∣

∣

∣
=

∣

∣

∣

∫

A
g2 ◦ (fn − fm) d(g1 ◦ µ)

∣

∣

∣

≤

∫

A
|g2 ◦ (fn − f)| d(|g1 ◦ µ|) +

∫

A
|g2 ◦ (fm − f)| d(|g1 ◦ µ|)

≤ µ̄p1(g2 ◦ (fn − f)) + µ̄p1(g2 ◦ (fm − f))

which goes to 0 uniformly for g2 ≤ p2. If z = lim
∫

A fn dµ, then it is a simple

verification that
∫

A f dµ = z, f ∈ L1(µ, E2) and
∫

fn dµ →
∫

f dµ, in E. This
proves the result. �

Corollary 3. E2-valued simple functions are in L1(µ, E2). If an f : Y → E2 is

the pointwise limit, a.e. [µ], of a sequence of uniformly bounded simple functions
in L1(µ, E2), then f ∈ L1(µ, E2).

Proof: Obviously every E2-valued simple function is in L1(µ, E2). Take a p2 ∈
P2. There exists an M > 0 such that ‖fn‖p2 ≤ M for all n. By Theorem 1, the
result follows. �
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Before the next theorem, we set some notations. For i = (1, 2), let Yi be some
sets, Ai be σ-algebras of subsets of Yi and µi : Ai → Ei be countably additive
measures. It is well-known ([3]) that there is a unique countably additive product
measure µ : A1 × A2 → E1⊗̆E2 such that µ(A1 × A2) = µ1(A1) ⊗ µ2(A2) for
every Ai ∈ Ai for i = (1, 2) (we will derive this result as a consequence of one
of our theorems). An example is given in [5, Theorem 12, p. 336] which shows
that the classical Fubini theorem does not work for the injective tensor product
µ1⊗µ2. With these notations, the following weak form of Fubini theorem is easy
to prove.

Theorem 4. Let f(y1, y2) ∈ L1(µ) (µ = µ1 ⊗ µ2) and suppose, for i = (1, 2),
that there are φi(yi) ∈ L1(µi) such that |f(y1, y2)| ≤ |φ1(y1)||φ2(y2)| on Y1 × Y2.

Then

(i) for every y1 ∈ Y1, h2(y1) =
∫

f(y1, ·) dµ2 is in L1(µ1, E2) and for every

y2 ∈ Y2, h1(y2) =
∫

f(·, y2) dµ1 is in L1(µ, E1);
(ii)

∫

h2 dµ1 =
∫

h1 dµ2 =
∫

f d(µ1 ⊗ µ2).

Proof: First we will prove that h2(y1) exists for every y1 ∈ Y1. As for every
y1 ∈ Y1, |f(y1, ·)| ≤ |φ1(y1)||φ2(·)| by ([12, Theorem 1, p. 27]), f(y1, ·) is µ2-
integrable and so for each y1 ∈ Y1, h2 : Y1 → E2, h2(y1) =

∫

f(y1, ·) dµ2 is
well-defined and for any g2 ∈ E′

2, g2 ◦h2(y1) =
∫

f(y1, ·) d(g2 ◦µ2). Now we want

to prove that h2 ∈ L1(µ1, E2).
Take an A ∈ A1. For any (g1, g2) ∈ E′

1×E′
2, (g1, g2) ◦µ = (g1 ◦µ1)⊗ (g2 ◦µ2)

on A1 × A2 (Ai ∈ Ai) and since both are countably additive, they are equal on
A1×A2. Now χAf ∈ L1(µ) and so χAf is integrable relative to (g1◦µ1)⊗(g2◦µ2).
Let

∫

χAf dµ = z.

〈(g1, g2), z〉 =

∫

(

∫

f(y1, ·) d(g2◦µ2)
)

χAd(g1◦µ1) =

∫

χA(g2◦h2(y1)) d(g1◦µ1).

So h2 ∈ L1(µ1, E2) and
∫

f dµ =
∫

h2 dµ1. The case of h1 can be dealt with in a
similar way. �

Corollary 5. Let f(y1, y2) ∈ L1(µ1 ⊗ µ2) be bounded. Then for every y1 ∈
Y1, h2(y1) =

∫

f(y1, ·) dµ2 is in L1(µ, E2) and for every y2 ∈ Y2, h1(y2) =
∫

f(·, y2) dµ1 is in L1(µ, E1) and
∫

h2 dµ1 =
∫

h1 dµ2 =
∫

f d(µ1 ⊗ µ2).

Proof: The result follows from Theorem 4. �

3. Product of vector-valued measures on compact Hausdorff spaces

For a compact Hausdorff space X , M(X) will denote all scalar-valued regular
Borel measures on X and for a quasi-complete locally convex space F , M(X, F )
will denote all F -valued regular Borel measures on X . There is a one-to-one
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correspondence between µ ∈ M(X, F ) and the weakly compact linear operator
µ : C(X)→ F ([13]).

