Commentationes Mathematicae Universitatis Carolinae

Surjit Singh Khorana
Product of vector measures on topological spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 49 (2008), No. 3, 421--435

Persistent URL: http://dml.cz/dmlcz/119733

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2008

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Product of vector measures on topological spaces

Surjit Singh Khurana

Abstract

For $i=(1,2)$, let X_{i} be completely regular Hausdorff spaces, E_{i} quasicomplete locally convex spaces, $E=E_{1} \ddot{\otimes} E_{2}$, the completion of the their injective tensor product, $C_{b}\left(X_{i}\right)$ the spaces of all bounded, scalar-valued continuous functions on X_{i}, and $\mu_{i} E_{i}$-valued Baire measures on X_{i}. Under certain conditions we determine the existence of the E-valued product measure $\mu_{1} \otimes \mu_{2}$ and prove some properties of these measures.

Keywords: injective tensor product, product of measures, tight measures, τ-smooth measures, separable measures, Fubini theorem
Classification: Primary 46E10, 28C05, 28C15, 46G10, 60B05; Secondary 46A08, 28B05

1. Introduction and notations

In this paper, all vector spaces are taken on K (we will call them scalars), the field of real or complex numbers (\mathbb{R} will denote the field of real numbers). For a Hausdorff completely regular space $X, C(X)$ (resp. $\left.C_{b}(X)\right)$ are the spaces of all scalar-valued continuous (continuous and bounded) functions on $X, \mathcal{B}(X)$ and $\mathcal{B}_{0}(X)$ are the classes of Borel and Baire subsets of $X, M_{\sigma}(X), M_{\infty}(X), M_{\tau}(X)$, $M_{t}(X)$ are resp. σ-smooth, separable, τ-smooth and tight scalar measures on X. The elements of $M_{\tau}(X)$ and $M_{t}(X)$ extend to Borel measures ([8], [16], [17]); also there are locally convex topologies $\beta_{\sigma}, \beta_{\infty}, \beta_{\tau}, \beta_{t}$ on $C_{b}(X)$ which give as their duals $M_{\sigma}(X), M_{\infty}(X), M_{\tau}(X), M_{t}(X)([8],[17],[16]) . \tilde{X}$ will denote the Stone-Čech compactification of X and for an $f \in C_{b}(X), \tilde{f}$ will be its continuous extension to \tilde{X}.

For $i=(1,2), X_{i}$ will always denote Hausdorff completely regular spaces, E_{i} Hausdorff locally convex spaces, P_{i} all continuous seminorms on E_{i}, and $E=$ $E_{1} \breve{\otimes} E_{2}$, the completion of the injective tensor product of E_{1} and E_{2}. For a $p_{i} \in P_{i}$ and $f \in E_{i}^{\prime}$, we will say $f \leq p_{i}$ if $f \in S_{i}$ where $S_{i}=\left\{h \in E_{i}^{\prime}:|h(x)| \leq\right.$ $\left.p_{i}(x) \forall x \in E_{i}\right\} ; S_{i}$ is an equicontinuous, convex and $\sigma\left(E_{i}^{\prime}, E_{i}\right)$-compact subset of E_{i}^{\prime}. With the norm topology on $C\left(S_{1} \times S_{2}\right)$, the topology on E is the one induced by $\prod_{\left(S_{1}, S_{2}\right)} C\left(S_{1} \times S_{2}\right)$; to prove convergence in E, many times the problem boils down to $C\left(S_{1} \times S_{2}\right)$ and we will say that E can be considered as a subspace of $C\left(S_{1} \times S_{2}\right)$. For a locally convex space F with its dual F^{\prime} and $(x, y) \in F \times F^{\prime},\langle x, y\rangle$ will denote $y(x)$; also for a continuous seminorm p on $F, V_{p}=\{x \in F: p(x) \leq 1\}$. \mathbb{N} will denote the set of natural numbers.

Now we come to vector-valued measures. Let F be a locally convex space with P the family of all continuous semi-norms on F, \mathcal{A} is a σ-algebra of subsets of a set $Y, \mu: \mathcal{A} \rightarrow F$ a countably additive vector measure. For a $p \in P$, we denote the p-semi-variation of μ by $\bar{\mu}_{p}$,

$$
\bar{\mu}_{p}(A)=\sup \left\{|g \circ \mu|(A): g \in V_{p}^{0}\right\}
$$

(here V_{p}^{0} is the polar of V_{p} in the duality $\left\langle F, F^{\prime}\right\rangle$) [15]. Also we can select a control measure, λ_{p}, for $\bar{\mu}_{p}$ which has the properties:
(i) with norm topology on measures, λ_{p} is in the closed convex hull of $\{|g \circ \mu|$: $\left.g \in V_{p}^{0}\right\}([12$, p. 20, proof of Theorem 1] $)$;
(ii) $|f \circ \mu| \ll \lambda_{p}$ for every f in F^{\prime} with $\|f\|_{p} \leq 1$ (note that $\|f\|_{p}=\sup \{|f(x)|$: $\left.\left.x \in V_{p}\right\}\right)$;
(iii) if $\lambda_{p}(A)=0$ then $\bar{\mu}_{p}(A)=0$;
(iv) $\lim _{\lambda_{p}(A) \rightarrow 0} \bar{\mu}_{p}(A)=0$;
(v) $\lambda_{p} \leq \bar{\mu}_{p}$.

We also know that if $f: Y \rightarrow K$ is a measurable function, $B \in \mathcal{A}$ and $|f| \leq c$ on B, then $\left\|\int_{B} f d \mu\right\|_{p} \leq c \bar{\mu}_{p}(B)$.
$L^{1}(\mu)$ will denote the space of all μ-integrable functions ([12]). For any $f \in$ $L^{1}(\mu)$, we define $\bar{\mu}_{p}(f)=\sup \left\{|g \circ \mu|(|f|): g \in V_{p}^{0}\right\}([12$, Lemma 2, p. 23] $)$.

2. Integration of vector-valued functions with respect to vector-valued measures

Let \mathcal{A} be a σ-algebra of subsets of a set Y and $\mu: \mathcal{A} \rightarrow E_{1}$ a countably additive measure. A function $f: Y \rightarrow E_{2}$ will be called μ-integrable if $g_{2} \circ f \in$ $L^{1}(\mu)$ for every $g_{2} \in E_{2}^{\prime}$ and for every $A \in \mathcal{A}$, there exists a $z \in E$ such that $\int_{A} g_{2} \circ f d\left(g_{1} \circ \mu\right)=\left\langle g_{1} \otimes g_{2}, z\right\rangle \forall\left(g_{1}, g_{2}\right) \in E_{1}^{\prime} \times E_{2}^{\prime}$. We write $\int_{A} f d \mu=z$. The collection of all μ-integrable $f: Y \rightarrow E_{2}$ will be denoted by $L^{1}\left(\mu, E_{2}\right)$. It is easily verified that $L^{1}\left(\mu, E_{2}\right)$ is a vector space and for every $f \in L^{1}\left(\mu, E_{2}\right)$ and for every $A \in \mathcal{A}, f \chi_{A} \in L^{1}\left(\mu, E_{2}\right)$; also $\mu: L^{1}\left(\mu, E_{2}\right) \rightarrow E, \mu(f)=\int f d \mu$, is linear. For $i=(1,2)$, for a function $f: Y \rightarrow E_{i}$ and for a $p_{i} \in P_{i}$, the function $\|f\|_{p_{i}}: Y \rightarrow[0, \infty)$ is defined by $\|f\|_{p_{i}}(y)=\|f(y)\|_{p_{i}}$.

We first prove the following result.
Theorem 1. Let $\mu: \mathcal{A} \rightarrow E_{1}$ be countably additive and $f: Y \rightarrow E_{2}$ be μ integrable. Then $\nu(A)=\int_{A} f d \mu$ is countably additive.

Proof: For $i=(1,2)$, fix $p_{i} \in P_{i}$ and let

$$
S_{i}=\left\{g \in E_{i}^{\prime}: \sup \left(\left|g\left(p_{i}^{-1}([0,1])\right)\right|\right) \leq 1\right\}
$$

E can be considered as a subspace of $C\left(S_{1} \times S_{2}\right)$. Suppose that $\left\{A_{n}\right\} \subset \mathcal{A}$ and that the sets in \mathcal{A}_{n} are pairwise disjoint. For for any $\left(g_{1}, g_{2}\right) \in S_{1} \times S_{2}$ and for any $M \subset \mathbb{N}$, we have
$\left\langle g_{1} \otimes g_{2}, \nu\left(\bigcup_{n \in M} A_{n}\right)\right\rangle=\int_{\bigcup_{n \in M} A_{n}}\left(g_{2} \circ f\right) d\left(g_{1} \circ \mu\right)=\sum_{n \in M} \int_{A_{n}}\left(g_{2} \circ f\right) d\left(g_{1} \circ \mu\right)$.
Thus the mapping $\lambda: 2^{\mathbb{N}} \rightarrow C\left(S_{1} \times S_{2}\right), \lambda(M)=\nu\left(\bigcup_{n \in M} A_{n}\right)$, is countably additive for pointwise topology on $C\left(S_{1} \times S_{2}\right)$. By ([9, Theorem 2.1, p.163]), it is countably additive with norm topology on $C\left(S_{1} \times S_{2}\right)$. This proves the result.

