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Products and projective limits of function spaces

Miroslav Kačena

Abstract. We introduce a notion of a product and projective limit of function spaces.
We show that the Choquet boundary of the product space is the product of Choquet
boundaries. Next we show that the product of simplicial spaces is simplicial. We also
show that the maximal measures on the product space are exactly those with maximal
projections. We show similar characterizations of the Choquet boundary and the space
of maximal measures for the projective limit of function spaces under some additional
assumptions and we prove that the projective limit of simplicial spaces is simplicial.
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1. Introduction

Let {Xi}i∈I be a family of Choquet simplexes. We can construct a compact
convex set X as the state space of the space of all continuous multiaffine functions
on

∏
i∈I Xi. It has been shown in [6] and [16] that X itself is a simplex with

extreme points being the evaluation functionals at the points (xi)i∈I ∈
∏

i∈I Xi

with xi ∈ extXi for every i ∈ I. Generalizations to products of arbitrary compact
convex sets followed (see [11], [18]). Characterization of maximal measures on the
product of two compact convex sets, as the measures whose every ‘projection’ is
a maximal measure, appeared later in [3] and [2].
In Section 3 we transfer these results to the context of function spaces. We first

introduce a notion of a product of function spaces with several special products.
We compare these products and prove appropriate associative laws. Then we
show that the Choquet boundary of a product space is the product of Choquet
boundaries. We prove that the product is simplicial if and only if every of the
original spaces is simplicial. Finally we show that maximal measures on the
product of arbitrary many spaces are exactly those with maximal projections.
In Section 4 we transfer known results from [6] and [13] on projective limits

of compact convex sets to function spaces. We use Grossman’s definition of the
projective limit of function spaces from [10] and prove that the projective limit
of simplicial spaces is simplicial. We also derive similar characterizations of the
Choquet boundary and maximal measures as in the case of product of function
spaces.
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2. Preliminaries

Let K be a compact Hausdorff space. We denote by C(K) the space of all
continuous functions on K, by M+(K) the set of all positive Radon measures
on K and by M1(K) the set of all probability Radon measures on K. Let εx
stand for the Dirac measure at x ∈ K. We say that a linear subspaceH of C(K) is
a function space, if it contains 1K (the function identically 1 on K) and separates
the points of K. LetMx(H) be the set of all H-representing measures for x ∈ K,
i.e.,

Mx(H) := {µ ∈M
1(K) : h(x) =

∫

K
h dµ for every h ∈ H}.

The set ChH K := {x ∈ K : Mx(H) = {εx}} is called the Choquet boundary
of H. It is a Gδ-set if K is metrizable (see [1, Corollary I.5.17]). We denote by
∇HK the Šilov boundary of H (see [1, p. 50] for definition) and we remark that
∇HK is equal to the closure of ChH K (see [1, Theorem I.5.15] for the proof).
A non-empty closed set E ⊂ K is called H-extremal , if sptµ ⊂ E for every x ∈ E
and µ ∈ Mx(H). Finally, for every x ∈ K we denote Fx(H) :=

⋃
{sptµ : µ ∈

Mx(H)}.
We define the space Ac(H) of all continuous H-affine functions as the space of

all continuous functions on K satisfying the following formula:

f(x) =

∫

K
f dµ for each x ∈ K and µ ∈ Mx(H).

Clearly Ac(H) is a uniformly closed function space with Mx(H) =Mx(Ac(H))
for every x ∈ K.
Here we recall main examples of function spaces:

(a) Convex case - Let X be a compact convex subset of a locally convex space
and let H be the linear space A(X) of all continuous affine functions onX .
The Choquet boundary is the set extX of all extreme points of X .

(b) Harmonic case - Let U be a bounded open subset of the Euclidean space
Rn and let the corresponding function spaceH(U) be the family of all con-
tinuous functions on U which are harmonic on U . The Choquet boundary
coincides with the set ∂regU of all regular points.

An upper bounded Borel function f is called H-convex if f(x) ≤ µ(f) for any
x ∈ K and µ ∈Mx(H). Let Kc(H) denote the family of all continuous H-convex
functions on K. Notice that the space Kc(H)−Kc(H) is uniformly dense in C(K)
due to the lattice version of the Stone-Weierstrass theorem.
The convex cone Kc(H) determines a partial ordering �H (called the Choquet

ordering) on the spaceM+(K):

µ �H ν if µ(f) ≤ ν(f) for each f ∈ Kc(H).



Products and projective limits of function spaces 549

(If the space H is obvious, we simply write µ � ν.)
We remark that µ � ν if and only if µ(f) ≤ ν(f) for every f ∈ W(H), where

W(H) is the smallest family of functions containing H and closed with respect to
taking supremum of finite families.
For any measure µ ∈ M+(K) there exists a maximal measure ν with µ � ν.

In particular, for every x ∈ K there exists a maximal H-representing measure.
This is the content of the Choquet-Bishop-de Leeuw theorem [1, Theorem I.5.19].
If K is metrizable, then a measure µ ∈ M+(K) is maximal if and only if

µ(K \ ChH K) = 0. In nonmetrizable spaces every maximal measure µ satisfies
µ(G) = 0 for any Gδ-set disjoint from ChH K (see [1, Proposition I.5.22]).

Theorem 2.1. Let µ ∈M+(K). Then the following assertions are equivalent:

(i) µ is maximal,
(ii) there exists a set S ⊂ C(K) separating points of K such that every func-
tion from S is constant on Fx(H) for µ-a.e. x ∈ K,

(iii) every function from C(K) is constant on Fx(H) for µ-a.e. x ∈ K.

Proof: See [2, Proposition 2]. �

Proposition 2.2. Let (K ′,G) be a function space and ρ : K → K ′ a continuous

mapping such that Fρ(x)(G) ⊂ ρ(Fx(H)) for every x ∈ ChH K. Then the image

measure ρµ is a maximal measure on K ′ for every maximal measure µ on K.

Proof: See [2, Corollary 3]. �

If for every x ∈ K the maximalH-representing measure is uniquely determined,
we say that H is simplicial . In the convex case it is equivalent to say that X is
a Choquet simplex . We denote the unique maximal measure representing x ∈ K
by δx.
We say that H has the weak Riesz interpolation property (W.R.I.P.), if for

every a1, a2, b1, b2 ∈ H such that ai < bj , i, j = 1, 2, there exists c ∈ H such that
ai < c < bj , i, j = 1, 2. It can be shown that H is simplicial if and only if A

c(H)
has W.R.I.P. (see [1, Corollary II.3.11] or [4, Theorem 3.3]).
For a function f : K → R we define the upper envelope f∗ as

f∗(x) := inf{h(x) : h ≥ f, h ∈ H}, x ∈ K,

and the lower envelope as f∗ := −(−f)∗. We denote Ĥ := {f ∈ C(K) : f∗ = f∗}.