The proof of the following lemma is obvious and well-known.

Lemma 6. For i = (1, 2), let Xi be compact Hausdorff spaces and µi ∈ M(Xi).
Then, with injective tensor product topology on C(X1) ⊗ C(X2) (same as norm
topology), the linear continuous mapping µ1 ⊗ µ2 : C(X1) ⊗ C(X2) → K ([7,
p. 348]), when uniquely, continuously extended to µ1 ⊗ µ2 : C(X1 × X2)→ K, is

the product measure µ1 ⊗ µ2.

Theorem 7. For i = (1, 2), letXi be compact Hausdorff spaces and µi : C(Xi)→
Ei be weakly compact linear mappings. Then the linear mapping µ1 ⊗ µ2 :
C(X1)⊗C(X2)→ E is continuous (with respect to the norm topology on C(X1)⊗
C(X2)) and weakly compact. When extended to C(X1 × X2), the linear, weakly
compact mapping µ1⊗ µ2 : C(X1 ×X2)→ E represents a regular Borel measure

with the properties:

(i) µ(f1f2) = µ1(f1)⊗ µ2(f2) for any f1 ∈ C(X1) and any f2 ∈ C(X2);
(ii) for Borel sets Bi ⊂ Xi (for i = (1, 2)), µ(B1 × B2) = µ1(B1)⊗ µ2(B2);
(iii) for any (g1, g2) ∈ E′

1 × E′
2 and an f ∈ C(X1 × X2),

〈

∫

f d(µ1 ⊗ µ2), (g1 ⊗ g2)
〉

=

∫

f d((g1 ◦ µ1)⊗ (g2 ◦ µ2)),

where ((g1 ◦ µ1)⊗ (g2 ◦ µ2)) is the usual product of the scalars measures
(g1 ◦ µ1) and (g2 ◦ µ2).

Proof: The continuity follows from [7, p. 348]. For i = (1, 2), let Si be equicon-
tinuous, convex and σ(E′

i, Ei)-closed subsets of E′
i. We consider E to be a sub-

space of C(S1 × S2). To prove weak compactness of the operator, take a uni-
formly bounded sequence {fn} ⊂ C(X1) ⊗ C(X2) such that fnfm = 0 for every
n and for every m with n 6= m ([2, Corollary 17, p. 160]); we have to prove that
(µ1⊗µ2)(fn)→ 0. Suppose this is not true. This means, by taking a subsequence
of {fn}, if necessary, and again denoting it by {fn}, that there are sequences
{φi

n} ⊂ Si, i = (1, 2), and a c > 0 such that ((φ1n ◦ µ1) ⊗ (φ
2
n ◦ µ2))(fn) > c for

all n. Putting gn(x1) = (φ
2
n ◦ µ2)(fn(x1, ·)), we see that gn is uniformly bounded

and gn → 0 pointwise onX1. Since the set {(φ
1
n◦µ1)} is relatively weakly compact

in M(X1), we get (φ
1
n ◦ µ1)(gn)→ 0, which is a contradiction.

Considering µ1⊗µ2 as an E-valued regular Borel measure on X1×X2, proofs
of the properties (i), (ii), (iii) are routine verifications ([11]). �

Now we derive from the above theorem the main result of ([3]).

Theorem 8 ([3]). For i = (1, 2), let Yi be some sets Ai be σ-algebras of subsets

of Yi and µi : Ai → Ei be countably additive measures. Then there is a unique
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countably additive product measure µ : A1×A2 → E1⊗̆E2 such that µ(A1×A2) =
µ1(A1)⊗ µ2(A2) for every Ai ∈ Ai (i = (1, 2)).

Proof: For i = (1, 2), let

Bi = {f : Yi → K | f bounded and Ai- measurable}.

As in [10], there are compact Hausdorff spaces Ỹi, in which Yi are dense such that

C(Ỹi)|Yi
= Bi. There is a one-to-one, onto, linear, order-preserving, sup-norm

preserving mapping from C(Ỹi) to Bi. Thus we get measures µ̃i : C(Ỹi) → Ei.

By Theorem 7, we get the product measure µ = µ̃1 ⊗ µ̃2 : C(Ỹ1 × Ỹ2) → E.
This can be considered as a regular Baire measure. Take a compact Gδ subset
C ⊂ Ỹ1 × Ỹ2 \ Y1 × Y2. There is a sequence {fn} ⊂ C(Ỹ1 × Ỹ2) such that

fn ↓ χC . Because of the norm-denseness of C(Ỹ1)⊗C(Ỹ2) in C(Ỹ1× Ỹ2), there is

a norm-bounded sequence {hn} ⊂ C(Ỹ1) ⊗ C(Ỹ2) such that hn → χC , pointwise

on Ỹ1 × Ỹ2.
For i = (1, 2), let Si be σ(E′

i, Ei)-closed, convex and equicontinuous subsets
of E′

i. E can be considered as a subspace of C(S1 × S2). Since µ is a weakly
compact mapping, {µ(hn) : n ∈ N} is relatively weakly compact in E and so its
weak convergence is the same as pointwise convergence on S1 × S2. For gi ∈ Si,

〈(g1, g2), µ(C)〉 = lim
n→∞

∫

hn d((g1 ◦ µ̃1)⊗ (g2 ◦ µ̃2)).

