
Commentationes Mathematicae Universitatis Carolinae

Vojtěch Franěk
An algorithm for QMC integration using low-discrepancy lattice sets

Commentationes Mathematicae Universitatis Carolinae, Vol. 49 (2008), No. 3, 447--462

Persistent URL: http://dml.cz/dmlcz/119735

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2008

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119735
http://project.dml.cz

Comment.Math.Univ.Carolin. 49,3 (2008)447–462 447

An algorithm for QMC integration

using low-discrepancy lattice sets

Vojtěch Franěk

Abstract. Many low-discrepancy sets are suitable for quasi-Monte Carlo integration.
Skriganov showed that the intersections of suitable lattices with the unit cube have
low discrepancy. We introduce an algorithm based on linear programming which scales
any given lattice appropriately and computes its intersection with the unit cube. We
compare the quality of numerical integration using these low-discrepancy lattice sets
with approximations using other known (quasi-)Monte Carlo methods. The comparison
is based on several numerical experiments, where we consider both the precision of the

approximation and the speed of generating the sets. We conclude that up to dimensions
about 15, low-discrepancy lattices yield fairly good results. In higher dimensions, our
implementation of the computation of the intersection takes too long and ceases to be
feasible.

Keywords: QMC integration, lattices, discrepancy

Classification: 65D30

1. Introduction

High-dimensional integrals are often numerically approximated using Monte
Carlo or quasi-Monte Carlo methods. Some known error estimates, such as the
Koksma-Hlawka inequality, and many numerical tests ([7], [13], [14], [22]) show
that in many cases, the quasi-Monte Carlo methods using such sets outperform
the Monte-Carlo method significantly. All these methods approximate the exact
value1

∫

Id f(x) dx by the average 1N
∑

~x∈M f(~x), where M is a suitable N -point
set. Well known examples are the Faure set, general (t, m, d)-nets and randomly
scrambled modifications of these sets. (For more information, see e.g. [12], [15],
[13], [14] or [11]). These constructions were found as examples of low-discrepancy

sets , ie. sets with discrepancy2 of the order O(logd−1N) (the lowest discrepancy
known so far). Skriganov in [18] proved the low-discrepancy property for a class of

sets generated as the intersection of suitable lattices with Id. This class contains
the only low-discrepancy sets that have not yet been tested concerning numerical
integration. One possible reason for this is the fact that computational problems
with lattices in higher dimensions are often known to be hard (see e.g. Lovász [9]).

1In this paper, we consider integration only over the unit cube Id = [0, 1]d.
2In this paper, we consider only the discrepancy for axis-parallel boxes (see [10]).

448 V. Franěk

Here we suggest a method of generating such sets and we test its practical
efficiency as well as the accuracy of quasi-Monte Carlo integration using these sets.
We found out that our method ceases to be feasible in the dimension about 20.
We constructed the sets up to the size N = 105, but reducing the size speeds up
the construction only slightly, and one can expect that the number of generated
points N does not affect the total computing time too much. As for the quality
of the approximation, our lattice sets are about twice as good as the Monte-Carlo
method (in lower dimensions even better). In our experiments, however, they
cannot compete with some others, especially linear scrambled Faure sets.
The method based on Skriganov’s results may sound familiar to the reader

who knows about QMC methods using lattice rules. However, the lattice rules
described in the literature ([19], [18], [12]) are based on lattices that include the

integer lattice Z
d (and the corresponding node sets are easy to compute). That is

not the case for the lattices considered here. The computation of the intersection
of these lattices with the unit cube is substantially more difficult and we address
it in this paper. We did not perform any comparison of our method with lattice
rules but this would surely deserve some attention in a future work.

2. Lattices

As was mentioned in the introduction, we will generate point sets using low-

discrepancy lattices3. A lattice L with basis B =
{

~b1,~b2, . . . ,~bd

}

∈ R
d is the set

of all integer linear combinations of the basis:

L = L(B) =







d
∑

j=1

ij~bj : i1, . . . , id ∈ Z







.