Theorem 2. Suppose $\left\{f_{n}\right\}$ is a sequence in $L^{1}\left(\mu, E_{2}\right), f: Y \rightarrow E_{2}$ and $f_{n} \rightarrow f$, in E_{2}, pointwise a.e. $[\mu]$. Assume that for any $p_{2} \in P_{2}$, there is $\phi_{p_{2}} \in L^{1}(\mu)$ such that $\left\|f_{n}\right\|_{p_{2}} \leq\left|\phi_{p_{2}}\right|$, a.e. $[\mu]$ for all n. Then $f \in L^{1}\left(\mu, E_{2}\right)$ and $\int f_{n} d \mu \rightarrow \int f d \mu$, in E.

Proof: Take a $p_{1} \in P_{1}$, a $p_{2} \in P_{2}$ and an $A \in \mathcal{A}$. For any $g_{2} \leq p_{2},\left|g_{2} \circ f\right| \leq$ $\left|\phi_{p_{2}}\right|$, a.e. $[\mu]$ and so $g_{2} \circ f \in L^{1}(\mu)$. We first prove that $\bar{\mu}_{p_{1}}\left(g_{2} \circ\left(f_{n}-f\right)\right) \rightarrow 0$, uniformly for $g_{2} \leq p_{2}$. If this is not true then, by taking a subsequence of $\left\{f_{n}\right\}$, if necessary, and again denoting it by $\left\{f_{n}\right\}$, there is a $c>0$ and a sequence $\left\{g_{2}^{n}\right\} \subset E_{2}^{\prime}, g_{2}^{n} \leq p_{2}$ for all n, such that $\bar{\mu}_{p_{1}}\left(g_{2}^{n} \circ\left(f_{n}-f\right)\right)>c$ for all n. But $\left|g_{2}^{n} \circ\left(f_{n}-f\right)\right| \leq 2 \phi_{p_{2}}$ a.e. $[\mu]$ for all n, and $g_{2}^{n} \circ\left(f_{n}-f\right) \rightarrow 0$, a.e. $[\mu]$. By the dominated convergence theorem ($[12$, Theorem 2, p.30]), this is a contradiction. This implies $\bar{\mu}_{p_{1}}\left(g_{2} \circ\left(\chi_{A}\left(f_{n}-f\right)\right)\right) \rightarrow 0$, uniformly for $g_{2} \leq p_{2}$.

Now take a $g_{1} \leq p_{1}$ and $g_{2} \leq p_{2}$. We have

$$
\begin{aligned}
& \left|\left\langle g_{1} \otimes g_{2}, \int_{A}\left(f_{n}-f_{m}\right) d \mu\right\rangle\right|=\left|\int_{A} g_{2} \circ\left(f_{n}-f_{m}\right) d\left(g_{1} \circ \mu\right)\right| \\
& \leq \int_{A}\left|g_{2} \circ\left(f_{n}-f\right)\right| d\left(\left|g_{1} \circ \mu\right|\right)+\int_{A}\left|g_{2} \circ\left(f_{m}-f\right)\right| d\left(\left|g_{1} \circ \mu\right|\right) \\
& \leq \bar{\mu}_{p_{1}}\left(g_{2} \circ\left(f_{n}-f\right)\right)+\bar{\mu}_{p_{1}}\left(g_{2} \circ\left(f_{m}-f\right)\right)
\end{aligned}
$$

which goes to 0 uniformly for $g_{2} \leq p_{2}$. If $z=\lim \int_{A} f_{n} d \mu$, then it is a simple verification that $\int_{A} f d \mu=z, f \in L^{1}\left(\mu, E_{2}\right)$ and $\int f_{n} d \mu \rightarrow \int f d \mu$, in E. This proves the result.
Corollary 3. E_{2}-valued simple functions are in $L^{1}\left(\mu, E_{2}\right)$. If an $f: Y \rightarrow E_{2}$ is the pointwise limit, a.e. [μ], of a sequence of uniformly bounded simple functions in $L^{1}\left(\mu, E_{2}\right)$, then $f \in L^{1}\left(\mu, E_{2}\right)$.

Proof: Obviously every E_{2}-valued simple function is in $L^{1}\left(\mu, E_{2}\right)$. Take a $p_{2} \in$ P_{2}. There exists an $M>0$ such that $\left\|f_{n}\right\|_{p_{2}} \leq M$ for all n. By Theorem 1 , the result follows.

Before the next theorem, we set some notations. For $i=(1,2)$, let Y_{i} be some sets, \mathcal{A}_{i} be σ-algebras of subsets of Y_{i} and $\mu_{i}: \mathcal{A}_{i} \rightarrow E_{i}$ be countably additive measures. It is well-known ([3]) that there is a unique countably additive product measure $\mu: \mathcal{A}_{1} \times \mathcal{A}_{2} \rightarrow E_{1} \otimes E_{2}$ such that $\mu\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \otimes \mu_{2}\left(A_{2}\right)$ for every $A_{i} \in \mathcal{A}_{i}$ for $i=(1,2)$ (we will derive this result as a consequence of one of our theorems). An example is given in [5, Theorem 12, p.336] which shows that the classical Fubini theorem does not work for the injective tensor product $\mu_{1} \otimes \mu_{2}$. With these notations, the following weak form of Fubini theorem is easy to prove.

Theorem 4. Let $f\left(y_{1}, y_{2}\right) \in L^{1}(\mu)\left(\mu=\mu_{1} \otimes \mu_{2}\right)$ and suppose, for $i=(1,2)$, that there are $\phi_{i}\left(y_{i}\right) \in L^{1}\left(\mu_{i}\right)$ such that $\left|f\left(y_{1}, y_{2}\right)\right| \leq\left|\phi_{1}\left(y_{1}\right) \| \phi_{2}\left(y_{2}\right)\right|$ on $Y_{1} \times Y_{2}$. Then
(i) for every $y_{1} \in Y_{1}, h_{2}\left(y_{1}\right)=\int f\left(y_{1}, \cdot\right) d \mu_{2}$ is in $L^{1}\left(\mu_{1}, E_{2}\right)$ and for every $y_{2} \in Y_{2}, h_{1}\left(y_{2}\right)=\int f\left(\cdot, y_{2}\right) d \mu_{1}$ is in $L^{1}\left(\mu, E_{1}\right)$;
(ii) $\int h_{2} d \mu_{1}=\int h_{1} d \mu_{2}=\int f d\left(\mu_{1} \otimes \mu_{2}\right)$.

Proof: First we will prove that $h_{2}\left(y_{1}\right)$ exists for every $y_{1} \in Y_{1}$. As for every $y_{1} \in Y_{1},\left|f\left(y_{1}, \cdot\right)\right| \leq\left|\phi_{1}\left(y_{1}\right)\right|\left|\phi_{2}(\cdot)\right|$ by ([12, Theorem 1, p. 27]), $f\left(y_{1}, \cdot\right)$ is $\mu_{2^{-}}$ integrable and so for each $y_{1} \in Y_{1}, h_{2}: Y_{1} \rightarrow E_{2}, h_{2}\left(y_{1}\right)=\int f\left(y_{1}, \cdot\right) d \mu_{2}$ is well-defined and for any $g_{2} \in E_{2}^{\prime}, g_{2} \circ h_{2}\left(y_{1}\right)=\int f\left(y_{1}, \cdot\right) d\left(g_{2} \circ \mu_{2}\right)$. Now we want to prove that $h_{2} \in L^{1}\left(\mu_{1}, E_{2}\right)$.

Take an $A \in \mathcal{A}_{1}$. For any $\left(g_{1}, g_{2}\right) \in E_{1}^{\prime} \times E_{2}^{\prime},\left(g_{1}, g_{2}\right) \circ \mu=\left(g_{1} \circ \mu_{1}\right) \otimes\left(g_{2} \circ \mu_{2}\right)$ on $A_{1} \times A_{2}\left(A_{i} \in \mathcal{A}_{i}\right)$ and since both are countably additive, they are equal on $\mathcal{A}_{1} \times \mathcal{A}_{2}$. Now $\chi_{A} f \in L^{1}(\mu)$ and so $\chi_{A} f$ is integrable relative to $\left(g_{1} \circ \mu_{1}\right) \otimes\left(g_{2} \circ \mu_{2}\right)$. Let $\int \chi_{A} f d \mu=z$.
$\left\langle\left(g_{1}, g_{2}\right), z\right\rangle=\int\left(\int f\left(y_{1}, \cdot\right) d\left(g_{2} \circ \mu_{2}\right)\right) \chi_{A} d\left(g_{1} \circ \mu_{1}\right)=\int \chi_{A}\left(g_{2} \circ h_{2}\left(y_{1}\right)\right) d\left(g_{1} \circ \mu_{1}\right)$.
So $h_{2} \in L^{1}\left(\mu_{1}, E_{2}\right)$ and $\int f d \mu=\int h_{2} d \mu_{1}$. The case of h_{1} can be dealt with in a similar way.