Now (g1 ◦ µ1) ⊗ (g2 ◦ µ2) is the product measure, (hn)|(Y1×Y2) ∈ B1 ⊗ B2 and

hn → 0 on Y1×Y2. This gives 〈(g1, g2), µ(C)〉 = 0 and so µ(C) = 0. By regularity,

µ(Q) = 0, for every Baire setQ ⊂ Ỹ1×Ỹ2\Y1×Y2. Now (B0(Ỹ1×Ỹ2))∩(Y1×Y2) ⊃

A1 ×A2 and so for a P ∈ A1 ×A2, there is a Baire set P0 in Ỹ1 × Ỹ2 such that
P0 ∩ (Y1 × Y2) = P ; now we can define (µ1 ⊗ µ2)(P ) = µ(P0). The required
properties are easily verified. �

4. Product of vector-valued τ-smooth measures on completely regular

Hausdorff spaces

For a completely regular Hausdorff spaceX and a quasi-complete locally convex
space F , a countably additive µ : B(X)→ F is called τ -smooth if for an increasing
net {Vα} of open subsets of X , µ(

⋃

α Vα) = limµ(Vα). This µ gives rise to
a weakly compact linear map µ : Cb(X) → F with the property that for every
f ∈ F ′, f◦µ ∈ Mτ (X). Conversely if a weakly compact linear map µ : Cb(X)→ F

has the property for every f ∈ F ′, f ◦ µ ∈ Mτ (X), then it is easy to prove that
such a µ gives a unique τ -smooth Borel measure. To prove this, we get a linear,
continuous, weakly compact µ̃ : C(X̃) → F and so µ̃ can be considered as a

regular Borel measure on X̃. Also we have B(X̃) ∩ X = B(X). Take a closed set
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C ⊂ X̃ \ X ; there exists a net {fα} ⊂ C(X̃) such that fα ↓ χC . This means,

in (Cb(X), βτ ), that (fα)|X → 0 ([17]). Thus for every closed set C ⊂ X̃ \ X ,

µ̃(C) = 0, and so, by regularity, for every p ∈ P , ¯̃µp(B) = 0, for all Borel sets

B ⊂ X̃ \ X . For any Borel set A ⊂ X , define ν(A) = µ̃(B), B being any

Borel subset of X̃ with B ∩ X = A. It is a routine verification that ν is well-
defined, countably additive and for any f ∈ Cb(X),

∫

f dν =
∫

f dµ. Also by the
regularity of µ̃, it can be easily verified that ν is τ -smooth. Other things need
routine verification.
The set of all F -valued τ -smooth measures on X will be denoted byMτ (X, F ).

The following result is well-known ([1]); we give a different proof.

Lemma 9. (a) For i = (1, 2), let µi ∈ Mτ (Xi). Then there is a unique µ ∈
Mτ (X1 × X2) such that µ(f1f2) = µ1(f1) ⊗ µ2(f2) for any f1 ∈ Cb(X1)
and any f2 ∈ Cb(X2). Also for any f ∈ Cb(X1 × X2),

µ(f) =

∫

(

∫

f(x, y) dµ2(y)
)

dµ1(x) =

∫

(

∫

f(x, y) dµ1(x)
)

dµ2(y).

(b) For any µ-integrable f : X1 × X2 → K, for µ1-almost all x1, f(x1, ·) is
µ2-integrable and for µ2-almost all x2, f(·, x2) is µ1-integrable, and

µ(f) =

∫

(

∫

f(x1, x2) dµ2(x2)
)

dµ1(x1) =

∫

(

∫

f(x1, x2) dµ1(x1)
)

dµ2(x2).

Proof: (a) We break up the proof into several steps:

I. For any f ∈ Cb(X1×X2), the function h(x) =
∫

f(x, y) dµ2(y) is in Cb(X1).
Using the τ -additivity of µ2, it is easy to verify this.

II. First assume that for i = (1, 2), µi ∈ M+
τ (Xi). If fα ↓ 0 in Cb(X1 × X2)

and hα(x) =
∫

fα(x, y) dµ2(y) then hα ↓ 0 in Cb(X1). This means, for f ∈
Cb(X1 × X2), that the measures ν1(f) =

∫

(
∫

f(x, y) dµ2(y)) dµ1(x) and ν2(f) =
∫

(
∫

f(x, y) dµ1(x)) dµ2(y) are inM+
τ (X1×X2). Also ν1 = ν2 on Cb(X1)⊗Cb(X2).