It is true that Ac(H) = Ĥ. By [1, Proposition I.5.9 and Corollary I.5.10], we
have:

Proposition 2.3. Let µ ∈ M+(K). Then the following statements are equiva-
lent:

(i) µ is maximal,
(ii) µ(f) = µ(f∗) for every f ∈ C(K),
(iii) µ(k) = µ(k∗) for every k ∈ Kc(H).
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Corollary 2.4. Let x ∈ K. Then the following statements are equivalent:

(i) x ∈ ChH K,
(ii) f(x) = f∗(x) for every f ∈ C(K),
(iii) k(x) = k∗(x) for every k ∈ Kc(H).

If f and g are functions on K, we write f ∨ g for their pointwise maximum
and f ∧ g for minimum.

Now we introduce a notation concerning cartesian products: Let {Ei}i∈I be a
family of topological spaces and let E :=

∏
i∈I Ei be their cartesian product with

the usual topology. We use the convention
∏

i∈∅Ei := {∅}.
Let J ⊂ I. The natural projection from E onto

∏
i∈J Ei is denoted by πJ . Let

A ⊂ E and z ∈
∏

i∈I\J Ei. We denote by π
z
J (A) the set {x ∈

∏
i∈J Ei : (x, z) ∈

A}.
We use a similar notation for functions. Let f : E → R and y ∈

∏
i∈I\J Ei.

Then π
y
J (f) :

∏
i∈J Ei → R is defined as

π
y
J (f)(x) := f(x, y), x ∈

∏

i∈J

Ei.

In case f is independent on y, we use notation πJ (f).

Finally, for f1 : E1 → R and f2 : E2 → R we define f1 ⊗ f2 : E1 × E2 → R by

(f1 ⊗ f2)(x, y) = f1(x)f2(y), x ∈ E1, y ∈ E2.

We conclude this section with known results on products of Radon measures:
Let {(Ki,Si, µi)}i∈I be a family of compact Hausdorff spaces with Radon prob-
ability measures. There exists a unique product measure µ on

∏
i∈I Ki with

µ(
∏

i∈I Ei) =
∏

i∈I µi(Ei), whenever Ei ∈ Si for each i ∈ I and Ei 6= Ki for
finitely many i ∈ I (see [12, Chapter VI, Theorem 5.3]). By [8, Theorem 417Q], µ
can be uniquely extended to a Radon measure

⊗
i∈I µi. We call this measure the

Radon product measure. Radon products satisfy associative law (see [8, Theo-
rem 417J]) and we can also use Fubini’s theorem (see [8, Theorem 417H]). Finally
we remark that if two Radon measures coincide on the cylinder sets

∏
i∈I Ei,

where Ei ⊂ Ki is Borel for each i ∈ I and Ei 6= Ki for finitely many i ∈ I,
then they are equal (see [12, Chapter I, Proposition 5.3] and the proof of [8,
Corollary 417F]).

3. Products of function spaces

3.1 Definitions and relations.
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Definition 3.1. Let {(Ki,Hi)}i∈I be a family of function spaces and let K :=∏
i∈I Ki. We define

(a) algebraic tensor product
⊙

i∈I Hi as the linear span of the set

{h1 ⊗ . . .⊗ hn ⊗ 1Q{Ki:i∈I\{i1,... ,in}} : hk ∈ Hik , ik ∈ I, 1 ≤ k ≤ n, n ∈ N},

(b) injective tensor product
⊗

i∈I Hi as the closure of
⊙

i∈I Hi,
(c) multiaffine product by

⊠
i∈I

Hi := {f ∈ C(K) : π
y
j (f) ∈ Hj for all j ∈ I and y ∈

∏

i∈I\{j}

Ki}.

We say that a function space H on K is a product of function spaces Hi, i ∈ I,
if ⊙

i∈I

Hi ⊂ H ⊂⊠
i∈I

Ac(Hi).

In case I is an empty set, we put all products to be equal {∅}.

Remark 3.2. It can be shown, that H1 ⊙ H2 is really the ‘algebraic tensor
product’, and if H1 and H2 are closed, i.e., Banach spaces, then H1⊗H2 is their
‘weak (injective) tensor product’ (see [19, 20.5.5]). If Hi = A(Xi) for some com-
pact convex sets Xi, i ∈ I, then ⊠ i∈IHi is the space of all continuous multiaffine
functions on K.

Example 3.3. Let U1 ⊂ Rm, U2 ⊂ Rn, be bounded open sets. We take Hi :=
H(Ui), i = 1, 2 (see Example (b) in Section 2). If H is a product of Hi, i = 1, 2,
then H ⊂ H(U1 × U2). Indeed, choose h ∈ H ⊂ A

c(H1) ⊠ A
c(H2) = H(U1) ⊠

H(U2). Then we have

∆h(x1, x2) = ∆π
x2
1 (h)(x1) + ∆π

x1
2 (h)(x2) = 0, x1 ∈ U1, x2 ∈ U2.

However, even the largest product does not have to contain all harmonic functions
on the cartesian product. Consider Ui := (0, 1) ⊂ R, i = 1, 2. Then H(Ui) =
A(Ui), i = 1, 2. So every product consists only of biaffine functions. Now take
f(x, y) := x2 − y2 for x, y ∈ [0, 1]. Clearly, f is harmonic, but not biaffine.

Proposition 3.4. The following assertions hold.

(i)
⊙

i∈I Hi ⊂⊠ i∈IHi.

(ii) If all Hi are closed, then
⊙

i∈I Hi ⊂
⊗

i∈I Hi ⊂ ⊠ i∈IHi. Moreover,

⊠ i∈IHi is closed.

(iii) If Hj is not closed for some j ∈ I, then
⊙

i∈I Hi (
⊗

i∈I Hi and⊗
i∈I Hi 6⊂⊠ i∈IHi.
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Proof: Statement (i) and the first inclusion in (ii) are trivial. Since (i) holds,
the second inclusion in (ii) will be proved if we show that ⊠ i∈IHi is closed. So
let {fn}n∈N ⊂ ⊠ i∈IHi be such that fn ⇉ f ∈ C(K). Further, let j ∈ I and
y ∈

∏
i∈I\{j}Ki. Then π

y
j (fn) ⇉ πy

j (f), and since π
y
j (fn) ∈ Hj for each n and

Hj is closed, we have π
y
j (f) ∈ Hj . Thus f ∈⊠ i∈IHi.