Corollary 5. Let $f\left(y_{1}, y_{2}\right) \in L^{1}\left(\mu_{1} \otimes \mu_{2}\right)$ be bounded. Then for every $y_{1} \in$ $Y_{1}, h_{2}\left(y_{1}\right)=\int f\left(y_{1}, \cdot\right) d \mu_{2}$ is in $L^{1}\left(\mu, E_{2}\right)$ and for every $y_{2} \in Y_{2}, h_{1}\left(y_{2}\right)=$ $\int f\left(\cdot, y_{2}\right) d \mu_{1}$ is in $L^{1}\left(\mu, E_{1}\right)$ and $\int h_{2} d \mu_{1}=\int h_{1} d \mu_{2}=\int f d\left(\mu_{1} \otimes \mu_{2}\right)$.

Proof: The result follows from Theorem 4.

3. Product of vector-valued measures on compact Hausdorff spaces

For a compact Hausdorff space $X, M(X)$ will denote all scalar-valued regular Borel measures on X and for a quasi-complete locally convex space $F, M(X, F)$ will denote all F-valued regular Borel measures on X. There is a one-to-one
correspondence between $\mu \in M(X, F)$ and the weakly compact linear operator $\mu: C(X) \rightarrow F([13])$.

The proof of the following lemma is obvious and well-known.
Lemma 6. For $i=(1,2)$, let X_{i} be compact Hausdorff spaces and $\mu_{i} \in M\left(X_{i}\right)$. Then, with injective tensor product topology on $C\left(X_{1}\right) \otimes C\left(X_{2}\right)$ (same as norm topology), the linear continuous mapping $\mu_{1} \otimes \mu_{2}: C\left(X_{1}\right) \otimes C\left(X_{2}\right) \rightarrow K$ ([7, p. 348]), when uniquely, continuously extended to $\mu_{1} \otimes \mu_{2}: C\left(X_{1} \times X_{2}\right) \rightarrow K$, is the product measure $\mu_{1} \otimes \mu_{2}$.

Theorem 7. For $i=(1,2)$, let X_{i} be compact Hausdorff spaces and $\mu_{i}: C\left(X_{i}\right) \rightarrow$ E_{i} be weakly compact linear mappings. Then the linear mapping $\mu_{1} \otimes \mu_{2}$: $C\left(X_{1}\right) \otimes C\left(X_{2}\right) \rightarrow E$ is continuous (with respect to the norm topology on $C\left(X_{1}\right) \otimes$ $\left.C\left(X_{2}\right)\right)$ and weakly compact. When extended to $C\left(X_{1} \times X_{2}\right)$, the linear, weakly compact mapping $\mu_{1} \otimes \mu_{2}: C\left(X_{1} \times X_{2}\right) \rightarrow E$ represents a regular Borel measure with the properties:
(i) $\mu\left(f_{1} f_{2}\right)=\mu_{1}\left(f_{1}\right) \otimes \mu_{2}\left(f_{2}\right)$ for any $f_{1} \in C\left(X_{1}\right)$ and any $f_{2} \in C\left(X_{2}\right)$;
(ii) for Borel sets $B_{i} \subset X_{i}$ (for $i=(1,2)$), $\mu\left(B_{1} \times B_{2}\right)=\mu_{1}\left(B_{1}\right) \otimes \mu_{2}\left(B_{2}\right)$;
(iii) for any $\left(g_{1}, g_{2}\right) \in E_{1}^{\prime} \times E_{2}^{\prime}$ and an $f \in C\left(X_{1} \times X_{2}\right)$,

$$
\left\langle\int f d\left(\mu_{1} \otimes \mu_{2}\right),\left(g_{1} \otimes g_{2}\right)\right\rangle=\int f d\left(\left(g_{1} \circ \mu_{1}\right) \otimes\left(g_{2} \circ \mu_{2}\right)\right),
$$

where $\left(\left(g_{1} \circ \mu_{1}\right) \otimes\left(g_{2} \circ \mu_{2}\right)\right)$ is the usual product of the scalars measures $\left(g_{1} \circ \mu_{1}\right)$ and $\left(g_{2} \circ \mu_{2}\right)$.

Proof: The continuity follows from [7, p. 348]. For $i=(1,2)$, let S_{i} be equicontinuous, convex and $\sigma\left(E_{i}^{\prime}, E_{i}\right)$-closed subsets of E_{i}^{\prime}. We consider E to be a subspace of $C\left(S_{1} \times S_{2}\right)$. To prove weak compactness of the operator, take a uniformly bounded sequence $\left\{f_{n}\right\} \subset C\left(X_{1}\right) \otimes C\left(X_{2}\right)$ such that $f_{n} f_{m}=0$ for every n and for every m with $n \neq m$ ([2, Corollary 17, p. 160]); we have to prove that $\left(\mu_{1} \otimes \mu_{2}\right)\left(f_{n}\right) \rightarrow 0$. Suppose this is not true. This means, by taking a subsequence of $\left\{f_{n}\right\}$, if necessary, and again denoting it by $\left\{f_{n}\right\}$, that there are sequences $\left\{\phi_{n}^{i}\right\} \subset S_{i}, i=(1,2)$, and a $c>0$ such that $\left(\left(\phi_{n}^{1} \circ \mu_{1}\right) \otimes\left(\phi_{n}^{2} \circ \mu_{2}\right)\right)\left(f_{n}\right)>c$ for all n. Putting $g_{n}\left(x_{1}\right)=\left(\phi_{n}^{2} \circ \mu_{2}\right)\left(f_{n}\left(x_{1}, \cdot\right)\right)$, we see that g_{n} is uniformly bounded and $g_{n} \rightarrow 0$ pointwise on X_{1}. Since the set $\left\{\left(\phi_{n}^{1} \circ \mu_{1}\right)\right\}$ is relatively weakly compact in $M\left(X_{1}\right)$, we get $\left(\phi_{n}^{1} \circ \mu_{1}\right)\left(g_{n}\right) \rightarrow 0$, which is a contradiction.

Considering $\mu_{1} \otimes \mu_{2}$ as an E-valued regular Borel measure on $X_{1} \times X_{2}$, proofs of the properties (i), (ii), (iii) are routine verifications ([11]).

Now we derive from the above theorem the main result of ([3]).
Theorem 8 ([3]). For $i=(1,2)$, let Y_{i} be some sets \mathcal{A}_{i} be σ-algebras of subsets of Y_{i} and $\mu_{i}: \mathcal{A}_{i} \rightarrow E_{i}$ be countably additive measures. Then there is a unique
countably additive product measure $\mu: \mathcal{A}_{1} \times \mathcal{A}_{2} \rightarrow E_{1} \breve{\otimes} E_{2}$ such that $\mu\left(A_{1} \times A_{2}\right)=$ $\mu_{1}\left(A_{1}\right) \otimes \mu_{2}\left(A_{2}\right)$ for every $A_{i} \in \mathcal{A}_{i} \quad(i=(1,2))$.
Proof: For $i=(1,2)$, let

$$
B_{i}=\left\{f: Y_{i} \rightarrow K \mid f \text { bounded and } \mathcal{A}_{i^{-}} \text {measurable }\right\}
$$

As in [10], there are compact Hausdorff spaces \tilde{Y}_{i}, in which Y_{i} are dense such that $C\left(\tilde{Y}_{i}\right)_{\mid Y_{i}}=B_{i}$. There is a one-to-one, onto, linear, order-preserving, sup-norm preserving mapping from $C\left(\tilde{Y}_{i}\right)$ to B_{i}. Thus we get measures $\tilde{\mu}_{i}: C\left(\tilde{Y}_{i}\right) \rightarrow E_{i}$. By Theorem 7, we get the product measure $\mu=\tilde{\mu_{1}} \otimes \tilde{\mu_{2}}: C\left(\tilde{Y}_{1} \times \tilde{Y}_{2}\right) \rightarrow E$. This can be considered as a regular Baire measure. Take a compact G_{δ} subset $C \subset \tilde{Y}_{1} \times \tilde{Y}_{2} \backslash Y_{1} \times Y_{2}$. There is a sequence $\left\{f_{n}\right\} \subset C\left(\tilde{Y}_{1} \times \tilde{Y}_{2}\right)$ such that $f_{n} \downarrow \chi_{C}$. Because of the norm-denseness of $C\left(\tilde{Y}_{1}\right) \otimes C\left(\tilde{Y}_{2}\right)$ in $C\left(\tilde{Y}_{1} \times \tilde{Y}_{2}\right)$, there is a norm-bounded sequence $\left\{h_{n}\right\} \subset C\left(\tilde{Y}_{1}\right) \otimes C\left(\tilde{Y}_{2}\right)$ such that $h_{n} \rightarrow \chi_{C}$, pointwise on $\tilde{Y}_{1} \times \tilde{Y}_{2}$.

