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Cellularity of a space of subgroups of a discrete group

A. Leiderman, I.V. Protasov

Abstract. Given a discrete group G, we consider the set L(G) of all subgroups of G

endowed with topology of pointwise convergence arising from the standard embedding
of L(G) into the Cantor cube {0, 1}G. We show that the cellularity c(L(G)) ≤ ℵ0 for
every abelian group G, and, for every infinite cardinal τ , we construct a group G with
c(L(G)) = τ .
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Let G be a discrete group and expG the set of all subsets of G. We identify
expG with the Cantor cube {0, 1}G and consider the set L(G) of all subgroups
of G as a subspace of {0, 1}G. Let F(G) be the family of all finite subsets of G.
Given any F, H ∈ F(G), we put

[F, G \ H ] = {A ∈ L(G) : F ⊆ A ⊆ G \ H}.

Then the family {[F, G \ H ] : F, H ∈ F(G)} forms a base of the topology in
L(G). It is easy to see that L(G) is a zero-dimensional compact space.
We denote by c(X) the cellularity of a topological space X . Remind that c(X)

is the supremum of cardinalities of disjoint families of open subsets of X .
We say that a topological space X has Shanin number ω (see [4] or [1, Prob-

lem 2.7.11]) if any uncountable family U of non-empty open subsets of X has an
uncountable subfamily V ⊆ U with

⋂
V 6= ∅. Evidently, if a space X has Shanin

number ω then c(X) ≤ ℵ0.
Given any topological group G, we denote by L(G) the space of all closed

subgroups ofG endowed with the Vietoris topology. By [3, Theorem 2], c(L(G)) ≤
ℵ0 for every compact group G.

Theorem 1. For every discrete abelian group G, the space L(G) has Shanin
number ω, in particular, c(L(G)) ≤ ℵ0.

Proof: By [6, Theorem 24.1], G is a subgroup of some divisible group D. By [6,
Theorem 23.1], D is a direct sum ⊕α∈IGα of some family of countable groups.

The first author was partially supported by the Israel Science Foundation Grant no. 508/06.



520 A. Leiderman, I.V.Protasov

Thus we suppose that G is a subgroup of ⊕α∈IGα. Let {Uβ : β ∈ J} be an
uncountable family of non-empty open subsets of L(G). For every β ∈ J , we pick
finite subsets Fβ , Hβ of G such that ∅ 6= [Fβ , G \ Hβ ] ⊆ Uβ , and put

Kβ = {α ∈ I : prα g 6= 0 for some g ∈ Fβ ∪ Hβ}.

Then {Kβ : β ∈ J} is an uncountable family of finite subsets of I. By the ∆-
Lemma, there exist an uncountable subset J1 ⊆ J and a finite subset K ⊆ I such
that Kβ ∩ Kγ = K for all distinct β, γ ∈ J1. We put

GK = {g ∈ G : prα g = 0 for every α /∈ K}.

For every subset X of G, we denote by 〈X〉 the subgroup of G generated by X .
Every subgroup of a finitely generated abelian group is finitely generated, hence it
follows that for every β ∈ J1, the subgroup 〈Fβ〉∩GK is finitely generated. Since
GK is a countable group, there are countably many finitely generated subgroups
of GK , and therefore there exist an uncountable subset J2 ⊆ J1 and a subgroup
A ⊆ GK such that 〈Fβ〉 ∩ GK = A for every β ∈ J2. We put S = 〈

⋃
β∈J2

Fβ〉

and prove that S ∈
⋂

β∈J2
[Fβ , G \ Hβ ]. It suffices to show that Hβ ∩ S = ∅ for

every β ∈ J2.

Pick any element g ∈ S and fix β ∈ J2. Clearly, if g = 0 then g /∈ Hβ because
of 0 ∈ 〈Fβ〉 and ∅ 6= [Fβ , G \ Hβ ]. If g 6= 0, we can write g as

g = gα1 + · · ·+ gαn
,

where gαi
∈ Gαi

\ {0} for every i ∈ {1, . . . , n}. If αi /∈ Kβ for some i ∈ {1, . . . , n}
then, by definition of Kβ , we have g /∈ Hβ .