Using previous inclusions, it suffices to find f ∈ (
⊗

i∈I Hi)\(⊠ i∈IHi) to prove

(iii). Let j ∈ I be such thatHj is not closed and putK
′ :=

∏
i∈I\{j}Ki. There are

functions {hn}n∈N ⊂ Hj such that hn ⇉ h /∈ Hj . Then also hn⊗1K ′ ⇉ h⊗1K ′.
Since hn ⊗ 1K ′ ∈

⊙
i∈I Hi for every n ∈ N, we have h ⊗ 1K ′ ∈

⊗
i∈I Hi. But

πj(h⊗ 1K ′) = h /∈ Hj , therefore h⊗ 1K ′ /∈⊠ i∈IHi. �

Remark 3.5. Using previous proposition, we can see that all products defined in
Definition 3.1 are indeed function spaces, since they are linear spaces and contain
algebraic tensor product, which contains constants and separates points.

In the rest of this subsection we will show that the two inclusions in Proposi-
tion 3.4(ii) may be proper.

Example 3.6. LetKi := [0, 1] ⊂ R,Hi := C(Ki), i = 1, 2, and denoteK := K1×

K2. The functions of H1 ⊙H2 are of the form
∑n

j=1 f
j
1 ⊗ f

j
2 , where f

j
i ∈ C(Ki),

i = 1, 2, j = 1, . . . , n, n ∈ N. Since H1 ⊙ H2 contains all polynomials, we have
H1 ⊗H2 = C(K). However H1 ⊙H2 ( C(K), as can be seen by considering the
function f(x, y) := exy, x ∈ K1, y ∈ K2.
This example also shows that algebraic tensor product of closed function spaces

does not have to be closed.

Definition 3.7. A Banach space E is said to have the approximation property,
if, for every compact set C ⊂ E and every ε > 0, there is a continuous linear
operator T : E → E of finite rank so that ‖Tx− x‖ < ε for every x ∈ C.
(We refer the reader to [14, Chapter 7] for more information on the approxi-

mation property.)

Theorem 3.8 (Namioka-Phelps). The following statements are equivalent.

(i) For every two compact convex subsets X1, X2 of locally convex Hausdorff
spaces is A(X1)⊗A(X2) = A(X1)⊠A(X2).

(ii) Every Banach space has the approximation property.

Proof: See [18, Theorem 2.4 and the subsequent remark]. �

Using Theorem 3.8 and Enflo’s counterexample [7] of a Banach space not having
the approximation property, we may state the following:

Corollary 3.9. There exist compact convex sets X1 and X2 such that

A(X1)⊗A(X2) ( A(X1)⊠A(X2).
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3.2 Associative laws. In order to be able to use products defined above effec-
tively, we need to establish ‘associative laws’ for them.

Definition 3.10. We say, that {Jγ}γ∈Γ is a partition of a set I, if
⋃

γ∈Γ Jγ = I

and Jα ∩ Jβ = ∅ for every α, β ∈ Γ such that α 6= β.

To the end of this subsection, let {(Ki,Hi)}i∈I be a family of function spaces
and {Jγ}γ∈Γ a partition of I. In the following, we naturally identify spaces
C(

∏
i∈I Ki) and C(

∏
γ∈Γ(

∏
i∈Jγ

Ki)).

Proposition 3.11. The following assertions hold:

(i)
⊙

i∈I Hi =
⊙

γ∈Γ(
⊙

i∈Jγ
Hi),

(ii) Ac(
⊙

i∈I Hi) = A
c(

⊙
γ∈Γ(

⊙
i∈Jγ

Hi)).

Proof: To prove (i), it clearly suffices to show, that the generating functions of
both spaces are the same. Function f is a generating function of

⊙
i∈I Hi, if

f = h11 ⊗ . . .⊗ h
m1
1 ⊗ . . .⊗ h

1
n ⊗ . . .⊗ h

mn
n ⊗ 1Q{Ki:i∈I\{i1

1
,... ,i

mn
n }},

for some hl
k ∈ Hil

k
, ilk ∈ Jγk

, l = 1, . . . ,mk, k = 1, . . . , n. Since

fk := h
1
k⊗ . . .⊗h

mk

k
⊗1Q{Ki:i∈Jγk

\{i1
k
,... ,i

mk
k

}} ∈
⊙

i∈Jγk

Hi for each k = 1, . . . , n,

we have
f = f1 ⊗ . . .⊗ fn ⊗ 1

Q
{Ki:i∈I\(Jγ1

∪...∪Jγn )}
,

which is a generating function of
⊙

γ∈Γ(
⊙

i∈Jγ
Hi). Reverting the proof we obtain

the converse inclusion.
Assertion (ii) follows from (i) and the fact that Ac(H) = Ĥ. �

Proposition 3.12. The following assertions hold:

(i)
⊗

i∈I Hi =
⊗

γ∈Γ(
⊗

i∈Jγ
Hi),

(ii) Ac(
⊗

i∈I Hi) = A
c(

⊗
γ∈Γ(

⊗
i∈Jγ

Hi)).

Proof: Using Proposition 3.11, we have

⊗

i∈I

Hi =
⊙

i∈I

Hi =
⊙

γ∈Γ

(⊙

i∈Jγ

Hi

)
⊂

⊙

γ∈Γ

(⊗

i∈Jγ

Hi

)
=

⊗

γ∈Γ

(⊗

i∈Jγ

Hi

)
.

For the converse inclusion, it suffices to prove
⊙

γ∈Γ(
⊗

i∈Jγ
Hi) ⊂

⊗
i∈I Hi, since

the latter space is closed. Let f be a generating function of
⊙

γ∈Γ(
⊗

i∈Jγ
Hi).

We can write
f = f1 ⊗ . . .⊗ fn ⊗ 1

Q
{Ki:i∈I\(Jγ1

∪...∪Jγn )}
,
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where fi ∈
⊗

j∈Jγi
Hj , i = 1, . . . , n. We may assume that fi > 0, i = 1, . . . , n

(otherwise we write fi = (‖fi‖ + 1) − (‖fi‖ + 1 − fi) and use distributive law).
DenoteM := maxi=1,... ,n ‖fi‖. Now choose 0 < ε < 1 so that fi > ε, i = 1, . . . , n.
For each fi we can find hi ∈

⊙
j∈Jγi

Hj such that fi − ε < hi < fi. We define

h := h1 ⊗ . . .⊗ hn ⊗ 1Q{Ki:i∈I\(Jγ1
∪...∪Jγn )}

∈
⊙

i∈I

Hi,

(we used Proposition 3.11) and compute

‖f − h‖ = sup
x1∈
Q

i∈Jγ1
Ki

. . . sup
xn∈
Q

i∈Jγn
Ki

( n∏

i=1

fi(xi)−
n∏

i=1

hi(xi)
)

< sup
x1∈
Q

i∈Jγ1
Ki

. . . sup
xn∈
Q

i∈Jγn
Ki

( n∏

i=1

fi(xi)−
n∏

i=1

(fi(xi)− ε)
)

= sup
x1∈
Q

i∈Jγ1
Ki

. . . sup
xn∈
Q

i∈Jγn
Ki

ε
( n∑

k=1

(−1)k−1εk−1
∑

|α|=n−k

n−k∏

i=1

fαi(xαi )
)

≤ ε
( n∑

k=1

∑

|α|=n−k

n−k∏

i=1

‖fαi‖
)
≤ ε

(n−1∑

k=0

(
n

k

)
Mk

)
.