For $i=(1,2)$, let S_{i} be $\sigma\left(E_{i}^{\prime}, E_{i}\right)$-closed, convex and equicontinuous subsets of E_{i}^{\prime}. E can be considered as a subspace of $C\left(S_{1} \times S_{2}\right)$. Since μ is a weakly compact mapping, $\left\{\mu\left(h_{n}\right): n \in \mathbb{N}\right\}$ is relatively weakly compact in E and so its weak convergence is the same as pointwise convergence on $S_{1} \times S_{2}$. For $g_{i} \in S_{i}$,

$$
\left\langle\left(g_{1}, g_{2}\right), \mu(C)\right\rangle=\lim _{n \rightarrow \infty} \int h_{n} d\left(\left(g_{1} \circ \tilde{\mu_{1}}\right) \otimes\left(g_{2} \circ \tilde{\mu_{2}}\right)\right)
$$

Now $\left(g_{1} \circ \mu_{1}\right) \otimes\left(g_{2} \circ \mu_{2}\right)$ is the product measure, $\left(h_{n}\right)_{\mid\left(Y_{1} \times Y_{2}\right)} \in B_{1} \otimes B_{2}$ and $h_{n} \rightarrow 0$ on $Y_{1} \times Y_{2}$. This gives $\left\langle\left(g_{1}, g_{2}\right), \mu(C)\right\rangle=0$ and so $\mu(C)=0$. By regularity, $\mu(Q)=0$, for every Baire set $Q \subset \tilde{Y}_{1} \times \tilde{Y}_{2} \backslash Y_{1} \times Y_{2}$. Now $\left(\mathcal{B}_{0}\left(\tilde{Y}_{1} \times \tilde{Y}_{2}\right)\right) \cap\left(Y_{1} \times Y_{2}\right) \supset$ $\mathcal{A}_{1} \times \mathcal{A}_{2}$ and so for a $P \in \mathcal{A}_{1} \times \mathcal{A}_{2}$, there is a Baire set P_{0} in $\tilde{Y}_{1} \times \tilde{Y}_{2}$ such that $P_{0} \cap\left(Y_{1} \times Y_{2}\right)=P$; now we can define $\left(\mu_{1} \otimes \mu_{2}\right)(P)=\mu\left(P_{0}\right)$. The required properties are easily verified.

4. Product of vector-valued τ-smooth measures on completely regular Hausdorff spaces

For a completely regular Hausdorff space X and a quasi-complete locally convex space F, a countably additive $\mu: \mathcal{B}(X) \rightarrow F$ is called τ-smooth if for an increasing net $\left\{V_{\alpha}\right\}$ of open subsets of $X, \mu\left(\bigcup_{\alpha} V_{\alpha}\right)=\lim \mu\left(V_{\alpha}\right)$. This μ gives rise to a weakly compact linear map $\mu: C_{b}(X) \rightarrow F$ with the property that for every $f \in F^{\prime}, f \circ \mu \in M_{\tau}(X)$. Conversely if a weakly compact linear map $\mu: C_{b}(X) \rightarrow F$ has the property for every $f \in F^{\prime}, f \circ \mu \in M_{\tau}(X)$, then it is easy to prove that such a μ gives a unique τ-smooth Borel measure. To prove this, we get a linear, continuous, weakly compact $\tilde{\mu}: C(\tilde{X}) \rightarrow F$ and so $\tilde{\mu}$ can be considered as a regular Borel measure on \tilde{X}. Also we have $\mathcal{B}(\tilde{X}) \cap X=\mathcal{B}(X)$. Take a closed set
$C \subset \tilde{X} \backslash X$; there exists a net $\left\{f_{\alpha}\right\} \subset C(\tilde{X})$ such that $f_{\alpha} \downarrow \chi_{C}$. This means, in $\left(C_{b}(X), \beta_{\tau}\right)$, that $\left(f_{\alpha}\right)_{\mid X} \rightarrow 0([17])$. Thus for every closed set $C \subset \tilde{X} \backslash X$, $\tilde{\mu}(C)=0$, and so, by regularity, for every $p \in P, \overline{\tilde{\mu}}_{p}(B)=0$, for all Borel sets $B \subset \tilde{X} \backslash X$. For any Borel set $A \subset X$, define $\nu(A)=\tilde{\mu}(B), B$ being any Borel subset of \tilde{X} with $B \cap X=A$. It is a routine verification that ν is welldefined, countably additive and for any $f \in C_{b}(X), \int f d \nu=\int f d \mu$. Also by the regularity of $\tilde{\mu}$, it can be easily verified that ν is τ-smooth. Other things need routine verification.

The set of all F-valued τ-smooth measures on X will be denoted by $M_{\tau}(X, F)$. The following result is well-known ([1]); we give a different proof.

Lemma 9. (a) For $i=(1,2)$, let $\mu_{i} \in M_{\tau}\left(X_{i}\right)$. Then there is a unique $\mu \in$ $M_{\tau}\left(X_{1} \times X_{2}\right)$ such that $\mu\left(f_{1} f_{2}\right)=\mu_{1}\left(f_{1}\right) \otimes \mu_{2}\left(f_{2}\right)$ for any $f_{1} \in C_{b}\left(X_{1}\right)$ and any $f_{2} \in C_{b}\left(X_{2}\right)$. Also for any $f \in C_{b}\left(X_{1} \times X_{2}\right)$,

$$
\mu(f)=\int\left(\int f(x, y) d \mu_{2}(y)\right) d \mu_{1}(x)=\int\left(\int f(x, y) d \mu_{1}(x)\right) d \mu_{2}(y)
$$

(b) For any μ-integrable $f: X_{1} \times X_{2} \rightarrow K$, for μ_{1}-almost all $x_{1}, f\left(x_{1}, \cdot\right)$ is μ_{2}-integrable and for μ_{2}-almost all $x_{2}, f\left(\cdot, x_{2}\right)$ is μ_{1}-integrable, and

$$
\mu(f)=\int\left(\int f\left(x_{1}, x_{2}\right) d \mu_{2}\left(x_{2}\right)\right) d \mu_{1}\left(x_{1}\right)=\int\left(\int f\left(x_{1}, x_{2}\right) d \mu_{1}\left(x_{1}\right)\right) d \mu_{2}\left(x_{2}\right)
$$

Proof: (a) We break up the proof into several steps:
I. For any $f \in C_{b}\left(X_{1} \times X_{2}\right)$, the function $h(x)=\int f(x, y) d \mu_{2}(y)$ is in $C_{b}\left(X_{1}\right)$. Using the τ-additivity of μ_{2}, it is easy to verify this.
II. First assume that for $i=(1,2), \mu_{i} \in M_{\tau}^{+}\left(X_{i}\right)$. If $f_{\alpha} \downarrow 0$ in $C_{b}\left(X_{1} \times X_{2}\right)$ and $h_{\alpha}(x)=\int f_{\alpha}(x, y) d \mu_{2}(y)$ then $h_{\alpha} \downarrow 0$ in $C_{b}\left(X_{1}\right)$. This means, for $f \in$ $C_{b}\left(X_{1} \times X_{2}\right)$, that the measures $\nu_{1}(f)=\int\left(\int f(x, y) d \mu_{2}(y)\right) d \mu_{1}(x)$ and $\nu_{2}(f)=$ $\int\left(\int f(x, y) d \mu_{1}(x)\right) d \mu_{2}(y)$ are in $M_{\tau}^{+}\left(X_{1} \times X_{2}\right)$. Also $\nu_{1}=\nu_{2}$ on $C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$.

In the general case, the real and the imaginary parts of μ_{i} can be written as the difference of positive elements of $M_{\tau}^{+}\left(X_{i}\right)$ and so the above result holds without the positivity of μ_{1} and μ_{2}.
III. For any $\mu \in M_{\tau}^{+}\left(X_{1} \times X_{2}\right)$, consider $C_{b}\left(X_{1} \times X_{2}\right)$ with the norm induced by $L^{1}(\mu)$. Then $C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$ is dense in $C_{b}\left(X_{1} \times X_{2}\right)$. Suppose this is not true. Then there is a $g \in L^{\infty}(\mu)$ such that $\int h g d \mu=0$ for every $h \in C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$, but $\int f g d \mu \neq 0$ for some $f \in C_{b}\left(X_{1} \times X_{2}\right)$. Since $\mu_{0}=g \mu \in M_{\tau}\left(X_{1} \times X_{2}\right)$, $\mu_{0} \equiv 0$ on $C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$. This means that for an open set $V_{1} \times V_{2} \subset X_{1} \times X_{2}$, $\mu_{0}\left(V_{1} \times V_{2}\right)=0$. Thus $\mu_{0}(V)=0$ for every open set $V \subset X_{1} \times X_{2}$ and so $\mu_{0} \equiv 0$ on $C_{b}\left(X_{1} \times X_{2}\right)$. From this it follows that $g=0$ a.e. $[\nu]$ and so we have a contradiction.
IV. Since $\nu_{1}=\nu_{2}$ on $C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$, by II, III $\nu_{1}=\nu_{2}$ on $C_{b}\left(X_{1} \times X_{2}\right)$. This is the product measure and we denote it by $\left(\mu_{1} \otimes \mu_{2}\right)$.
(b) The problem can be easily reduced to positive μ_{1}, μ_{2}. Suppose first that f is a real-valued, bounded and lower semi-continuous. Take a bounded net $\left\{f_{\alpha}\right\} \subset C_{b}\left(X_{1} \times X_{2}\right), f_{\alpha} \uparrow f$. It is easily verified that, for all $x_{1}, f\left(x_{1}, \cdot\right)$ is μ_{2}-integrable and for all $x_{2}, f\left(\cdot, x_{2}\right)$ is μ_{1}-integrable, and

$$
\mu(f)=\int\left(\int f\left(x_{1}, x_{2}\right) d \mu_{2}\left(x_{2}\right)\right) d \mu_{1}\left(x_{1}\right)=\int\left(\int f\left(x_{1}, x_{2}\right) d \mu_{1}\left(x_{1}\right)\right) d \mu_{2}\left(x_{2}\right)
$$