The norm of a lattice L is defined as Nm(L) = inf~x∈L\{0} |x1x2 . . . xd|, where
~x = (x1, x2, . . . , xd). The determinant det(L) of a lattice L is the absolute value
of the determinant of the d× d matrix having basis vectors as rows. Skriganov in
[18] proved the following result:

Theorem 1. If Nm(L) > 0 and det(L) = 1, then the lattice 1t L (where t > 0 is a

real parameter) has discrepancy D(1t L) = O(logd−1 t) as t → ∞. (If det(L) 6= 1,
we can rescale L suitably.)

Skriganov also mentions a class of lattices with positive norm. They have basis
vectors of the form

~b1 = (1, 1, . . . , 1),~b2 = (α1, α2, . . . , αd), . . . ,~bd = (α
d−1
1 , αd−1

2 , . . . , αd−1
d),

3The discrepancy of a lattice L is understood to be the discrepancy of its intersection with
the unit cube.

An algorithm for QMC integration using low-discrepancy lattice sets 449

where α1, α2, . . . , αd are mutually different roots of a monic polynomial p(x)
of degree d which is irreducible over the rationals and has integer coefficients.
One known approach from theory of numbers that produces such polynomials is
described e.g. in the book [10]:

Theorem 2. Let p = 2md+1 ≥ 5 be prime for an integer m, let ω = e2πi/p, and
let r be a primitive element modulo p; that is, that all the powers r0, r1, . . . , rp−2

are mutually different modulo p (in other words, r is a generator of the multi-

plicative group of the field Z/pZ). Then αj =
∑2m−1

k=0 ωrkd+j
for j = 1, . . . , d are

all distinct real roots of the polynomial q(x) =
∏d

j=1(x−αj) and this polynomial

is irreducible over rationals, has integer coefficients, and is monic.

In this work, we tested the lattices with exactly these bases (suitably rescaled).
To check theoretical results of suitability of these low-discrepancy lattices for
numerical integration, we compared them with lattices with bases consisting of
uniform random vectors from the unit ball and uniform random unit vectors. Our
task is to find, as efficiently as possible, a lattice whose intersection M with the
unit cube consists of (almost exactly) n points, ie. N = |M | ≈ n, where n is a
given number.

2.1 Scaling of the basis.
Suppose we already have some basis (denoted by B0), given by d vectors

~b1,~b2, . . . ,~bd ∈ R
d. Our goal is, by some scaling of these vectors, to make the

intersection M of the unit cube and the lattice generated by this new basis con-
tain (nearly) n points. If the intersection of a lattice L with the unit cube should

contain about n points, then we expect that det(L) ≈ 1
n . (The determinant of a

lattice is the volume of the parellelepiped spanned by its basis vectors.) Thus, if
one of the approaches described above yields the basis B0, we will take the basis

B1 = B0
d

√

1

n det(L0)
.

Practical experiments have shown that the lattice with the basis scaled in this way
has almost always the desired number of n± 1 points in the unit cube. However,
due to the discrete nature of the lattice, in some scarce cases the first scaling is
not so precise and we are forced to rescale it again4 :

Bi = Bi−1
d

√

Ni−1

n
, where Ni−1 = |L(Bi−1) ∩ Id|.

4This was necessary in our work only (and we never needed more than three scalings), because
we wanted to compare some methods and thus the number of points had to be always the same;
in practical situations the first scaling is accurate enough.

450 V. Franěk

2.2 The algorithm.

As soon as we have the (properly scaled) basis B, we want to find and count

the points of the intersection L(B)∩Id. We have developed a recursive algorithm,
based on cutting the cube. Our task is to find all the points of the lattice within
the unit cube, formally

~0 ≤
d

∑

k=1

xk
~bk ≤ ~1, where x1, x2, . . . xd ∈ Z.

The algorithm uses linear programming to estimate the limit values of x1 of
these points. Then it takes the lowest integer between these bounds, fixes x1 to
this value and finds the limits for x2 with respect to this fixed value. It continues
recursively with fixing x2 and so on, until we have all the coefficients fixed. (In

this case, we have found a point
∑d

k=1 xk
~bk of the lattice within the unit cube.)

If there are no more coefficients to fix, or there is no integer within the specified
range, we simply relax the last fixed coefficient and increase it by one. If this
new value is still within the allowed range, we can continue the same way as
above with fixing the increased value and looking for the limits of the first not
fixed coefficient. If the new value is above the allowed range, we go on with
relaxing the remaining coefficients until we find an acceptable number. If there
are no more integers within the range for x1, the algorithm ends. This way we
test all the possible integer combinations of basis vectors, which may produce a
point within the unit cube. Because the range for any coefficient is bounded, the
number of tested combinations is finite and the algorithm always terminates.