In the general case, the real and the imaginary parts of µi can be written as the
difference of positive elements of M+

τ (Xi) and so the above result holds without
the positivity of µ1 and µ2.

III. For any µ ∈ M+
τ (X1×X2), consider Cb(X1×X2) with the norm induced by

L1(µ). Then Cb(X1)⊗Cb(X2) is dense in Cb(X1×X2). Suppose this is not true.
Then there is a g ∈ L∞(µ) such that

∫

hg dµ = 0 for every h ∈ Cb(X1)⊗Cb(X2),
but

∫

fg dµ 6= 0 for some f ∈ Cb(X1 × X2). Since µ0 = gµ ∈ Mτ (X1 × X2),
µ0 ≡ 0 on Cb(X1)⊗Cb(X2). This means that for an open set V1×V2 ⊂ X1×X2,
µ0(V1 × V2) = 0. Thus µ0(V ) = 0 for every open set V ⊂ X1 × X2 and so
µ0 ≡ 0 on Cb(X1 × X2). From this it follows that g = 0 a.e. [ν] and so we have
a contradiction.
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IV. Since ν1 = ν2 on Cb(X1) ⊗ Cb(X2), by II, III ν1 = ν2 on Cb(X1 × X2).
This is the product measure and we denote it by (µ1 ⊗ µ2).

(b) The problem can be easily reduced to positive µ1, µ2. Suppose first that
f is a real-valued, bounded and lower semi-continuous. Take a bounded net
{fα} ⊂ Cb(X1 × X2), fα ↑ f . It is easily verified that, for all x1, f(x1, ·) is
µ2-integrable and for all x2, f(·, x2) is µ1-integrable, and

µ(f) =

∫

(

∫

f(x1, x2) dµ2(x2)
)

dµ1(x1) =

∫

(

∫

f(x1, x2) dµ1(x1)
)

dµ2(x2).

Let F = {f : X1 ×X2 → K : f Borel measurable, ‖f‖ ≤ 1} and F0 = {f ∈ F : f
satisfies the conditions of (b)}. It is a simple verification that F0 is sequentially
closed in F . Combining this with the fact that the lower semi-continuous f with
‖f‖ ≤ 1 are in F0, we easily see that F = F0. Combining these results, we
see that Fubini theorem holds for any bounded, Borel measurable, µ-integrable
f : X1 × X2 → K. Suppose a bounded, non-negative f : X1 × X2 → K is such
that f = 0, µ-almost everywhere. We get a Borel measurable, bounded, non-
negative function f0 : X1 × X2 → K such that f ≤ f0 = 0 µ-almost everywhere
and so Fubini theorem holds for f ; this means that Fubini theorem holds for any
bounded, µ-integrable function f : X1 × X2 → K. Now let h : X1 × X2 → K be
µ-integrable and h ≥ 0. For an n ∈ N, put hn = inf(h, n). This means that

µ(h) = lim
n

µ(hn) = lim
n

∫

(

∫

hn dµ1

)

dµ2 = lim
n

∫

(

∫

hn dµ2

)

dµ1

and so

µ(h) =

∫

(

∫

h dµ1

)

dµ2 =

∫

(

∫

h dµ2

)

dµ1.

So
∫

h dµ1 is finite almost everywhere and integrable relative to µ2 and also
∫

h dµ2 is finite almost everywhere and integrable relative to µ1. Hence, Fubini
theorem holds for all µ-integrable functions f : X1 × X2 → K. �

For proving the next theorem, we need the following result:

Lemma 10. (a) Let ν ∈ M+
τ (X1×X2). Then, in L1(ν), the closed unit ball of

Cb(X1)⊗ Cb(X2) is dense in the closed unit ball of Cb(X1 × X2).
(b) For any f ∈ Cb(X1 × X2), ‖f‖ ≤ 1, there is a net {fα} in the closed unit
ball of Cb(X1)⊗ Cb(X2) such that fα → f , pointwise on Mτ (X1 × X2).

Proof: (a) We will make use of the following well-known result which follows
easily from the regularity of measure:
Let µ be a finite, positive, regular Borel measure on a compact Hausdorff

space Y . Then, in L1(µ), the closed unit ball of C(Y ) is dense in the set of all
scalar-valued, Borel measurable functions, bounded by 1, on Y .
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We assume ν(1) = 1. Fix an f ∈ Cb(X1 ×X2) with |f | ≤ 1. By Lemma 9, III,
there is a sequence {fn} ⊂ Cb(X1)⊗Cb(X2) such that ν(|fn−f |)→ 0. By taking
a subsequence, if necessary, we assume that fn → f a.e. [ν].