Let $\mathcal{F}=\left\{f: X_{1} \times X_{2} \rightarrow K: f\right.$ Borel measurable, $\left.\|f\| \leq 1\right\}$ and $\mathcal{F}_{0}=\{f \in \mathcal{F}: f$ satisfies the conditions of (b) $\}$. It is a simple verification that \mathcal{F}_{0} is sequentially closed in \mathcal{F}. Combining this with the fact that the lower semi-continuous f with $\|f\| \leq 1$ are in \mathcal{F}_{0}, we easily see that $\mathcal{F}=\mathcal{F}_{0}$. Combining these results, we see that Fubini theorem holds for any bounded, Borel measurable, μ-integrable $f: X_{1} \times X_{2} \rightarrow K$. Suppose a bounded, non-negative $f: X_{1} \times X_{2} \rightarrow K$ is such that $f=0, \mu$-almost everywhere. We get a Borel measurable, bounded, nonnegative function $f_{0}: X_{1} \times X_{2} \rightarrow K$ such that $f \leq f_{0}=0 \mu$-almost everywhere and so Fubini theorem holds for f; this means that Fubini theorem holds for any bounded, μ-integrable function $f: X_{1} \times X_{2} \rightarrow K$. Now let $h: X_{1} \times X_{2} \rightarrow K$ be μ-integrable and $h \geq 0$. For an $n \in \mathbb{N}$, put $h_{n}=\inf (h, n)$. This means that

$$
\mu(h)=\lim _{n} \mu\left(h_{n}\right)=\lim _{n} \int\left(\int h_{n} d \mu_{1}\right) d \mu_{2}=\lim _{n} \int\left(\int h_{n} d \mu_{2}\right) d \mu_{1}
$$

and so

$$
\mu(h)=\int\left(\int h d \mu_{1}\right) d \mu_{2}=\int\left(\int h d \mu_{2}\right) d \mu_{1}
$$

So $\int h d \mu_{1}$ is finite almost everywhere and integrable relative to μ_{2} and also $\int h d \mu_{2}$ is finite almost everywhere and integrable relative to μ_{1}. Hence, Fubini theorem holds for all μ-integrable functions $f: X_{1} \times X_{2} \rightarrow K$.

For proving the next theorem, we need the following result:
Lemma 10. (a) Let $\nu \in M_{\tau}^{+}\left(X_{1} \times X_{2}\right)$. Then, in $L_{1}(\nu)$, the closed unit ball of $C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$ is dense in the closed unit ball of $C_{b}\left(X_{1} \times X_{2}\right)$.
(b) For any $f \in C_{b}\left(X_{1} \times X_{2}\right),\|f\| \leq 1$, there is a net $\left\{f_{\alpha}\right\}$ in the closed unit ball of $C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$ such that $f_{\alpha} \rightarrow f$, pointwise on $M_{\tau}\left(X_{1} \times X_{2}\right)$.

Proof: (a) We will make use of the following well-known result which follows easily from the regularity of measure:

Let μ be a finite, positive, regular Borel measure on a compact Hausdorff space Y. Then, in $L_{1}(\mu)$, the closed unit ball of $C(Y)$ is dense in the set of all scalar-valued, Borel measurable functions, bounded by 1 , on Y.

We assume $\nu(1)=1$. Fix an $f \in C_{b}\left(X_{1} \times X_{2}\right)$ with $|f| \leq 1$. By Lemma 9, III, there is a sequence $\left\{f_{n}\right\} \subset C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$ such that $\nu\left(\left|f_{n}-f\right|\right) \rightarrow 0$. By taking a subsequence, if necessary, we assume that $f_{n} \rightarrow f$ a.e. $[\nu]$.

Denote the Borel set $B=\left\{x \in\left(X_{1} \times X_{2}\right): \lim f_{n}(x)\right.$ exists and is finite $\}$ and define $g:\left(X_{1} \times X_{2}\right) \rightarrow K$ as $g(x)=\lim f_{n}(x)$ if it exists and is finite, and 0 otherwise. Then g is Borel measurable, $\nu(B)=1,\left|g \chi_{B}\right| \leq 1$ a.e. $[\nu]$ and $f=g \chi_{B}$ a.e. $[\nu]$.

Define the linear, continuous, and positive mapping $\tilde{\mu}: C\left(\tilde{X}_{1}\right) \otimes C\left(\tilde{X}_{2}\right) \rightarrow K$, $\tilde{\mu}\left(\sum \tilde{f}_{i}^{1} \otimes \tilde{f}_{i}^{2}\right)=\nu\left(\sum f_{i}^{1} \otimes f_{i}^{2}\right)$. Since $C\left(\tilde{X}_{1}\right) \otimes C\left(\tilde{X}_{2}\right)$ is norm-dense in $C\left(\tilde{X}_{1} \times \tilde{X}_{2}\right)$, this uniquely extends to a linear, continuous, and positive mapping $\tilde{\mu}: C\left(\tilde{X}_{1} \times\right.$ $\left.\tilde{X}_{2}\right) \rightarrow K$ which may be considered as a regular Borel measure on $\tilde{X}_{1} \times \tilde{X}_{2}$. Since ν is τ-smooth, for any bounded Borel measurable function $h: \tilde{X}_{1} \times \tilde{X}_{2} \rightarrow K, \tilde{\mu}(h)=$ $\nu\left(h_{\mid\left(X_{1} \times X_{2}\right)}\right)$. From $\tilde{\mu}\left(\left|\tilde{f_{n}}-\tilde{f_{m}}\right|\right) \rightarrow 0$, by taking a subsequence if necessary, we get that \tilde{f}_{n} is convergent a.e. $[\tilde{\mu}]$ on $\tilde{X}_{1} \times \tilde{X}_{2}$. Let B_{0} be the Borel subset of $\tilde{X}_{1} \times \tilde{X}_{2}$ on which \tilde{f}_{n} is convergent and is finite and define $g_{0}:\left(\tilde{X}_{1} \times \tilde{X}_{2}\right) \rightarrow K$ as $g_{0}(x)=\lim \tilde{f}_{n}(x)$ if it exists and is finite, and 0 otherwise. g_{0} is Borel measurable. We also have $\tilde{\mu}\left(B_{0}\right)=1=\nu(B), B_{0} \cap\left(X_{1} \times X_{2}\right) \supset B$, and $g_{0} \chi_{B}=g \chi_{B}$. Thus there is a sequence $\left\{h_{n}\right\}$ in the closed unit ball of $C\left(\tilde{X}_{1}\right) \otimes C\left(\tilde{X}_{2}\right)$ such that $\tilde{\mu}\left(\left|h_{n}-g_{0} \chi_{B_{0}}\right|\right) \rightarrow 0$. Translating to ν, there is a sequence $w_{n}=\left(h_{n}\right)_{\mid\left(X_{1} \times X_{2}\right)}$ in the closed unit ball of $C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$ such that $\nu\left(\left|w_{n}-g \chi_{B}\right|\right) \rightarrow 0$ and so $\nu\left(\left|w_{n}-f\right|\right) \rightarrow 0$. This completes the proof.
(b) Putting $P=M_{\tau}^{+}\left(X_{1} \times X_{2}\right)$, we see that P is filtering upwards with natural order. Take a $\lambda \in P$ and an $n \in \mathbb{N}$. By (a), there is function $f_{(\lambda, n)}$ in the closed unit ball of $C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$ such that $\lambda\left(\left|f-f_{(\lambda, n)}\right|\right) \leq \frac{1}{n}$. Taking $\alpha=(\lambda, n)$, the result follows.

Now we come to the product of vector-valued τ-smooth measures:
Theorem 11. For $i=(1,2)$, let $\mu_{i} \in M_{\tau}\left(X_{i}, E_{i}\right)$. Then
(a) there exists a unique $\mu \in M_{\tau}\left(X_{1} \times X_{2}, E_{1} \breve{\otimes} E_{2}\right)$ such that $\mu\left(f_{1} f_{2}\right)=$ $\mu_{1}\left(f_{1}\right) \otimes \mu_{2}\left(f_{2}\right)$ for any $f_{1} \in C_{b}\left(X_{1}\right)$ and any $f_{2} \in C_{b}\left(X_{2}\right)$; also for Borel sets $B_{i} \subset X_{i}(i=(1,2)), \mu\left(B_{1} \times B_{2}\right)=\mu_{1}\left(B_{1}\right) \otimes \mu_{2}\left(B_{2}\right)$. This measure μ is denoted by $\mu_{1} \otimes \mu_{2}$.
(b) (Fubini-type result) Take an $f\left(x_{1}, x_{2}\right) \in L^{1}(\mu)$ and suppose, for $i=(1,2)$, that there are $\phi_{i}\left(x_{i}\right) \in L^{1}\left(\mu_{i}\right)$ such that $\left|f\left(x_{1}, x_{2}\right) \leq\left|\phi_{1}\left(x_{1}\right)\right|\right| \phi_{2}\left(x_{2}\right) \mid$ on $X_{1} \times X_{2}$. Then
(i) for every $x_{1} \in X_{1}, h_{2}\left(x_{1}\right)=\int f\left(x_{1}, \cdot\right) d \mu_{2}$ is in $L^{1}\left(\mu_{1}, E_{2}\right)$ and for every $x_{2} \in X_{2}, h_{1}\left(x_{2}\right)=\int f\left(\cdot, x_{2}\right) d \mu_{1}$ is in $L^{1}\left(\mu_{2}, E_{1}\right)$;
(ii) $\int h_{2} d \mu_{1}=\int h_{1} d \mu_{2}=\int f d \mu$.