Input: The dimension d and a basis B = (~b1,~b2, . . . ,~bd).

Output: The set M = L(B) ∩ Id.

Step 1 (Init):

The number of fixed coefficients: f = 0.

The integer combination (given by the fixed coefficients) of first f vectors:

~p0 = ~0.

Step 2 (Find limits): Solve the linear programming problem given by the

inequalities

~0 ≤ ~pf +

d
∑

k=f+1

ak
~bk ≤ ~1

(where af+1, af+2, . . . , ad are the unknown variables) and the objective

function g(af+1, af+2, . . . , ad) = af+1. Denote its minimum by gmin and
maximum by gmax.

An algorithm for QMC integration using low-discrepancy lattice sets 451

Put xmin
f+1 = ⌈gmin⌉ and xmax

f+1 = ⌊gmax⌋. These are the limits for integer
coefficient xf+1 in the unit cube cut by the subspace

Sf =







~pf +

d
∑

k=f+1

ak
~bk : af+1, . . . , ad ∈ R







.

If xmin
f+1 > xmax

f+1 , then go to Update (in this case, the intersection of the

subspace Sf with the unit cube contains no integer combination of basis
vectors, in particular, the coefficient af+1 cannot be an integer); else

Step 3 (Increase recursion depth): Add one to f and put xf = xmin
f , which

means we have set and fixed the coefficient xf . Set ~pf = ~pf−1 + xf
~bf and

go to Test.

Step 4 (Update): While xf = xmax
f (the last coefficient fixed cannot be incre-

mented any more) decrease f by one. If f = 0, then the construction of the
set M is done and we can end the algorithm; else add one to xf , update

~pf =
∑f

k=1 xk
~bk by adding ~bf and perform the following step:

Step 5 (Test): If f = d, then the point ~pf = ~pd =
∑d

k=1 xk
~bk is a point in the

unit cube as well as a point of the lattice L(B). Thus, add pf to M and go
to Update; else go to Find limits.

2.2.1 Integer versus linear programming.
It is obvious that if we use linear programming, the space we explore is not the

smallest possible, still. It can happen that the intersection of the flat Sf with the
unit cube does not contain any lattice points (i.e. any integer combination of the
basis vectors) but contains linear combinations of the basis with first f ′ integer
coefficients (d > f ′ > f). We cut this flat Sf with some other flats and we never

find any lattice point, for after fixing f ′ < d coefficients we reveal the non-integer
one (that is the case when xmin

f ′+1 > xmax
f ′+1), and thus all the cutting of Sf was

unnecessary.
We could improve this by using integer programming which would detect this

situation immediately. But the linear programming problem can be solved in
polynomial time while the integer programming is NP-hard and there are no
efficient algorithms known for solving it. Moreover, in our experiments we met
this situation in only about ten to twenty percent of all cases and the difference
f ′−f was almost always equal to one. Thus, even if we had some efficient integer
programming algorithm it would not bring any significant speedup.

2.2.2 Small improvements.
If we analyse the behavior of our algorithm, we will find out soon that it is

preferable to have the basis vectors sorted descendingly by their length. Figure 1

452 V. Franěk

illustrates that using the basis B = (~b1,~b2) we explore only five flats, in this case

five lines parallel to ~b2. On the other hand, if we take the basis B′ = (~b2,~b1),

then there are ten lines parallel to ~b1 we must explore. The same is true in higher
dimensions: the longer the i-th basis vector is, the fewer (d− i)-flats we explore at
the i-th level of recursion. Because it is obviously easier to explore flats of lower
dimension, it is now clear why the decreasing basis is preferable.

Figure 1. The advantage of decreasing basis.