Since ε is arbitrary, we conclude that f ∈
⊗

i∈I Hi.

Assertion (ii) follows from (i) and the fact that Ac(H) = Ĥ. �

Proposition 3.13. The following assertions hold:

(i) ⊠ i∈IHi =⊠γ∈Γ(⊠ i∈Jγ
Hi),

(ii) Ac(⊠ i∈IHi) = A
c(⊠ γ∈Γ(⊠ i∈Jγ

Hi)).

Proof: Let f ∈ ⊠ i∈IHi. Pick γ0 ∈ Γ and k
′ ∈

∏
i∈I\Jγ0

Ki. We want to prove

that πk′

Jγ0
(f) ∈ ⊠ i∈Jγ0

Hi, i.e., that π
k′′

j (π
k′

Jγ0
(f)) ∈ Hj for every j ∈ Jγ0 and

k′′ ∈
∏

i∈Jγ0
\{j}Ki. But this is true, since π

k′′

j (π
k′

Jγ0
(f)) = π

(k′,k′′)
j (f) ∈ Hj .

Conversely, let f ∈ ⊠γ∈Γ(⊠ i∈Jγ
Hi). Pick j ∈ I and k ∈

∏
i∈I\{j}Ki. Then

j ∈ Jγ0 for some γ0 ∈ Γ. Using the assumption, we have

πk
j (f) = π

πJγ0
\{j}(k)

j (π
πI\Jγ0

(k)

Jγ0
(f)) ∈ Hj .

Assertion (ii) follows from (i) and the fact that Ac(H) = Ĥ. �

From now on, we consider (K,H) to be a product of (Ki,Hi), i ∈ I, unless
said otherwise.
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3.3 Representing measures.

Notation 3.14. Let J ⊂ I. We denote by HJ the space of all functions from H
depending on coordinates from J , i.e.,

HJ := {h ∈ H : x, y ∈ K, πJ (x) = πJ (y)⇒ h(x) = h(y)},

and let Hf be the space of all functions from H depending on a finite number of
coordinates, i.e.,

Hf := {h ∈ H : ∃ J ⊂ I finite, so that h ∈ HJ}.

Observation 3.15. Using the above notation, we observe:

(a) I1 ⊂ I2 ⊂ I, h ∈ HI1 ⇒ h ∈ HI2 ,

(b) h ∈ HJ ⇔ h = πJ (h)⊗ 1
Q
{Ki:i∈I\J},

(c) µ ∈ M+(K), h ∈ HJ ⇒ µ(h) = (πJµ)(πJ (h)),
(d) Hf is a product of Hi, i ∈ I.

Proposition 3.16. Let us assume either

(a) H ⊂
⊗

i∈I Hi, or

(b) H = ⊠ i∈IHi.

Then Hf is dense in H.

Proof: Assuming (a), conclusion is trivial, since
⊙

i∈I Hi ⊂ Hf . Assuming
(b), we can use the same technique as in the proof of [16, Theorem 3.1] or [6,
Lemma 4]. �

Corollary 3.17. Cf (K) is dense in C(K).

Proof: Notice that C(K) =⊠ i∈IC(Ki) and use Proposition 3.16(b). �

Example 3.18. The conclusion of Proposition 3.16 does not have to be true for
all products. Suppose we have f ∈ (⊠ i∈IHi)\(

⊗
i∈I Hi), which does not depend

on finitely many coordinates. Let H be the linear span of
⊙

i∈I Hi ∪ {f}. Then

Hf =
⊙

i∈I Hi, but f /∈ Hf .
Now we construct such a function f . Let (Ki,Hi) := (Xi, A(Xi)), i = 1, 2, be

as in Corollary 3.9. Then there is f1 ∈ (H1 ⊠ H2) \ (H1 ⊗ H2). This function
is not constant with respect to any of the two coordinates, since f1 /∈ H1 ⊙ H2.
Set H2n+1 := H1, H2n+2 := H2, n ∈ N, and let fn+1 := f1 be the function from
(H2n+1 ⊠H2n+2) \ (H2n+1 ⊗H2n+2) for every n ∈ N. Set

f :=

∞∑

n=1

2−n+1fn ⊗ 1Q{Ki:i∈N\{2n−1,2n}}.
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Obviously, f does not depend on finite number of coordinates and f ∈ ⊠ i∈NHi

since this space is closed. Also f /∈
⊗

i∈N
Hi. Indeed, if we suppose the contrary,

then

f ∈
⊗

i∈N

Hi = (H1 ⊗H2)⊗ (
∞⊗

i=3

Hi) ⊂ (H1 ⊗H2)⊠ (
∞⊗

i=3

Hi).

Thus, for y ∈
∏∞

i=3Ki is π
y
{1,2}
(f) ∈ H1 ⊗ H2. But π

y
{1,2}
(f) = f1 + c, where c

is a constant, which is a contradiction, since f1 /∈ H1 ⊗H2.

Definition 3.19. Let (K,H) be a product of (Ki,Hi), i ∈ I. For J ⊂ I we
define the projection of H by

πJ (H) := {f ∈ C(
∏

i∈J

Ki) : f ⊗ 1
Q
{Ki:i∈I\J} ∈ H}.

Observation 3.20. The following assertions hold:

(a) πJ (H) is a product of Hi, i ∈ J ,
(b) πJ (

⊙
i∈I Hi) =

⊙
i∈J Hi,

(c) πJ (
⊗

i∈I Hi) =
⊗

i∈J Hi,

(d) πJ (⊠ i∈IHi) =⊠ i∈JHi.

Proposition 3.21. Let x ∈ K, µ ∈ Mx(H) and J ⊂ I. Then
πJµ ∈MπJ(x)(πJ (H)).