Denote the Borel set B = {x ∈ (X1 × X2) : lim fn(x) exists and is finite}
and define g : (X1 × X2) → K as g(x) = lim fn(x) if it exists and is finite,
and 0 otherwise. Then g is Borel measurable, ν(B) = 1, |gχB| ≤ 1 a.e. [ν] and
f = gχB a.e. [ν].

Define the linear, continuous, and positive mapping µ̃ : C(X̃1)⊗ C(X̃2)→ K,

µ̃(
∑

f̃1i ⊗f̃2i ) = ν(
∑

f1i ⊗f2i ). Since C(X̃1)⊗C(X̃2) is norm-dense in C(X̃1×X̃2),

this uniquely extends to a linear, continuous, and positive mapping µ̃ : C(X̃1 ×

X̃2)→ K which may be considered as a regular Borel measure on X̃1×X̃2. Since ν

is τ -smooth, for any bounded Borel measurable function h : X̃1×X̃2 → K, µ̃(h) =

ν(h|(X1×X2)). From µ̃(|f̃n − f̃m|) → 0, by taking a subsequence if necessary, we

get that f̃n is convergent a.e. [µ̃] on X̃1 × X̃2. Let B0 be the Borel subset of

X̃1× X̃2 on which f̃n is convergent and is finite and define g0 : (X̃1× X̃2)→ K as

g0(x) = lim f̃n(x) if it exists and is finite, and 0 otherwise. g0 is Borel measurable.
We also have µ̃(B0) = 1 = ν(B), B0 ∩ (X1 × X2) ⊃ B, and g0χB = gχB . Thus

there is a sequence {hn} in the closed unit ball of C(X̃1) ⊗ C(X̃2) such that
µ̃(|hn − g0χB0 |) → 0. Translating to ν, there is a sequence wn = (hn)|(X1×X2)

in the closed unit ball of Cb(X1) ⊗ Cb(X2) such that ν(|wn − gχB |) → 0 and so
ν(|wn − f |)→ 0. This completes the proof.

(b) Putting P =M+
τ (X1×X2), we see that P is filtering upwards with natural

order. Take a λ ∈ P and an n ∈ N. By (a), there is function f(λ,n) in the closed

unit ball of Cb(X1) ⊗ Cb(X2) such that λ(|f − f(λ,n)|) ≤
1
n . Taking α = (λ, n),

the result follows. �

Now we come to the product of vector-valued τ -smooth measures:

Theorem 11. For i = (1, 2), let µi ∈ Mτ (Xi, Ei). Then

(a) there exists a unique µ ∈ Mτ (X1 × X2, E1⊗̆E2) such that µ(f1f2) =
µ1(f1)⊗ µ2(f2) for any f1 ∈ Cb(X1) and any f2 ∈ Cb(X2); also for Borel
sets Bi ⊂ Xi (i = (1, 2)), µ(B1 × B2) = µ1(B1) ⊗ µ2(B2). This measure
µ is denoted by µ1 ⊗ µ2.

(b) (Fubini-type result) Take an f(x1, x2) ∈ L1(µ) and suppose, for i = (1, 2),
that there are φi(xi) ∈ L1(µi) such that |f(x1, x2) ≤ |φ1(x1)||φ2(x2)| on
X1 × X2. Then

(i) for every x1 ∈ X1, h2(x1) =
∫

f(x1, ·) dµ2 is in L1(µ1, E2) and for

every x2 ∈ X2, h1(x2) =
∫

f(·, x2) dµ1 is in L1(µ2, E1);

(ii)
∫

h2 dµ1 =
∫

h1 dµ2 =
∫

f dµ.
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Proof: (a) By Theorem 7, µ is defined on Cb(X1)⊗Cb(X2) and the closed unit
ball B, of Cb(X1) ⊗ Cb(X2), is mapped into a relatively weakly compact subset
of E. Thus the closure of (µ1⊗µ2)(B) in E, denoted by Q, is convex and weakly
compact. For i = (1, 2), let Si be equicontinuous, convex, σ(E′

i, Ei)-compact
subsets of E′

i. Considering E ⊂ C(S1 × S2), the pointwise and weak topologies
on Q are identical. For an h ∈ Cb(X1 × X2), define

µ(h) : S1 × S2 → K, 〈(g1, g2), µ(h)〉 =

∫

h d((g1 ◦ µ1)⊗ (g2 ◦ µ2)).

Now assume that ‖h‖ ≤ 1. Using Lemma 10, take a net {hα} ⊂ B such that
hα → h, pointwise on Mτ (X1×X2). Since ((g1 ◦µ1)⊗ (g2 ◦µ2)) ∈ Mτ (X1×X2)
(Lemma 9), µ(h) ∈ Q ⊂ C(S1 × S2). Thus the mapping µ = µ1 ⊗ µ2 : Cb(X1 ×
X2) → E is weakly compact. Now Q ⊂ C(S1 × S2) and is weakly compact,
so weak and pointwise topologies, on C(S1 × S2), coincide on Q. Since for any
(g1, g2) ∈ E′

1×E′
2, (g1, g2)◦µ = ((g1◦µ1)⊗(g2◦µ2)) ∈ Mτ (X1×X2), we get that

for every φ ∈ E′, φ◦µ ∈ Mτ (X1×X2). This proves that µ1⊗µ2 ∈ Mτ (X1×X2, E).