Proof: (a) By Theorem 7, μ is defined on $C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$ and the closed unit ball B, of $C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$, is mapped into a relatively weakly compact subset of E. Thus the closure of $\left(\mu_{1} \otimes \mu_{2}\right)(B)$ in E, denoted by Q, is convex and weakly compact. For $i=(1,2)$, let S_{i} be equicontinuous, convex, $\sigma\left(E_{i}^{\prime}, E_{i}\right)$-compact subsets of E_{i}^{\prime}. Considering $E \subset C\left(S_{1} \times S_{2}\right)$, the pointwise and weak topologies on Q are identical. For an $h \in C_{b}\left(X_{1} \times X_{2}\right)$, define

$$
\mu(h): S_{1} \times S_{2} \rightarrow K,\left\langle\left(g_{1}, g_{2}\right), \mu(h)\right\rangle=\int h d\left(\left(g_{1} \circ \mu_{1}\right) \otimes\left(g_{2} \circ \mu_{2}\right)\right)
$$

Now assume that $\|h\| \leq 1$. Using Lemma 10, take a net $\left\{h_{\alpha}\right\} \subset B$ such that $h_{\alpha} \rightarrow h$, pointwise on $M_{\tau}\left(X_{1} \times X_{2}\right)$. Since $\left(\left(g_{1} \circ \mu_{1}\right) \otimes\left(g_{2} \circ \mu_{2}\right)\right) \in M_{\tau}\left(X_{1} \times X_{2}\right)$ (Lemma 9), $\mu(h) \in Q \subset C\left(S_{1} \times S_{2}\right)$. Thus the mapping $\mu=\mu_{1} \otimes \mu_{2}: C_{b}\left(X_{1} \times\right.$ $\left.X_{2}\right) \rightarrow E$ is weakly compact. Now $Q \subset C\left(S_{1} \times S_{2}\right)$ and is weakly compact, so weak and pointwise topologies, on $C\left(S_{1} \times S_{2}\right)$, coincide on Q. Since for any $\left(g_{1}, g_{2}\right) \in E_{1}^{\prime} \times E_{2}^{\prime},\left(g_{1}, g_{2}\right) \circ \mu=\left(\left(g_{1} \circ \mu_{1}\right) \otimes\left(g_{2} \circ \mu_{2}\right)\right) \in M_{\tau}\left(X_{1} \times X_{2}\right)$, we get that for every $\phi \in E^{\prime}, \phi \circ \mu \in M_{\tau}\left(X_{1} \times X_{2}\right)$. This proves that $\mu_{1} \otimes \mu_{2} \in M_{\tau}\left(X_{1} \times X_{2}, E\right)$.
(b) First we will prove that $h_{2}\left(x_{1}\right)$ exists for every $x_{1} \in X_{1}$. As for every $x_{1} \in X_{1},\left|f\left(x_{1}, \cdot\right)\right| \leq\left|\phi_{1}\left(x_{1}\right)\right|\left|\phi_{2}(\cdot)\right|$ by [12, Theorem 1, p. 27], $f\left(x_{1}, \cdot\right)$ is $\mu_{2^{-}}$ integrable and so for each $x_{1} \in X_{1}, h_{2}: X_{1} \rightarrow E_{2}, h_{2}\left(x_{1}\right)=\int f\left(x_{1}, \cdot\right) d \mu_{2}$ is well-defined and for any $g_{2} \in E_{2}^{\prime}, g_{2} \circ h_{2}\left(x_{1}\right)=\int f\left(x_{1}, \cdot\right) d\left(g_{2} \circ \mu_{2}\right)$. Now we want to prove that $h_{2} \in L^{1}\left(\mu_{1}, E_{2}\right)$.

Take an $A \in \mathcal{A}_{1}$. For any $\left(g_{1}, g_{2}\right) \in E_{1}^{\prime} \times E_{2}^{\prime}$,

$$
\left(g_{1}, g_{2}\right) \circ \mu=\left(g_{1} \circ \mu_{1}\right) \otimes\left(g_{2} \circ \mu_{2}\right)
$$

on $C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$ and, since both are τ-smooth,

$$
\left(g_{1}, g_{2}\right) \circ \mu=\left(g_{1} \circ \mu_{1}\right) \otimes\left(g_{2} \circ \mu_{2}\right)
$$

on $C_{b}\left(X_{1} \times X_{2}\right)$; and so, as τ-smooth measures, they are equal.
Now $\chi_{A} f \in L^{1}(\mu)$ and so $\chi_{A} f$ is integrable relative to $\left(g_{1} \circ \mu_{1}\right) \otimes\left(g_{2} \circ \mu_{2}\right)$. Let $\int \chi_{A} f d \mu=z$.
$\left\langle\left(g_{1}, g_{2}\right), z\right\rangle=\int\left(\int f\left(x_{1}, \cdot\right) d\left(g_{2} \circ \mu_{2}\right)\right) \chi_{A} d\left(g_{1} \circ \mu_{1}\right)=\int \chi_{A}\left(g_{2} \circ h_{2}\left(x_{1}\right)\right) d\left(g_{1} \circ \mu_{1}\right)$.
So $h_{2} \in L^{1}\left(\mu_{1}, E_{2}\right)$ and $\int f d \mu=\int h_{2} d \mu_{1}$. The case of h_{1} can be dealt with in a similar way.

5. Product of vector-valued tight measures on completely regular Hausdorff spaces

For $i=(1,2)$, let $\mu_{i} \in M_{t}\left(X_{i}\right)([17],[8])$. Then $\mu_{i} \in M_{\tau}\left(X_{i}\right)$. By Lemma 9, $\mu=\mu_{1} \otimes \mu_{2} \in M_{\tau}\left(X_{1} \times X_{2}\right)$. It is easy to see that $\mu \in M_{t}\left(X_{1} \times X_{2}\right)$. To prove
this, we see that $|\mu| \leq\left|\mu_{1}\right| \otimes\left|\mu_{2}\right|$ and, for any compact subsets $C_{i} \subset X_{i} \quad(i=1,2)$, $X_{1} \times X_{2} \backslash C_{1} \times C_{2} \subset\left(\left(X_{1} \backslash C_{1}\right) \times X_{2}\right) \cup\left(X_{1} \times\left(X_{2} \backslash C_{2}\right)\right)$. This means that $|\mu|\left(X_{1} \times X_{2} \backslash C_{1} \times C_{2}\right) \leq\left|\mu_{1}\right|\left(X_{1} \backslash C_{1}\right)\left|\mu_{2}\right|\left(X_{2}\right)+\left|\mu_{1}\right|\left(X_{1}\right)\left|\mu_{2}\right|\left(X_{2} \backslash C_{2}\right)$ and from this it follows that $\mu \in M_{t}\left(X_{1} \times X_{2}\right)$.

For a completely regular Haurdorff space X, and a locally convex space F, a measure $\mu: \mathcal{B}(X) \rightarrow F$ is called tight if for every $f \in F^{\prime}, f \circ \mu \in M_{t}(X)$; this does imply that, in the original topology of F, it is inner regular by the compact subsets of $X([13])$. The set of all F-valued tight measures on X will be denoted by $M_{t}(X, F)$.

Now we prove the main theorem of this section.
Theorem 12. (a) For $i=(1,2)$, let $\mu_{i} \in M_{t}\left(X_{i}, E_{i}\right)$. Then there exists a unique $\mu \in M_{t}\left(X_{1} \times X_{2}, E\right)$ such that $\mu\left(f_{1} f_{2}\right)=\mu_{1}\left(f_{1}\right) \otimes \mu_{2}\left(f_{2}\right)$ for any $f_{1} \in C_{b}\left(X_{1}\right)$ and any $f_{2} \in C_{b}\left(X_{2}\right)$; also for Borel sets $B_{i} \subset X_{i}(i=(1,2))$, $\mu\left(B_{1} \times B_{2}\right)=\mu_{1}\left(B_{1}\right) \otimes \mu_{2}\left(B_{2}\right)$. This measure μ is denoted by $\mu_{1} \otimes \mu_{2}$.
(b) (Fubini-type result) Take an $f\left(x_{1}, x_{2}\right) \in L^{1}(\mu)$ and suppose, for $i=(1,2)$, there are $\phi_{i}\left(x_{i}\right) \in L^{1}\left(\mu_{i}\right)$ such that $\left|f\left(x_{1}, x_{2}\right)\right| \leq\left|\phi_{1}\left(x_{1}\right)\right|\left|\phi_{2}\left(x_{2}\right)\right|$ on $X_{1} \times$ X_{2}. Then
(i) for every $x_{1} \in X_{1}, h_{2}\left(x_{1}\right)=\int f\left(x_{1}, \cdot\right) d \mu_{2}$ is in $L^{1}\left(\mu_{1}, E_{2}\right)$ and for every $x_{2} \in X_{2}, h_{1}\left(x_{2}\right)=\int f\left(\cdot, x_{2}\right) d \mu_{1}$ is in $L^{1}\left(\mu_{2}, E_{1}\right)$;
(ii) $\int h_{2} d \mu_{1}=\int h_{1} d \mu_{2}=\int f d \mu$.