The second improvement is at the level of implementation, though it speeds
up the algorithm even more significantly. To find the extremes for xd we do not
need linear programming — it suffices to cut the line Sd−1 according to the unit
cube and we get the result in constant time.
The last amendment does not affect the speed of the computation but allows

us to gain better both approximation and stability of the integration. The lattice
defined so far always contained the origin, which is an exceptional point for many
common functions and its presence tends to influence the approximation adversely.
We cannot just omit it from M ; this would corrupt the regularity of the lattice,
which would result in a worse approximation. Instead, as in [2], we translate the

whole lattice by a random vector ~t. We thus work with the set L = L(B) + ~t.
We can also generate several sets M for one basis, and for the final value of the
approximation of the integral we can take for example the median of results on
these sets, which improves the stability of our computations.

2.3 Some known methods.
In this section, we mention some known methods of generating the set M ,

which we will use later for comparison. More on them can be found, for example,
in the study [11].

An algorithm for QMC integration using low-discrepancy lattice sets 453

Monte Carlo: The points are generated independently and uniformly at ran-
dom.

Halton’s sequence: This is the first known method that yields low-discrepancy
sets.

Richtmyer’s sequence: Let 2 = p1 < p2 < . . . < pd be the d smallest primes.
Then the k-th component of i-th element of Richtmyer’s sequence is

xi,k = (i
√

pk)mod 1.

It is not known whether the generated set has low-discrepancy. Nevertheless, it
is very popular due to its easy implementation. Moreover, it proves to be quite a
good choice, in the dimensions about 15 often even better than some other more
sophisticated constructions.
Linearly Scrambled Faure: This method is based on the ideas of Owen [15]

and Tezuka [23]. It takes Faure’s sequence (see [4], [1]) to which it applies linear
scrambling. All scrambled Faure’s sequences have low discrepancy.

3. The experiments

3.1 The integrands.
For the purpose of testing the numerical integration using lattices, we have

chosen the following five functions with various properties (continuous and dis-
continuous, smooth and non-smooth etc.):

GenzCont: Continuous function with discontinuous derivative according to
Genz’s set of testing functions [5]:

f1(~x) = f1(x1, . . . , xd) = e−
Pd

k=1 ck|xk−wk| ,

where ck =
2
d and wk = 0.4 + 0.4222

k
d for every k.

GenzDiscont: Discontinuous function from the same Genz’s set:

f2(~x) = f2(x1, . . . , xd) = e−
Pd

k=1 ckxk for x1 ≥ µ1 or x2 ≥ µ2.

This function is zero anywhere else. Again, we have chosen ck =
2
d for

every k, and µ1 = 0.7 and µ2 = 0.3.

L2NormTru: Let us consider the d-dimensional ball with radius r =
√

d
6 and

center in ~w = (w1, . . . , wd). Inside this ball, the function value is r. Outside,
the function value is the distance of the argument from the center of the
ball:

f3(~x) = f3(x1, . . . , xd) = max(r,
√

s),

454 V. Franěk

and s =
∑d

k=1(xk − wk)
2, where wk = 0.4 + 0.4222

k
d for every k, again.

RandPoly: As a representative of smooth functions, we have chosen sparse poly-
nomial in d variables with 5d random terms of degree 10 with random factors:

f4(~x) = f4(x1, . . . , xd) =

5d
∑

i=1

ai

10
∏

k=1

xpi,k
,

where ai is a random number from (0, 1) for every i, and each pi,k is a
random integer between 1 and d.

NiedAbs: Simple continuous non-smooth function from an example of Davis and
Rabinowitz [3] (originally published by Roos and Arnold in [17]):

f5(~x) = f5(x1, . . . , xd) =
d

∏

k=1

|4xi − 2|.

3.2 Implementation notes.
The experiments ran on several computers under Unix and Linux, respectively.

The program was written in C++. We have taken the code used in [11] to which
we have added the algorithms described above, namely generating of the basis,
its scaling, and constructing the set for numerical integration using lattices. As
the pseudo-random number generator we used the algorithm CombLS2 published
in Tezuka’s book [23].
Linear programming was done using the simplex algorithm, namely its imple-

mentation LPsimp 2.6 (slightly rewritten to our needs), which was developed at
the Operations Research Laboratory at the Seoul National University.