Proof: Let hJ ∈ πJ (H) and define h := hJ ⊗ 1
Q
{Ki: i∈I\J}. Then h ∈ H and

hJ (πJ (x)) = h(x) = µ(h) = (πJµ)(hJ ).
�

Proposition 3.22. Let x = (xi)i∈I ∈ K and µi ∈ Mxi(Hi) for every i ∈ I.
Then µ :=

⊗
i∈I µi ∈ Mx(H).

Proof: It suffices to prove the assertion for H = ⊠ i∈IA
c(Hi).

(1) First, let |I| = n ∈ N. Choose h ∈ H. By Fubini’s theorem,

µ(h) =

∫

K
h dµ =

∫

K1

. . .

∫

Kn

h(y1, . . . , yn) dµn(yn) . . . dµ1(y1).

Since the function yn 7→ h(y1, . . . , yn) is in A
c(Hn) and µn ∈Mxn(Hn), we have

∫

Kn

h(y1, . . . , yn−1, yn) dµn(yn) = h(y1, . . . , yn−1, xn)
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for every (y1, . . . , yn−1) ∈
∏n−1

i=1 Ki. Using induction, we can see that µ(h) =
h(x1, . . . , xn) = h(x). Therefore µ ∈ Mx(H).

(2) Now, let I be an arbitrary index set. Choose h ∈ H and ε > 0. By
Proposition 3.16(b), there is g ∈ HJ for some finite J ⊂ I so that

‖g − h‖ <
ε

2
.

Using the first part of the proof, we write

µ(g) =
(⊗

i∈J

µi

)
(πJ (g)) = πJ (g)(πJ (x)) = g(x).

Let us estimate

|µ(h)− h(x)| ≤ |µ(h)− µ(g)|+ |µ(g)− g(x)| + |g(x)− h(x)| < ε.

Since ε is arbitrary, µ(h) = h(x). Hence µ ∈ Mx(H). �

Notation 3.23. Let Ai ⊂ M
1(Ki) for every i ∈ I. We denote

⊗
i∈I Ai :=

{
⊗

i∈I µi : µi ∈ Ai, i ∈ I}.

Example 3.24. If |I| = 2, Proposition 3.22 yields the inclusion

cow
∗
(Mx1(H1)⊗Mx2(H2)) ⊂Mx(H), x = (x1, x2) ∈ K.

Now we show that the inclusion may be proper.
Let Ki := {ri, si, ti}, Hi := {f ∈ C(Ki) : f(si) =

1
2 (f(ri) + f(ti))}, i = 1, 2.

Then Msi(Hi) = co{εsi ,
εri
+εti
2 }. Suppose (K,H) is a product of these two

spaces. Denote

C := co

{
εs1 ⊗ εs2 , εs1 ⊗

εr2 + εt2
2

,
εr1 + εt1
2

⊗ εs2 ,
εr1 + εt1
2

⊗
εr2 + εt2
2

}
.

We see that cow
∗
(Ms1(H1)⊗Ms2(H2)) = C. Define

µ :=
ε(s1,t2)

2
+
ε(r1,r2)

4
+
ε(t1,r2)

4
.

Obviously µ ∈M(s1,s2)(H). For every x ∈ K \ {(s1, t2), (r1, r2), (t1, r2)} we have

µ({x}) = 0. However, if µ were an element of C, then at least one of the points
(s1, s2), (s1, r2), (r1, s2), (r1, t2) would have a non-zero measure.
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Example 3.25. Let x ∈ K. DenoteMπ
x(H) the set of all µ ∈ M

1(K) such that
πi(µ) ∈ Mπi(x)(Hi) for every i ∈ I. Proposition 3.21 yields

Mx(H) ⊂M
π
x(H).

Once again, we show that the inclusion may be proper.
Let (Ki,Hi), i = 1, 2, be as in Example 3.24. Consider

µ :=
ε(r1,r2)

2
+
ε(t1,t2)

2
.

We see that πi(µ) =
εri
2 +

εti
2 ∈ Msi(Hi), i = 1, 2. Thus µ ∈ M

π
(s1,s2)

(H).

However µ /∈ M(s1,s2)(H). Indeed, take fi ∈ Hi such that fi(ri) = 0, fi(si) = 1,

fi(ti) = 2, for i = 1, 2. Define f := f1 ⊗ f2. Then f ∈ H, but

f(s1, s2) = 1 6= 2 = µ(f).

Question 3.26. Is there a way to characterizeMx(H) byMπi(x)(Hi), i ∈ I?

Proposition 3.27. Let x = (xi)i∈I ∈ K. Then Fx(H) =
∏

i∈I Fxi(Hi).

Proof: First we show Fx(H) ⊂
∏

i∈I Fxi(Hi). For each µ ∈ Mx(H) and i ∈ I
we have πi(sptµ) = sptπiµ and since, by Proposition 3.21, πiµ ∈ Mxi(Hi), we
get πi(sptµ) ⊂ Fxi(Hi). Therefore πi(Fx(H)) ⊂ Fxi(Hi) for every i ∈ I.
Conversely, let µi ∈Mxi(Hi) for every i ∈ I. Proposition 3.22 yields

⊗
i∈I µi ∈

Mx(H) and thus
∏

i∈I sptµi = spt
⊗

i∈I µi ⊂ Fx(H). �

3.4 H-affine functions.

Proposition 3.28. Ac(H) ⊂ ⊠ i∈IA
c(Hi).

Proof: Choose f ∈ Ac(H), j ∈ I and y = (yi) ∈
∏

i∈I\{j}Ki. We prove that

fj := π
y
j (f) ∈ A

c(Hj). Let xj ∈ Kj and µj ∈ Mxj (Hj). Define x := (xj , y) and

µ := µj ⊗ (
⊗

i∈I\{j} εyi). According to Proposition 3.22, µ ∈Mx(H), so we have

fj(xj) = f(x) = µ(f) = µj(fj).

Hence fj ∈ A
c(Hj). �

Lemma 3.29. Let |I| = 2. Then Ac(H1)⊗A
c(H2) ⊂ A

c(H).

Proof: Consider a1 ∈ A
c(H1), a2 ∈ A

c(H2). We show that a1⊗ a2 ∈ A
c(H) by

using the characterization Ac(H) = Ĥ.
First suppose that a1, a2 ≥ 0. Choose x = (x1, x2) ∈ K and ε > 0. Find δ > 0

so that
δ(a1(x1) + a2(x2) + δ) < ε.
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Since a∗i = ai, i = 1, 2, there are h1 ∈ H1, h1 ≥ a1 and h2 ∈ H2, h2 ≥ a2 such
that

h1(x1) < a1(x1) + δ and h2(x2) < a2(x2) + δ.