(b) First we will prove that h2(x1) exists for every x1 ∈ X1. As for every
x1 ∈ X1, |f(x1, ·)| ≤ |φ1(x1)||φ2(·)| by [12, Theorem 1, p. 27], f(x1, ·) is µ2-
integrable and so for each x1 ∈ X1, h2 : X1 → E2, h2(x1) =

∫

f(x1, ·) dµ2 is
well-defined and for any g2 ∈ E′

2, g2 ◦h2(x1) =
∫

f(x1, ·) d(g2 ◦µ2). Now we want

to prove that h2 ∈ L1(µ1, E2).
Take an A ∈ A1. For any (g1, g2) ∈ E′

1 × E′
2,

(g1, g2) ◦ µ = (g1 ◦ µ1)⊗ (g2 ◦ µ2)

on Cb(X1)⊗ Cb(X2) and, since both are τ -smooth,

(g1, g2) ◦ µ = (g1 ◦ µ1)⊗ (g2 ◦ µ2)

on Cb(X1 × X2); and so, as τ -smooth measures, they are equal.
Now χAf ∈ L1(µ) and so χAf is integrable relative to (g1 ◦ µ1) ⊗ (g2 ◦ µ2).

Let
∫

χAf dµ = z.

〈(g1, g2), z〉 =

∫

(

∫

f(x1, ·) d(g2◦µ2)
)

χAd(g1◦µ1) =

∫

χA(g2◦h2(x1)) d(g1◦µ1).

So h2 ∈ L1(µ1, E2) and
∫

f dµ =
∫

h2 dµ1. The case of h1 can be dealt with in a
similar way. �

5. Product of vector-valued tight measures on completely regular

Hausdorff spaces

For i = (1, 2), let µi ∈ Mt(Xi) ([17], [8]). Then µi ∈ Mτ (Xi). By Lemma 9,
µ = µ1 ⊗ µ2 ∈ Mτ (X1 × X2). It is easy to see that µ ∈ Mt(X1 × X2). To prove
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this, we see that |µ| ≤ |µ1|⊗|µ2| and, for any compact subsets Ci ⊂ Xi (i = 1, 2),
X1 × X2 \ C1 × C2 ⊂ ((X1 \ C1) × X2) ∪ (X1 × (X2 \ C2)). This means that
|µ|(X1×X2 \C1×C2) ≤ |µ1|(X1 \C1)|µ2|(X2)+ |µ1|(X1)|µ2|(X2 \C2) and from
this it follows that µ ∈ Mt(X1 × X2).

For a completely regular Haurdorff space X , and a locally convex space F , a
measure µ : B(X) → F is called tight if for every f ∈ F ′, f ◦ µ ∈ Mt(X); this
does imply that, in the original topology of F , it is inner regular by the compact
subsets of X ([13]). The set of all F -valued tight measures on X will be denoted
by Mt(X, F ).

Now we prove the main theorem of this section.

Theorem 12. (a) For i = (1, 2), let µi ∈ Mt(Xi, Ei). Then there exists a
unique µ ∈ Mt(X1 × X2, E) such that µ(f1f2) = µ1(f1)⊗ µ2(f2) for any
f1 ∈ Cb(X1) and any f2 ∈ Cb(X2); also for Borel sets Bi ⊂ Xi (i = (1, 2)),
µ(B1 × B2) = µ1(B1)⊗ µ2(B2). This measure µ is denoted by µ1 ⊗ µ2.

(b) (Fubini-type result) Take an f(x1, x2) ∈ L1(µ) and suppose, for i = (1, 2),
there are φi(xi) ∈ L1(µi) such that |f(x1, x2)| ≤ |φ1(x1)||φ2(x2)| on X1×
X2. Then

(i) for every x1 ∈ X1, h2(x1) =
∫

f(x1, ·) dµ2 is in L1(µ1, E2) and for

every x2 ∈ X2, h1(x2) =
∫

f(·, x2) dµ1 is in L1(µ2, E1);

(ii)
∫

h2 dµ1 =
∫

h1 dµ2 =
∫

f dµ.

Proof: (a) By Theorem 11, there is a unique measure µ1⊗µ2 ∈ Mτ (X1×X2, E).
The only thing to be verified is that µ1 ⊗ µ2 ∈ Mt(X1 × X2, E). For i = (1, 2),
fix pi ∈ Pi and let

Si =
{

g ∈ E′
i : |g(p

−1
i ([0, 1]))| ≤ 1

}

.