3.3 The results.
The following figures summarize the results of the experiments. We have de-

cided for representation similar to the one in [11]. On every page, there are
diagrams concerning one of the five integrands mentioned above. (Because f1
and f2 behaved similarly, we omitted the figure for f1.) Five rows correspond to
five dimensions and three columns correspond to three various desired cardinali-
ties of the set M . Each of these diagrams contains seven columns corresponding
to the seven approximating methods used:
L: lattices with low discrepancy according to Skriganov (the basis was generated

as in Theorem 2),
B: lattices with basis consisting of random vectors from the unit ball,
S: lattices with basis consisting of random unit vectors,
F: linearly scrambled Faure (according to [11]),
M: the traditional Monte Carlo method,
H: the set given by Halton’s sequence with omitting the first 100 elements,

An algorithm for QMC integration using low-discrepancy lattice sets 455

R: the set given by Richtmyer’s sequence.

The long horizontal line shows the exact value of the integral. On the vertical
axis, two other values are marked to illustrate the scale. The longer horizontal
line in every column shows the value approximated by the corresponding method.
In the first five cases, it is the median from thirty attempts, which are marked by
the short horizontal lines. Because they are often too close to each other, they
can be hard to distinguish. Nevertheless, one can make a sufficient idea about
their distribution. Finally, the vertical line to the left of every one of the five
non-deterministic method marks the standard deviation σ. More precisely, the
line stretches from µ − σ to µ+ σ, where µ is the average.

If we compare the lattice-based methods with the other methods, we will ob-
serve the following facts. First, lattices cannot compete with Linear Scrambled
Faure method, because this one beats the other methods almost every time. But
as for the traditional Monte Carlo method, the situation is different here. We can
see that lattices are very often superior to this method. Moreover, it seems (at
least for lower dimensions), that this dominance becomes more clear with growing
number of testing points, although this is less apparent in higher dimensions. The
function f5 was the hardest to integrate for all the methods. On the other hand,
we obtained the best results for f3.

If we try to compare the lattices generated by various types of bases, we will
find out easily that the low-discrepancy bases really give the best results. Random
bases from unit ball and bases consisting of random unit vectors are not so good
and they both have approximately the same behavior. It seems that the former
prevail somewhat, although the situation is exactly reversed for the function f3.

All these observations can be expressed quantitatively in the following way. In
lower dimensions, the Linear Scrambled Faure method is twice as good as the low-
discrepancy lattices, which are twice as good as the lattices with random bases,
which are twice as good as traditional Monte Carlo method. In higher dimensions,
this ratio changes to 5 : 1.5 : 1 : 1, save for f3 as well as f5, where all the methods
behave more or less the same.

As for variance of the attempts attained by the randomized methods, we can
say almost exactly the same as we just did for the final results (the medians).
The worst performance of the Monte Carlo method is still more significant here.
If we compare the standard deviations of these first five methods with the error of
the last two deterministic methods, we can say that for f2 (and f1), Halton and
Richtmyer are usually better than lattices but worse than Linear Scrambled Faure.
They are approximately as good as low-discrepancy lattices for f3 and sometimes
even worse for the polynomial f4. When integrating f5, the deterministic methods
stand out for small n in higher dimensions, primarily.

At last, let us say a few words about the time requirements of the methods.
Because all the computations were done on differently effective computers, and
often ran as processes with low priority, we were not able to do an exact timing,

456 V. FraněkN = 10000 N = 30000 N = 100000d = 6 2:30123�0:015+0:015
L B S F M H R L B S F M H R L B S F M H Rd = 9 2:25024�0:015+0:015
L B S F M H R L B S F M H R L B S F M H Rd = 11 2:23162�0:02+0:02
L B S F M H R L B S F M H R L B S F M H Rd = 14 2:21364�0:015+0:015
L B S F M H R L B S F M H R L B S F M H Rd = 18 2:19896�0:015+0:015
L B S F M H R L B S F M H R L B S F M H R

Figure 2. Numerical integration of the function f2 (GenzDiscont).

An algorithm for QMC integration using low-discrepancy lattice sets 457N = 10000 N = 30000 N = 100000d = 6 1:01032�0:0004+0:0004
L B S F M H R L B S F M H R L B S F M H Rd = 9 1:22836�0:0002+0:0002
L B S F M H R L B S F M H R L B S F M H Rd = 11 1:35587�0:0002+0:0002
L B S F M H R L B S F M H R L B S F M H Rd = 14 1:52825�0:0001+0:0001
L B S F M H R L B S F M H R L B S F M H Rd = 18 1:73226�0:0001+0:0001
L B S F M H R L B S F M H R L B S F M H R

Figure 3. Numerical integration of the function f3 (L2NormTru).