Obviously h1 ⊗ h2 ∈ H, h1 ⊗ h2 ≥ a1 ⊗ a2 and

a1(x1)a2(x2) ≤ h1(x1)h2(x2) < (a1(x1) + δ)(a2(x2) + δ)

= a1(x1)a2(x2) + δ(a1(x1) + a2(x2) + δ) < a1(x1)a2(x2) + ε.

Thus (a1 ⊗ a2)
∗ = a1 ⊗ a2.

Now suppose a1 ≥ 0 and a2 is arbitrary. Then a2 + ‖a2‖ ≥ 0. Since f 7→ f∗ is
a sublinear functional on C(K) and (a1⊗ c)

∗ = a1⊗ c for every constant function
c on K2, we get

a1 ⊗ a2 ≤ (a1 ⊗ a2)
∗ = (a1 ⊗ (a2 + ‖a2‖ − ‖a2‖))

∗

= (a1 ⊗ (a2 + ‖a2‖)− a1 ⊗ ‖a2‖)
∗

≤ (a1 ⊗ (a2 + ‖a2‖))
∗ + (a1 ⊗ (−‖a2‖))

∗

= a1 ⊗ (a2 + ‖a2‖) + (a1 ⊗ (−‖a2‖)) = a1 ⊗ a2.

For the lower envelope we have

(a1 ⊗ a2)∗ = −(a1 ⊗ (−a2))
∗ = −(a1 ⊗ (−a2)) = a1 ⊗ a2.

Thus a1 ⊗ a2 ∈ Ĥ = A
c(H).

Finally, let a1, a2 be arbitrary. Then

a1 ⊗ a2 = (a1 + ‖a1‖)⊗ a2 − ‖a1‖ ⊗ a2 ∈ A
c(H).

Since Ac(H) is a closed linear space, the conclusion follows. �

Proposition 3.30.
⊗

i∈I A
c(Hi) ⊂ A

c(H).

Proof: It suffices to prove
⊙

i∈I A
c(Hi) ⊂ A

c(H), since the latter space is
closed.

(1) Assume first, that |I| = n ∈ N and the assertion holds for |I| = n − 1.
Using the assumption, previous Lemma 3.29 and the associative law, we get

n⊙

i=1

Ac(Hi) =
(n−1⊙

i=1

Ac(Hi)
)
⊙Ac(Hn) ⊂ A

c
(n−1⊙

i=1

Hi

)
⊙Ac(Hn)

⊂ Ac
(
(
n−1⊙

i=1

Hi)⊙Hn

)
= Ac

( n⊙

i=1

Hi

)
⊂ Ac(H).
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(2) Now, let I be an arbitrary index set. Choose f ∈
⊙

i∈I A
c(Hi). Then

there is a finite J ⊂ I such that f depends only on coordinates from J . So,
according to the first part of the proof, πJ (f) ∈

⊙
i∈J A

c(Hi) ⊂ A
c(

⊙
i∈J Hi).

Since f = πJ (f)⊗ 1
Q
{Ki:i∈I\J}, we have

f ∈ Ac
(⊙

i∈J

Hi

)
⊙Ac

( ⊙

i∈I\J

Hi

)
⊂ Ac

(
(
⊙

i∈J

Hi)⊙ (
⊙

i∈I\J

Hi)
)

= Ac
(⊙

i∈I

Hi

)
⊂ Ac(H).

�

Corollary 3.31. Ac(H) is a product of both Hi, i ∈ I, and A
c(Hi), i ∈ I.

Proof: From Proposition 3.30 we have

⊙

i∈I

Hi ⊂
⊙

i∈I

Ac(Hi) ⊂ A
c(H),

and from Proposition 3.28

Ac(H) ⊂⊠
i∈I

Ac(Hi) =⊠
i∈I

Ac(Ac(Hi)).

�

Proposition 3.32. If Ac(H) ⊂⊠ i∈IHi, then Hi = A
c(Hi) for every i ∈ I.

Proof: Choose i ∈ I. We prove that Ac(Hi) ⊂ Hi. Pick fi ∈ A
c(Hi) and define

f := fi ⊗ 1
Q
{Kj :j∈I\{i}}. Choose x = (xj)j∈I ∈ K and µ ∈ Mx(H). From

Proposition 3.21 we have µi := πiµ ∈Mxi(Hi), which implies

f(x) = fi(xi) = µi(fi) = µ(f).

Thus f ∈ Ac(H) ⊂ ⊠ i∈IHi, so fi = πi(f) ∈ Hi. �

Proposition 3.33. Let H = ⊠ i∈IHi. Then H = A
c(H) if and only if Hi =

Ac(Hi) for every i ∈ I.

Proof: If H = Ac(H), we use Proposition 3.32. Conversely, from Proposi-
tion 3.28 we have

H ⊂ Ac(H) ⊂⊠
i∈I

Ac(Hi) =⊠
i∈I

Hi = H.

�
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Corollary 3.34. There are function spaces H1 and H2 such that

Ac(H1)⊗A
c(H2) ( Ac(H1 ⊠H2).

Proof: By Corollary 3.9, there are H1 and H2 such that H1 ⊗ H2 ( H1 ⊠H2
and Hi = A

c(Hi), i = 1, 2. Proposition 3.33 implies H1 ⊠ H2 = A
c(H1 ⊠H2).

Thus
Ac(H1)⊗A

c(H2) = H1 ⊗H2 ( H1 ⊠H2 = A
c(H1 ⊠H2). �

Example 3.35. Example 3.6 shows there are function spaces such that

Ac(H1)⊙A
c(H2) ( Ac(H1 ⊙H2).

Question 3.36. Is
⊗

i∈I A
c(Hi) = A

c(
⊙

i∈I Hi)?

Question 3.37. Is Ac(
⊙

i∈I Hi) = A
c(⊠ i∈IHi)?

Question 3.38. Is Ac(⊠ i∈IHi) = ⊠ i∈IA
c(Hi)?

3.5 H-extremal sets.

Proposition 3.39. Let E ⊂ K be anH-extremal set. Let J ⊂ I, y ∈
∏

i∈I\J Ki,

and let G be a product of Hi, i ∈ J . Then π
y
J (E) is either empty or a G-extremal

set.

Proof: Suppose Ey := π
y
J (E) is non-empty and not G-extremal. Then there is

x ∈ Ey and µJ ∈ Mx(G) so that sptµJ 6⊂ Ey. According to Proposition 3.21,
µi := πiµJ ∈Mπi(x)(Hi) for every i ∈ J . Since sptµJ ⊂ spt

⊗
i∈J µi, we can see

that spt
⊗

i∈J µi 6⊂ E
y . Define

µ :=
(⊗

i∈J

µi

)
⊗

( ⊗

i∈I\J

επi(y)

)
.