Proof: (a) By Theorem 11, there is a unique measure $\mu_{1} \otimes \mu_{2} \in M_{\tau}\left(X_{1} \times X_{2}, E\right)$. The only thing to be verified is that $\mu_{1} \otimes \mu_{2} \in M_{t}\left(X_{1} \times X_{2}, E\right)$. For $i=(1,2)$, fix $p_{i} \in P_{i}$ and let

$$
S_{i}=\left\{g \in E_{i}^{\prime}:\left|g\left(p_{i}^{-1}([0,1])\right)\right| \leq 1\right\}
$$

E can be considered as a subspace of $C\left(S_{1} \times S_{2}\right)$. Since $\mu=\mu_{1} \otimes \mu_{2}$ has relatively weakly compact range in $E_{1} \breve{\otimes} E_{2}$, the weak topology on the range is identical with the pointwise topology on $S_{1} \times S_{2}$. Since for any $\left(g_{1}, g_{2}\right) \in S_{1} \times S_{2},\left(g_{1} \circ \mu_{1}\right) \otimes$ $\left(g_{2} \circ \mu_{2}\right) \in M_{t}\left(X_{1} \times X_{2}\right), \mu$ is tight in the weak topology and so it is tight ([13]).
(b) This follows from Theorem 11(b).

6. Product of vector-valued measures when both are not τ-smooth

It is shown in [1] for $i=(1,2)$ and $\mu_{i} \in M_{\sigma}\left(X_{i}\right)$, unless both μ_{1} and μ_{2} are in $M_{\tau}\left(X_{1}\right)$ and $M_{\tau}\left(X_{2}\right)$, the product measure may not exist in $M_{\sigma}\left(X_{1} \times X_{2}\right)$ for which the Fubini theorem works for functions in $C_{b}\left(X_{1} \times X_{2}\right)$. In this section we consider some special cases and prove the existence of product Baire measures satisfying some form of Fubini's theorem.

In this section we suppose that X_{2} is compact and the measures we consider on X_{1} are in $M_{\infty}\left(X_{1}\right)([17],[8])$; in [17] M_{∞} is denoted by M_{s} and these measures are called separable measures. First we make some comments on separable measures on a completely regular Hausdorff space X :
Let $\left\{f_{\alpha}\right\}$ be an e.b. set (that is, uniformly bounded equicontinuous subset of $\left.C_{b}(X)\right)$ such that $f_{\alpha} \rightarrow 0$, pointwise on X. If a $\mu \in M_{\sigma}(X)$ has the property that $\mu\left(f_{\alpha}\right) \rightarrow 0$ for all such e.b. sets, then $\mu \in M_{\infty}(X)$. For a quasi-complete locally convex space $F, M_{\infty}(X, F)$ denotes those linear weakly compact $\mu: C_{b}(X) \rightarrow F$ which have the property that $f \circ \mu \in M_{\infty}(X)$ for all $f \in F^{\prime}$. There is a locally convex topology, called β_{∞}, on $C_{b}(X)$ such that $\mu: C_{b}(X) \rightarrow K$ is in $M_{\infty}(X)$ iff μ is continuous ([17]); this topology is Mackey. So if a linear, weakly compact $\mu: C_{b}(X) \rightarrow F$ has the property that $f \circ \mu \in M_{\infty}(X, F)$ for all $f \in F^{\prime}$, then $\mu:\left(C_{b}(X), \beta_{\infty}\right) \rightarrow F$ is continuous with weak topology on F and, since β_{∞} is Mackey, it is also continuous in the original topology on F.

We start with a lemma.
Lemma 13. Let $f \in C_{b}\left(X_{1} \times X_{2}\right)$, with $\|f\| \leq 1$, and $\varepsilon>0$. Then there is a partition of unity $\left\{g_{\alpha}\right\}$ in X_{1} and $\left\{h_{\alpha}\right\} \subset C\left(X_{2}\right)$ with $\left\|h_{\alpha}\right\| \leq 1$ for all α, such that $\left\|f-\sum_{\alpha} g_{\alpha} h_{\alpha}\right\| \leq \varepsilon$.

Proof: As in [8, p.201], define a continuous semimetric d on $X_{1}, d(x, y)=$ $\sup _{x_{2}}\left|f\left(x, x_{2}\right)-f\left(y, x_{2}\right)\right|$. Proceeding as in [8, p. 201], we get the result.

Lemma 14. Let $f \in C_{b}\left(X_{1} \times X_{2}\right)$ with $\|f\| \leq 1, \mu_{1} \in M_{\infty}\left(X_{1}\right)$ and $\mu_{2} \in$ $M\left(X_{2}\right)=M_{\infty}\left(X_{2}\right)$. Then the functions $\int f d \mu_{1}$ and $\int f d \mu_{2}$ are Baire measurable and

$$
\int\left(\int f d \mu_{1}\right) d \mu_{2}=\int\left(\int f d \mu_{2}\right) d \mu_{1}
$$

Proof: In Lemma 13 , take $\varepsilon=\frac{1}{n}$. There is a partition of unity $\left\{g_{\alpha}^{n}\right\}$ in X_{1} and $\left\{h_{\alpha}^{n}\right\} \subset C\left(X_{2}\right)$ with $\left\|h_{\alpha}^{n}\right\| \leq 1$ for all α such that $\left\|f-f_{n}\right\| \leq \frac{1}{n}$ where $f_{n}=$ $\sum_{\alpha} g_{\alpha}^{n} h_{\alpha}^{n}$. Now $\int f_{n} d \mu_{1}=\sum_{\alpha} c_{\alpha}^{n} h_{\alpha}^{n}$, where $c_{\alpha}^{n}=\int g_{\alpha}^{n} d \mu_{1}$, is continuous on X_{2} and so $\int f d \mu_{1}$ is Baire measurable; in a similar way, it is easily seen that $\int f d \mu_{2}$ is Baire measurable. Now it is easily verified that $\int\left(\int f d \mu_{1}\right) d \mu_{2}=\int\left(\int f d \mu_{2}\right) d \mu_{1}$.

Lemma 15. Let $\left\{f_{\alpha}\right\} \subset C_{b}\left(X_{1} \times X_{2}\right)$ be an e.b. set and $\varepsilon>0$. Then there is a partition of unity $\left\{g_{\beta}\right\}$ in X_{1} and $\left\{h_{\beta}^{\alpha}\right\} \subset C\left(X_{2}\right)$ with $\left\|h_{\beta}^{\alpha}\right\| \leq 1$ for all α, β and such that $\left\|f_{\alpha}-\sum_{\beta} g_{\beta} h_{\beta}^{\alpha}\right\| \leq \varepsilon$ for all α.

Proof: As in Lemma 14, define a continuous metric d on $X_{1}, d(x, y)=$ $\sup _{\left(x_{2}, \alpha\right)}\left|f_{\alpha}\left(x, x_{2}\right)-f_{\alpha}\left(y, x_{2}\right)\right|$. As in Lemma 13, we get the result.

Theorem 16. Given $\mu_{1} \in M_{\infty}\left(X_{1}\right)$ and $\mu_{2} \in M\left(X_{2}\right)$, there is a unique Baire measure $\mu=\mu_{1} \otimes \mu_{2} \in M_{\infty}\left(X_{1} \times X_{2}\right)$ such that
(a) for any $f \in C_{b}\left(X_{1} \times X_{2}\right), \int\left(\int f d \mu_{2}\right) d \mu_{1}=\int\left(\int f d \mu_{1}\right) d \mu_{2}$; in particular $\int\left(f_{1} f_{2}\right) d\left(\mu_{1} \otimes \mu_{2}\right)=\left(\int f_{1} d \mu_{1}\right)\left(\int f_{2} d \mu_{2}\right)$, for $f_{1} \in C_{b}\left(X_{1}\right)$ and $f_{2} \in$ $C_{b}\left(X_{2}\right)$;
(b) for Baire sets $B_{i} \subset X_{i}(i=(1,2))$, $\left(\mu_{1} \otimes \mu_{2}\right)\left(B_{1} \times B_{2}\right)=\mu_{1}\left(B_{1}\right) \otimes \mu_{2}\left(B_{2}\right)$;
(c) for any μ-integrable $f: X_{1} \times X_{2} \rightarrow K$, for μ_{1}-almost all $x_{1}, f\left(x_{1}, \cdot\right)$ is μ_{2}-integrable and for μ_{2}-almost all $x_{2}, f\left(\cdot, x_{2}\right)$ is μ_{1}-integrable, and

$$
\mu(f)=\int\left(\int f\left(x_{1}, x_{2}\right) d \mu_{2}\left(x_{2}\right)\right) d \mu_{1}\left(x_{1}\right)=\int\left(\int f\left(x_{1}, x_{2}\right) d \mu_{1}\left(x_{1}\right)\right) d \mu_{2}\left(x_{2}\right)
$$