458 V. FraněkN = 10000 N = 30000 N = 100000d = 6 0:101257�0:004+0:004
L B S F M H R L B S F M H R L B S F M H Rd = 9 0:085696�0:002+0:002
L B S F M H R L B S F M H R L B S F M H Rd = 11 0:087158�0:002+0:002
L B S F M H R L B S F M H R L B S F M H Rd = 14 0:095081�0:002+0:002
L B S F M H R L B S F M H R L B S F M H Rd = 18 0:101558�0:003+0:003
L B S F M H R L B S F M H R L B S F M H R

Figure 4. Numerical integration of the function f4 (RandPoly).

An algorithm for QMC integration using low-discrepancy lattice sets 459N = 10000 N = 30000 N = 100000d = 6 1�0:025+0:025
L B S F M H R L B S F M H R L B S F M H Rd = 9 1�0:05+0:05
L B S F M H R L B S F M H R L B S F M H Rd = 11 1�0:05+0:05
L B S F M H R L B S F M H R L B S F M H Rd = 14 1�0:1+0:1
L B S F M H R L B S F M H R L B S F M H Rd = 18 1�0:15+0:15
L B S F M H R L B S F M H R L B S F M H R

Figure 5. Numerical integration of the function f5 (NiedAbs).

460 V. Franěk

which could help us to make some really objective conclusions. But some reference
attempts on a standalone machine suggested that in lower dimensions the lattices
could be faster than the successful Linear Scrambled Faure method, but with
growing d they slow down rapidly, for d = 10 they consume more or less the same
time, and the higher dimension, the slower they are. The Monte Carlo, Halton
and Richtmyer methods are always very fast, naturally.

The choice of 18 as the highest dimension considered was determined by the
practical limitations given by numerical integration using lattices. For example,
for n = 105 and d = 15 more than one million linear programming tasks need
to be computed to obtain one result, for d = 20 even more than 5 · 106 which
on the computer used took about one day. (Nevertheless, this machine was very
old.) In dimension 18, one computation took, on the average, about two hours
for n = 105 and about thirty minutes for n = 104. (Note that these timings
are only approximate because of the technical limitations mentioned above.) It
follows that it does not help too much to speed up the integration by reducing
the set M .

4. Conclusion

Based on the known theory of lattices, we have developed an algorithm which
generates low-discrepancy sets. We have used these sets for numerical integration
with quasi-Monte Carlo method. The practical experiments suggest that our
lattice-based method is a reasonable alternative to the other methods, especially
in lower dimensions. The following topics deserve further examination.

First, we can try to integrate using lattices with bases different from those de-
scribed here. Suitable and interesting candidates might be e.g. random orthogonal
bases from the unit ball or randomly rotated orthonormal bases.

As for the speed of the computations performed, linear programming is the
most time-consuming. We have used a very simple implementation of the simplex
algorithm. The application of a more sophisticated method would surely bring
some speedup. We can, for example, take advantage of the fact that the linear
programming tasks are often very similar: the boundary conditions are always
given by the unit cube and we often explore parallel subspaces, which means that
we solve the same problem as before, differing only in the right-hand side etc.

Niederreiter in [12] presents some facts on good lattice points concerning in-
tegration of periodic functions. One should try to integrate such functions also
using the method studied here. For the similarity to good lattice points, promis-
ing results might be expected as well. Another interesting functions might be
those with variable effective dimension (see, e.g., Radovic et al. [16]).

As we have already mentioned in the introduction, some comparison of our
method with lattice rules (see, e.g., [19], [20], [21], [8], [12], [6]) would be desirable,
too.

An algorithm for QMC integration using low-discrepancy lattice sets 461

Acknowledgment. I would like to thank Jǐŕı Matoušek for his invaluable help
with the design of the work and with preparation of this paper.

References

[1] Beck J., Chen W.L., Irregularities of Distribution, Cambridge University Press, Cambridge,

1987.