Hence, we have (x, y) ∈ E and by Proposition 3.22 also µ ∈ M(x,y)(H). But
sptµ 6⊂ E, which is a contradiction. �

The next two propositions are generalizations of Proposition 4.1 and Theo-
rem 4.2 from [16] to function spaces:

Proposition 3.40. Let E ⊂ K be an H-extremal set. Let ∅ 6= J ⊂ I and let G
be a product of Hi, i ∈ J . Then πJ (E) is a G-extremal set.

Proof: Let x ∈ πJ (E) and µ ∈ Mx(G). Then there is y ∈
∏

i∈I\J Ki such

that (x, y) ∈ E, i.e., x ∈ πy
J (E). By Proposition 3.39, π

y
J (E) is a G-extremal set,

therefore sptµ ⊂ πy
J (E) ⊂ πJ (E). �
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Proposition 3.41. Let Ei ⊂ Ki be an Hi-extremal set for every i ∈ I. Then
E :=

∏
i∈I Ei is an H-extremal set.

Proof: Obviously, E is a closed set.

(1) Assume |I| = 2. Suppose there is x = (x1, x2) ∈ E and µ ∈ Mx(H) so
that µ(K \ E) > 0. Denote µ1 := π1µ and µ2 := π2µ. Since

K \ E = ((K1 \ E1)×K2) ∪ (K1 × (K2 \ E2)),

we have
0 < µ(K \ E) ≤ µ1(K1 \ E1) + µ2(K2 \ E2).

We may assume µ1(K1 \E1) > 0. By Proposition 3.21, µ1 ∈ Mx1(H1). But this
is a contradiction, because x1 ∈ E1.

We proceed similarly for arbitrary finite products.

(2) Now, let I be infinite. Suppose there is x = (xi)i∈I ∈ E and µ ∈ Mx(H)
so that µ(K \ E) > 0. Then there is some g ∈ C(K) such that g = 0 on E and
µ(g) > 0. Choose ε > 0. According to Corollary 3.17, there is f ∈ CJ(K), where
J ⊂ I is finite and ‖g − f‖ < ε. Then πJµ ∈ MπJ(x)(πJ (H)) and by the first

part of the proof, πJ (x) is an element of the πJ (H)-extremal set EJ :=
∏

i∈J Ei.
Thus sptπJµ ⊂ EJ and |πJ (f)| < ε on EJ . Therefore

|µ(f)| = |(πJµ)(πJ (f))| ≤

∫

EJ

|πJ (f)| d(πJµ)+

∫

(
Q

i∈J Ki)\EJ

|πJ (f)| d(πJµ) < ε.

Hence we get
0 < |µ(g)| ≤ |µ(g)− µ(f)|+ |µ(f)| < 2ε,

which is a contradiction, since ε is arbitrary. �

Using previous results, we can derive the main theorem of this subsection (cf.
also [6, Lemma 5], [16, Theorem 3.2] and [10, Lemma 5.11]):

Theorem 3.42. ChH K =
∏

i∈I ChHi
Ki.

Proof: Follows immediately from Propositions 3.40 and 3.41. �

Corollary 3.43. ∇HK =
∏

i∈I ∇Hi
Ki.

Proof: Using Theorem 3.42 we can write

∇HK = ChH K =
∏

i∈I

ChHi
Ki =

∏

i∈I

ChHi
Ki =

∏

i∈I

∇Hi
Ki.

�
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Remarks 3.44. As has been shown by Grossman [9], the characterizations of
Choquet and Šilov boundary hold also for the space H1 +H2 defined by

H1 +H2 := {h1 + h2 : h1 ∈ H1, h2 ∈ H2}, where

[h1 + h2](x, y) = h1(x) + h2(y), (x, y) ∈ K1 ×K2.

It is clear that H1 +H2 does not have to be a product, since the inclusion H1 ⊙
H2 ⊂ H1 +H2 does not have to hold.

Versions of Theorem 3.42 for various tensor products of compact convex sets
have been proved by I. Namioka and R.R. Phelps in [18].

Example 3.45. In Example 3.3 we have shown that the space of all harmonic
functions on a cartesian product does not have to be a product of harmonic spaces.
Moreover, it is not even possible to extend the notion of a product so that the
product of harmonic spaces would be a harmonic space and Theorem 3.42 would
still hold. Indeed, consider the sets from Example 3.3 and denote U := U1 × U2.
Then

ChH(U) U = ∂regU = ∂U 6= {0, 1} × {0, 1} = ChH(U1) U1 × ChH(U2) U2.

3.6 Approximation in product spaces. In the following, we will need some
results on approximation of functions in simplicial spaces. So we first state here
results that are adaptation of Section 2 from [17].

Definition 3.46. Let (K,H) be a function space. A collection of nonnegative
functions {ψj}

m
j=1 ⊂ H is called a partition of unity on K, if

∑m
j=1 ψj = 1K .

Lemma 3.47. Let (K,H) be a simplicial function space. Let {fi}
n
i=1 ⊂ A

c(H)
and ε > 0. Suppose that {φj}

m
j=1 are nonnegative functions defined on ChH K,

{kl}
m
l=1 ⊂ ChH K and {αij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} are real numbers such that

(i)
∑m

j=1 φj = 1,

(ii) φj(kl) = δjl, 1 ≤ j, l ≤ m,
(iii) |fi(k)−

∑m
j=1 αijφj(k)| ≤ ε, k ∈ ChH K, 1 ≤ i ≤ n.

Then there exists a partition of unity {ψj}
m
j=1 ⊂ A

c(H) such that

(iv) ψj(kl) = δjl, 1 ≤ j, l ≤ m,
(v) |fi(k)−

∑m
j=1 αijψj(k)| ≤ ε, k ∈ K, 1 ≤ i ≤ n.

Proof: See [17, Corollary 2.2]. �

The proof of the next lemma is based on the proof of [17, Lemma 2.4]:
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Lemma 3.48. Let (K1,H1) and (K2,H2) be two function spaces, where H1
is simplicial. Suppose that {fi}

n
i=1 ⊂ A

c(H1) ⊠ H2 and ε > 0. Then there is
a partition of unity {ψj}

m
j=1 ⊂ A

c(H1), {kl}
m
l=1 ⊂ ChH1 K1 and {yij} ⊂ H2,

1 ≤ i ≤ n, 1 ≤ j ≤ m, so that

(i) ψj(kl) = δjl, 1 ≤ j, l ≤ m,
(ii) ‖fi −

∑m
j=1 ψj ⊗ yij‖ < ε, 1 ≤ i ≤ n.