Now consider the possibility of {α1, . . . , αn} ⊆ Kβ. We claim that in this case
g ∈ 〈Fβ〉. Let us assume the contrary, g /∈ 〈Fβ〉.
By the choice of J2, we have 〈Fβ〉∩GK = 〈Fγ〉∩GK for every distinct β, γ ∈ J2,

therefore by definition of S, there exist γ ∈ J2 \ {β} and j ∈ {1, . . . , n} such that
αj ∈ Kγ \ K. On the other hand, Kβ ∩ Kγ = K, hence αj /∈ Kβ , and we get a
contradiction with {α1, . . . , αn} ⊆ Kβ . So, g ∈ 〈Fβ〉 which implies that g /∈ Hβ .

�

Remind that a Hausdorff compact space X is called dyadic if X is a continuous
image of some Cantor cube. If G is a compact abelian group, by [5, Theorems 3, 4],
the space L(G) is dyadic if and only if the weight w(G) ≤ ℵ1. A natural question
arises to characterize discrete groups G for which L(G) is a dyadic space.

Theorem 2. For a discrete abelian group G, the space L(G) is dyadic if and
only if |G| ≤ ℵ1.
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Proof: By [2, Theorem 3], for every compact abelian group G the space L(G)

is homeomorphic to L(Ĝ), where Ĝ is the dual group to G. Therefore, by Pon-
tryagin’s duality and by above-mentioned [5, Theorems 3, 4], the space L(G) is
dyadic if and only if |G| ≤ ℵ1. �

Our last theorem shows that, in contrast to Theorem 1, there are non-abelian
groups G with arbitrary large cellularity c(L(G)).

Theorem 3. For every infinite cardinal τ there exists a discrete group G such
that c(L(G)) = |G| = τ .

Proof: Let F be a free group generated by the set {xα, yα : α < τ} of free
generators. We shall define a group G as the quotient G = F/N , where N is
a certain normal subgroup of the free group F containing all the words x2α, y

2
α,

xβxαxβyα, α < β < τ .
We fix α < τ and put

A = 〈aα〉 × 〈bα〉, B = ⊗α<βτ 〈cβ〉,

where 〈aα〉, 〈bα〉, 〈cβ〉 are the cyclic subgroups of order 2. Then we define a group
Gα as the semidirect product Gα = A ⋋ B with cβaαcβ = bα for all α < β < τ .
Let fα : F → Gα be a homomorphism defined by the rule

fα(xλ) = fα(yλ) = 1 for all λ < α,

fα(xα) = aα, fα(yα) = bα,

fα(xβ) = fα(yβ) = cβ for all α < β < τ.

Finally, we define

N =
⋂

{Ker fα : α < τ}, and G = F/N.

Clearly, fα(x
2
λ) = fα(y

2
λ) = 1 for every λ < τ , and it easily could be seen

that fα(xβxλxβ) = fα(yλ) for all λ < β < τ . Hence, N is a normal subgroup

of the free group F containing all the words x2α, y2α, xβxαxβyα, α < β < τ ,

but xα, yα, xαy−1α /∈ N . It follows that xαN 6= 1, yαN 6= 1, xαN 6= yαN in
the quotient group G = F/N . In the sequel we denote the cosets wN , i.e. the
elements of the group G, simply by w.
In order to finish the proof of Theorem 3 we show that c(L(G)) = |G| = τ . Let

us consider the family {[{xα}, G \ {yα}] : α < τ} of non-empty open subsets of
L(G), and show that this family is disjoint. We assume the contrary and choose
α, β such that α < β < τ and

[{xα}, G \ {yα}] ∩ [{xβ}, G \ {yβ}] 6= ∅.

Then the subgroup 〈xα, xβ〉 generated by xα, xβ is in the above intersection.
On the other hand, yα = xβxαxβ , so

yα ∈ 〈xα, xβ〉, 〈xα, xβ〉 ∈ [{xβ}, G \ {yα}]

and we get a contradiction. �
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Question. Does there exist a nilpotent group G such that c(L(G)) > ℵ0 ?
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