Proof: (a) Define $\int f d(\mu)=\int f d\left(\mu_{1} \otimes \mu_{2}\right)=\int\left(\int f d \mu_{1}\right) d \mu_{2}$. By Lemma 14, it is also equal to $\int\left(\int f d \mu_{2}\right) d \mu_{1}$. To prove that $\mu \in M_{\infty}\left(X_{1} \times X_{2}\right)$, take an e.b. set $\left\{f_{\alpha}\right\} \subset C_{b}\left(X_{1} \times X_{2}\right)$ such that $\left|f_{\alpha}\right| \leq 1$ for all α and $f_{\alpha} \rightarrow 0$, pointwise. Fix $n \in \mathbb{N}$. By Lemma 15, there is partition of unity $\left\{g_{\beta, n}\right\}$ in X_{1} and $\left\{h_{\beta, n}^{\alpha}\right\} \subset C\left(X_{2}\right)$ with $\left\|h_{\beta, n}^{\alpha}\right\| \leq 1$ for all α and β such that $\left\|f_{\alpha}-\sum_{\beta} g_{\beta, n} h_{\beta, n}^{\alpha}\right\| \leq \frac{1}{n}$. Now the set $\phi_{\alpha}=\sum_{\beta} g_{\beta, n} h_{\beta, n}^{\alpha}$ is an e.b. set and is pointwise convergent to, say ϕ (note that n is fixed). It is easy to see that $\int\left(\int \phi_{\alpha} d \mu_{1}\right) d \mu_{2} \rightarrow \int\left(\int \phi d \mu_{1}\right) d \mu_{2}$. Also $\left|f_{\alpha}-\phi_{\alpha}\right| \leq \frac{1}{n}$ and so $|\phi| \leq \frac{1}{n}$. This proves that $\iint f_{\alpha} d \mu_{1} d \mu_{2} \rightarrow 0$.
(b) This follows form the regularity properties of measures and (a).
(c) The proof is very similar to Lemma 9(b).

To extend the above theorem to the vector case, we start with a lemma:
Lemma 17. (a) Fix a $\mu \in M_{\infty}^{+}\left(X_{1} \times X_{2}\right)$ and consider on $C_{b}\left(X_{1} \times X_{2}\right)$ the topology induced by $L_{1}(\mu)$. Then the closed unit ball of $C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$ is dense in the closed unit ball of $C_{b}\left(X_{1} \times X_{2}\right)$.
(b) For any $f \in C_{b}\left(X_{1} \times X_{2}\right),\|f\| \leq 1$, there is a net $\left\{f_{\alpha}\right\}$ in the closed unit ball of $C_{b}\left(X_{1}\right) \otimes C_{b}\left(X_{2}\right)$, such that $f_{\alpha} \rightarrow f$, pontwise on $M_{\infty}\left(X_{1} \times X_{2}\right)$.

Proof: (a) We assume $\mu(1)=1$. Fix an f in the unit ball of $C_{b}\left(X_{1} \times X_{2}\right)$ and an $\varepsilon>0$. By Lemma 13, there is partition of unity $\left\{g_{\alpha}\right\}$ in X_{1} and $\left\{h_{\alpha}\right\} \subset C\left(X_{2}\right)$ with $\left\|h_{\alpha}\right\| \leq 1$ for all α such that $\left\|f-\sum_{\alpha} g_{\alpha} h_{\alpha}\right\| \leq \varepsilon$. Since $\mu \in M_{\infty}\left(X_{1} \times X_{2}\right)$, there is a finite subset $J \subset I$ such that $\mu\left(\sum_{\alpha \in I \backslash J}\right)<\varepsilon$. Let $h=\sum_{\alpha \in J} g_{\alpha} h_{\alpha}$. We have

$$
\mu|f-h| \leq \varepsilon+\mu\left(\left|\sum_{\alpha \in I \backslash J} g_{\alpha} h_{\alpha}\right|\right) \leq \varepsilon+\mu\left(\sum_{\alpha \in I \backslash J} g_{\alpha}\right) \leq 2 \varepsilon .
$$

This proves the result.
(b) The proof is very similar to Lemma $10(\mathrm{~b})$.

Now we prove the vector form of Theorem 16.

Theorem 18. Suppose $\mu_{1} \in M_{\infty}\left(X_{1}, E_{1}\right)$ and $\mu_{2} \in M\left(X_{2}, E_{2}\right)$ (note that X_{2} is compact). Then
(a) there exists a unique $\mu \in M_{\infty}\left(X_{1} \times X_{2}, E\right)$ such that $\mu\left(f_{1} f_{2}\right)=\mu_{1}\left(f_{1}\right)$ $\otimes \mu_{2}\left(f_{2}\right)$ for any $f_{1} \in C_{b}\left(X_{1}\right)$ and any $f_{2} \in C_{b}\left(X_{2}\right)$; also for Baire sets $B_{i} \subset X_{i}(i=(1,2)), \mu\left(B_{1} \times B_{2}\right)=\mu_{1}\left(B_{1}\right) \otimes \mu_{2}\left(B_{2}\right)$. This measure μ is denoted by $\mu_{1} \otimes \mu_{2}$.
(b) (Fubini-type result) Take an $f\left(x_{1}, x_{2}\right) \in L^{1}(\mu)$ and suppose, for $i=(1,2)$, there are $\phi_{i}\left(x_{i}\right) \in L^{1}\left(\mu_{i}\right)$ such that $\left|f\left(x_{1}, x_{2}\right)\right| \leq\left|\phi_{1}\left(x_{1}\right)\right|\left|\phi_{2}\left(x_{2}\right)\right|$ on $X_{1} \times$ X_{2}. Then
(i) for every $x_{1} \in X_{1}, h_{2}\left(x_{1}\right)=\int f\left(x_{1}, \cdot\right) d \mu_{2}$ is in $L^{1}\left(\mu_{1}, E_{2}\right)$ and for every $x_{2} \in X_{2}, h_{1}\left(x_{2}\right)=\int f\left(\cdot, x_{2}\right) d \mu_{1}$ is in $L^{1}\left(\mu_{2}, E_{1}\right)$;
(ii) $\int h_{2} d \mu_{1}=\int h_{1} d \mu_{2}=\int f d \mu$.

Proof: Using Theorem 16 and Lemma 17, the proof is similar to that of Theorem 11.

Acknowledgment. We are very thankful to the referee for pointing out typographical errors and making some other suggestions which has improved the paper.

References

[1] Babiker A.G., Knowles J.D., Functions and measures on product spaces, Mathematika 32 (1985), 60-67.
[2] Diestel J., Uhl J.J., Vector Measures, Mathematical Surveys, no. 15, American Mathematical Society, Providence, R.I., 1977.
[3] Duchoň M., Kluvánek I., Inductive tensor product of vector-valued measures, Mat. Časopis Sloven. Akad. Vied 17 (1967), 108-112; 20 (1972), 269-286.
[4] Fremlin D., Garling D., Haydon R., Bounded measures on topological spaces, Proc. Lon. Math. Soc. 25 (1972), 115-136.
[5] Freniche F.J., García-Vázquez J.C., The Bartle bilinear integration and Carleman operators, J. Math. Anal. Appl. 240 (1999), 324-339.
[6] Grothendieck A., Sur les applicationes linéaires faiblement compactes d'espaces du type $C(K)$, Canadian J. Math. 5 (1953), 129-173.
[7] Jarchow H., Locally Convex Spaces, B.G. Teubner, Stuttgart, 1981.
[8] Khurana S.S., Topologies on spaces of continuous vector-valued functions, Trans Amer. Math. Soc. 241 (1978), 195-211.
[9] Khurana S.S., Topologies on spaces of continuous vector-valued functions II, Math. Ann. 234 (1978), 159-166.
[10] Khurana S.S., A topology associated with vector measures, J. Indian Math. Soc. 45 (1981), 167-179.
[11] Khurana S.S., Vector measures on topological spaces, Georgian Math. J., to appear.
[12] Kluvánek I, Knowles G., Vector Measures and Control Systems, North-Holland Publishing Co., Amsterdam; American Elsevier Publishing Co., New York, 1976.
[13] Lewis D.R., Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157165.
[14] Phelps R.R., Lectures on Choquet Theorem, Van Nostrand, Princeton, 1966.
[15] Schaefer H.H., Topological Vector Spaces, Springer, New York-Berlin, 1971.
[16] Sentilles F.D., Bounded continuous functions on completely regular spaces, Trans. Amer. Math. Soc. 168 (1972), 311-336.
[17] Wheeler R.F., Survey of Baire measures and strict topologies, Exposition. Math. 1 (1983), no. 2, 97-190.
[18] Varadarajan V.S., Measures on topological spaces, Amer. Math. Soc. Transl. (2) 48 (1965), 161-220.

Department of Mathematics, University of Iowa, Iowa City, Iowa 52242, U.S.A.
E-mail: khurana@math.uiowa.edu
(Received March 13, 2007, revised December 18, 2007)