E can be considered as a subspace of C(S1×S2). Since µ = µ1⊗µ2 has relatively
weakly compact range in E1⊗̆E2, the weak topology on the range is identical with
the pointwise topology on S1 × S2. Since for any (g1, g2) ∈ S1 × S2, (g1 ◦ µ1) ⊗
(g2 ◦ µ2) ∈ Mt(X1 ×X2), µ is tight in the weak topology and so it is tight ([13]).

(b) This follows from Theorem 11(b). �

6. Product of vector-valued measures when both are not τ-smooth

It is shown in [1] for i = (1, 2) and µi ∈ Mσ(Xi), unless both µ1 and µ2 are
in Mτ (X1) and Mτ (X2), the product measure may not exist in Mσ(X1×X2) for
which the Fubini theorem works for functions in Cb(X1 × X2). In this section
we consider some special cases and prove the existence of product Baire measures
satisfying some form of Fubini’s theorem.
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In this section we suppose that X2 is compact and the measures we consider on
X1 are inM∞(X1) ([17], [8]); in [17]M∞ is denoted byMs and these measures are
called separable measures. First we make some comments on separable measures
on a completely regular Hausdorff space X :

Let {fα} be an e.b. set (that is, uniformly bounded equicontinuous subset of
Cb(X)) such that fα → 0, pointwise on X . If a µ ∈ Mσ(X) has the property that
µ(fα) → 0 for all such e.b. sets, then µ ∈ M∞(X). For a quasi-complete locally
convex space F , M∞(X, F ) denotes those linear weakly compact µ : Cb(X)→ F

which have the property that f ◦ µ ∈ M∞(X) for all f ∈ F ′. There is a locally
convex topology, called β∞, on Cb(X) such that µ : Cb(X) → K is in M∞(X)
iff µ is continuous ([17]); this topology is Mackey. So if a linear, weakly compact
µ : Cb(X) → F has the property that f ◦ µ ∈ M∞(X, F ) for all f ∈ F ′, then
µ : (Cb(X), β∞) → F is continuous with weak topology on F and, since β∞ is
Mackey, it is also continuous in the original topology on F .

We start with a lemma.

Lemma 13. Let f ∈ Cb(X1 × X2), with ‖f‖ ≤ 1, and ε > 0. Then there is a
partition of unity {gα} in X1 and {hα} ⊂ C(X2) with ‖hα‖ ≤ 1 for all α, such
that ‖f −

∑

α gαhα‖ ≤ ε.

Proof: As in [8, p. 201], define a continuous semimetric d on X1, d(x, y) =
supx2 |f(x, x2)− f(y, x2)|. Proceeding as in [8, p. 201], we get the result. �

Lemma 14. Let f ∈ Cb(X1 × X2) with ‖f‖ ≤ 1, µ1 ∈ M∞(X1) and µ2 ∈
M(X2) =M∞(X2). Then the functions

∫

f dµ1 and
∫

f dµ2 are Baire measurable

and
∫

(

∫

f dµ1

)

dµ2 =

∫

(

∫

f dµ2

)

dµ1.

Proof: In Lemma 13, take ε = 1
n . There is a partition of unity {gn

α} in X1

and {hn
α} ⊂ C(X2) with ‖hn

α‖ ≤ 1 for all α such that ‖f − fn‖ ≤ 1
n where fn =

∑

α gn
αhn

α. Now
∫

fn dµ1 =
∑

α cn
αhn

α, where cn
α =

∫

gn
α dµ1, is continuous on X2

and so
∫

f dµ1 is Baire measurable; in a similar way, it is easily seen that
∫

f dµ2 is
Baire measurable. Now it is easily verified that

∫

(
∫

f dµ1) dµ2 =
∫

(
∫

f dµ2) dµ1.
�

Lemma 15. Let {fα} ⊂ Cb(X1 × X2) be an e.b. set and ε > 0. Then there is a
partition of unity {gβ} in X1 and {hα

β} ⊂ C(X2) with ‖hα
β‖ ≤ 1 for all α, β and

such that ‖fα −
∑

β gβhα
β‖ ≤ ε for all α.

Proof: As in Lemma 14, define a continuous metric d on X1, d(x, y) =
sup(x2,α) |fα(x, x2)− fα(y, x2)|. As in Lemma 13, we get the result. �
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Theorem 16. Given µ1 ∈ M∞(X1) and µ2 ∈ M(X2), there is a unique Baire
measure µ = µ1 ⊗ µ2 ∈ M∞(X1 × X2) such that

(a) for any f ∈ Cb(X1 × X2),
∫

(
∫

f dµ2) dµ1 =
∫

(
∫

f dµ1) dµ2; in particular
∫

(f1f2) d(µ1 ⊗ µ2) = (
∫

f1 dµ1)(
∫

f2 dµ2), for f1 ∈ Cb(X1) and f2 ∈
Cb(X2);

(b) for Baire sets Bi ⊂ Xi (i = (1, 2)), (µ1⊗µ2)(B1×B2) = µ1(B1)⊗µ2(B2);
(c) for any µ-integrable f : X1 × X2 → K, for µ1-almost all x1, f(x1, ·) is

µ2-integrable and for µ2-almost all x2, f(·, x2) is µ1-integrable, and

µ(f) =

∫

(

∫

f(x1, x2) dµ2(x2)
)

dµ1(x1) =

∫

(

∫

f(x1, x2) dµ1(x1)
)

dµ2(x2).