[2] Cranley R., Patterson T.N.L., Randomization of number theoretic methods for multiple
integration, SIAM J. Numer. Anal. 13 (1976), no. 6, 909–914.

[3] Davis P.J., Rabinowitz P., Methods of Numerical Integration, 2nd edition, Academic Press
Inc., Orlando FL, 1984.

[4] Faure H., Discrepancy of sequences associated with a number system (in dimension s),

Acta Arith. 41 (1982), no. 4, 337–351.

[5] Genz A., Testing multidimensional integration routines, in Tools, Methods and Languages
for Scientific and Engineering Computation, B. Ford, J. C. Rault and F. Thomasset, Eds.,
North-Holland, Amsterdam, 1984.

[6] Hua L.K., Wang Y., Applications of Number Theory to Numerical Analysis, Springer,
Berlin, 1981.

[7] Janse van Rensburg E.J., Torrie G.M., Estimation of multidimensional integrals: is Monte
Carlo the best method?, J. Phys. A 26 (1993), 943–953.

[8] L’Ecuyer P., Lemieux C., Variance reduction via lattice rules, in Management Science 49-6
(2000), 1214–1235.

[9] Lovász L., An algorithmic theory of numbers, graphs and convexity, CBMS-NSF Regional
Conference Series in Applied Mathematics 50, SIAM, Philadelphia, Pennsylvania, 1986.

[10] Matoušek J., Geometric Discrepancy: An Illustrated Guide, Springer, Berlin, 1999.

[11] Matoušek J., On the L2-discrepancy for anchored boxes, J. Complexity 14 (1998), 527–556.

[12] Niederreiter H., Random number generation and quasi-Monte Carlo methods, CBMS-NSF
Regional Conference Series in Applied Mathematics 63, SIAM, Philadelphia, Pennsylvania,
1992.

[13] Owen A.B., Randomly permuted (t, m, s)-nets and (t, s)-sequences, in Monte Carlo and
Quasi-Monte Carlo Methods in Scientific Computing, Harald Niederreiter and Peter Jau-
Shyong Shiue, Eds., Springer, New York, 1995, pp. 299–317.

[14] Owen A.B., Scrambled net variance for integrals of smooth functions, Ann. Statist. 25
(1997), no. 4, 1541–1562.

[15] Owen A.B., Monte-Carlo variance of scrambled net quadrature, SIAM J. Numer. Anal. 34
(1997), no. 5, 1884–1910.

[16] Radovic I., Sobol’ I.M., Tichy R.F., Quasi-Monte Carlo methods for numerical integration:
Comparison of different low-discrepancy sequences, Monte Carlo Methods Appl. 2 (1996),
1–14.

[17] Roos P., Arnold L., Numerische Experimente zur mehrdimensionalen Quadratur, Öster-
reich. Akad. Wiss. Math.-Natur. Kl. S.-B. II 172 (1963), 271–286.

[18] Skriganov M.M., Constructions of uniform distributions in terms of geometry of numbers,
Algebra i Analiz 6 (1994), 200–230.

[19] Sloan I.H., Joe S., Lattice Method for Multiple Integration, Clarendon Press, Oxford Uni-
versity Press, New York, 1994.

[20] Sloan I.H., Kuo F.Y., Joe S., Constructing randomly shifted lattice rules in weighted Sobolev
spaces, SIAM J. Numer. Anal. 40 (2002), 1650–1665.

[21] Sloan I.H., Kuo F.Y., Joe S., On the step-by-step construction of quasi-Monte Carlo in-
tegration rules that achieve strong tractability error bounds in weighted Sobolev spaces,
Math. Comp. 71 (2002), 1609–1640.

462 V. Franěk

[22] Spanier J., Maize E.H., Quasi-random methods for estimating integrals using relatively
small samples, SIAM Review 36 (1994), no. 1, 18–44.

[23] Tezuka S., Uniform Random Numbers. Theory and Practice, Kluwer Academic Publishers,
Dordrecht, 1995.

Charles University, Faculty of Mathematics and Physics, Department of Applied

Mathematics, Malostranské nám. 25, 118 00 Prague 1, Czech Republic

E-mail : vojta@kam.mff.cuni.cz

(Received December 22, 2007, revised April 10, 2008)

		webmaster@dml.cz
	2013-09-22T09:43:14+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