Proof: (a) Define
∫

f d(µ) =
∫

f d(µ1⊗µ2) =
∫

(
∫

f dµ1) dµ2. By Lemma 14, it
is also equal to

∫

(
∫

f dµ2) dµ1. To prove that µ ∈ M∞(X1×X2), take an e.b. set
{fα} ⊂ Cb(X1 × X2) such that |fα| ≤ 1 for all α and fα → 0, pointwise. Fix
n ∈ N. By Lemma 15, there is partition of unity {gβ,n} inX1 and {h

α
β,n} ⊂ C(X2)

with ‖hα
β,n‖ ≤ 1 for all α and β such that ‖fα −

∑

β gβ,nhα
β,n‖ ≤ 1

n . Now the

set φα =
∑

β gβ,nhα
β,n is an e.b. set and is pointwise convergent to, say φ (note

that n is fixed). It is easy to see that
∫

(
∫

φα dµ1) dµ2 →
∫

(
∫

φdµ1) dµ2. Also

|fα − φα| ≤
1
n and so |φ| ≤

1
n . This proves that

∫∫

fα dµ1 dµ2 → 0.

(b) This follows form the regularity properties of measures and (a).

(c) The proof is very similar to Lemma 9(b). �

To extend the above theorem to the vector case, we start with a lemma:

Lemma 17. (a) Fix a µ ∈ M+
∞(X1 × X2) and consider on Cb(X1 × X2) the

topology induced by L1(µ). Then the closed unit ball of Cb(X1)⊗Cb(X2)
is dense in the closed unit ball of Cb(X1 × X2).

(b) For any f ∈ Cb(X1 × X2), ‖f‖ ≤ 1, there is a net {fα} in the closed unit
ball of Cb(X1)⊗ Cb(X2), such that fα → f , pontwise on M∞(X1 × X2).

Proof: (a) We assume µ(1) = 1. Fix an f in the unit ball of Cb(X1×X2) and an
ε > 0. By Lemma 13, there is partition of unity {gα} in X1 and {hα} ⊂ C(X2)
with ‖hα‖ ≤ 1 for all α such that ‖f −

∑

α gαhα‖ ≤ ε. Since µ ∈ M∞(X1 ×X2),
there is a finite subset J ⊂ I such that µ(

∑

α∈I\J ) < ε. Let h =
∑

α∈J gαhα.

We have

µ|f − h| ≤ ε+ µ
(
∣

∣

∣

∑

α∈I\J

gαhα

∣

∣

∣

)

≤ ε+ µ
(

∑

α∈I\J

gα

)

≤ 2ε.

This proves the result.

(b) The proof is very similar to Lemma 10(b). �

Now we prove the vector form of Theorem 16.
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Theorem 18. Suppose µ1 ∈ M∞(X1, E1) and µ2 ∈ M(X2, E2) (note that X2 is

compact). Then

(a) there exists a unique µ ∈ M∞(X1 × X2, E) such that µ(f1f2) = µ1(f1)
⊗ µ2(f2) for any f1 ∈ Cb(X1) and any f2 ∈ Cb(X2); also for Baire sets
Bi ⊂ Xi (i = (1, 2)), µ(B1 × B2) = µ1(B1)⊗ µ2(B2). This measure µ is

denoted by µ1 ⊗ µ2.

(b) (Fubini-type result) Take an f(x1, x2) ∈ L1(µ) and suppose, for i = (1, 2),
there are φi(xi) ∈ L1(µi) such that |f(x1, x2)| ≤ |φ1(x1)||φ2(x2)| on X1×
X2. Then

(i) for every x1 ∈ X1, h2(x1) =
∫

f(x1, ·) dµ2 is in L1(µ1, E2) and for

every x2 ∈ X2, h1(x2) =
∫

f(·, x2) dµ1 is in L1(µ2, E1);
(ii)

∫

h2 dµ1 =
∫

h1 dµ2 =
∫

f dµ.

Proof: Using Theorem 16 and Lemma 17, the proof is similar to that of Theo-
rem 11.

�
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[5] Freniche F.J., Garćıa-Vázquez J.C., The Bartle bilinear integration and Carleman opera-
tors, J. Math. Anal. Appl. 240 (1999), 324–339.

[6] Grothendieck A., Sur les applicationes linéaires faiblement compactes d’espaces du type
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