Proof: Denote by Hn
2 the n-tuple cartesian product of H2 with the maximum

norm, i.e.,
‖y‖max = max

1≤i≤n
‖πi(y)‖ for all y ∈ Hn

2 ,

where πi is the projection to the i-th coordinate. We denote by Br(x) the open
ball with center x and radius r > 0.
Let f be a function from K1 to H

n
2 defined by

f(k) := (πk
2 (f1), . . . , π

k
2 (fn)), k ∈ K1.

Since πi ◦ f is a continuous function for every i = 1, . . . , n (we use the fact that
C(K1×K2) is isometric to C(K1, C(K2))), f is also a continuous function on K1.
For each y ∈ Hn

2 set

(1) Uy :=
{
k ∈ K1 : ‖y − f(k)‖max <

ε

3

}
.

The family {Uy}y∈Hn
2
is an open covering of K1. Let Uy1 , . . . , Uyp be a finite

subcovering. Define

Vyj := Uyj ∩ChH1 K1, 1 ≤ j ≤ p.

Without loss of generality we may assume that there is m ≤ p such that {Vyl
}ml=1

is an open covering of ChH1 K1 and for every l ∈ {1, . . . ,m} there exists kl ∈ Vyl

such that kl /∈ Vyj for j 6= l, 1 ≤ j ≤ m.
Denote

C := {y1, . . . , yp} − co(y1, . . . , ym),

D := C +B ε
3

(0).

Choose i ∈ {1, . . . , n}. Since C is a compact subset of Hn
2 , also πi(C) is a com-

pact subset of H2. By Arzelà-Ascoli’s theorem, the set πi(C) is equicontinuous.
Therefore, for each ξ ∈ K2 we can find its open neighbourhood Wξ such that
oscWξ

h < ε
3 for every h ∈ πi(C). From the open covering {Wξ}ξ∈K2 we choose

a finite subcovering {Wξir
}qi

r=1. For every h ∈ πi(C) there is xh ∈ K2 such that
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|h(xh)| = ‖h‖. The point xh is an element of someWξir
and so ‖h‖− ε

3 < |h(ξir)|.
Thus

‖h‖ −
ε

3
< max
1≤r≤qi

|h(ξir)| ≤ ‖h‖, h ∈ πi(C),

and since πi(D) ⊂ πi(C) +B ε
3

(0), also

(2) ‖h‖ −
2

3
ε < max

1≤r≤qi

|h(ξir)| ≤ ‖h‖, h ∈ πi(D).

Let Γir ∈ (H
n
2 )
∗ be a continuous linear functional defined by

Γir(y) := πi(y)(ξir), 1 ≤ i ≤ n, 1 ≤ r ≤ qi, y ∈ H
n
2 .

From (2) we can write

(3) ‖h‖max −
2

3
ε < max

1≤i≤n
1≤r≤qi

|Γir(h)| ≤ ‖h‖max, h ∈ D.

Set

φj(k) :=

{
1, if j = min{l : k ∈ Vyl

, 1 ≤ l ≤ m},

0, otherwise,
1 ≤ j ≤ m, k ∈ ChH1 K1.

Clearly φj ≥ 0, φj(kl) = δjl, 1 ≤ j, l ≤ m, and
∑m

j=1 φj = 1. Moreover, for every

k ∈ ChH1 K1 there is a unique index jk so that φjk
(k) 6= 0. For this index is

k ∈ Vyjk
. Thus, from (1) we have

‖f(k)− yjk
‖max <

ε

3
.

We can rewrite this inequality as

(4) ‖f(k)−
m∑

j=1

φj(k)yj‖max <
ε

3
, k ∈ ChH1 K1.

Since f(k)−
∑m

j=1 φj(k)yj ∈ D, using (3) and (4) we have

|Γir(f(k))−
m∑

j=1

φj(k)Γir(yj)| = |Γir(f(k)−
m∑

j=1

φj(k)yj)|

≤ ‖f(k)−
m∑

j=1

φj(k)yj‖max

<
ε

3
, 1 ≤ i ≤ n, 1 ≤ r ≤ qi, k ∈ ChH1 K1.
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Lemma 3.47 yields a partition of unity {ψj}
m
j=1 ⊂ A

c(H1) such that

|Γir(f(k))−
m∑

j=1

ψj(k)Γir(yj)| ≤
ε

3
, 1 ≤ i ≤ n, 1 ≤ r ≤ qi, k ∈ K1,(5)

ψj(kl) = δjl, 1 ≤ j, l ≤ m.(6)

Since f(k)−
∑m

j=1 ψj(k)yj ∈ D for every k ∈ K1, using (3) and (5) we get

‖f(k)−
m∑

j=1

ψj(k)yj‖max −
2

3
ε < max

1≤i≤n
1≤r≤qi

|Γir(f(k)−
m∑

j=1

ψj(k)yj)|

= max
1≤i≤n
1≤r≤qi

|Γir(f(k))−
m∑

j=1

ψj(k)Γir(yj)|

≤
ε

3
, k ∈ K1.

Hence

(7) ‖f(k)−
m∑

j=1

ψj(k)yj‖max < ε, k ∈ K1.

Finally, define yij := πi(yj) ∈ H2, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Assertion (i) then
follows from (6) and (ii) follows from (7). �

3.7 Products of simplicial spaces.

Proposition 3.49. Suppose that at most one of the spaces Hi, i ∈ I, is not
simplicial. Then ⊗

i∈I

Ac(Hi) = A
c(H) =⊠

i∈I

Ac(Hi).

Proof: Due to Propositions 3.30 and 3.28, it suffices to prove ⊠ i∈IA
c(Hi) ⊂⊗

i∈I A
c(Hi).

(1) First we prove the assertion for finite products. Let |I| = n ≥ 2 and
suppose that H1, . . . ,Hn−1 are simplicial. We repeatedly use associative laws
and Lemma 3.48 to get

n

⊠
i=1
Ac(Hi) = A

c(H1)⊠ (A
c(H2)⊠ (. . . (A

c(Hn−1)⊠A
c(Hn)) . . . ))

⊂ Ac(H1)⊗ (A
c(H2)⊠ (. . . (A

c(Hn−1)⊠A
c(Hn)) . . . ))

⊂ . . . ⊂ Ac(H1)⊗ (A
c(H2)⊗ (. . . (A

c(Hn−1)⊗A
c(Hn)) . . . ))

=
n⊗

i=1

Ac(Hi).
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(2) Now, let I be infinite. Choose f ∈ ⊠ i∈IA
c(Hi) and ε > 0. According to

Proposition 3.16(b), there is some h ∈ ⊠ i∈IA
c(Hi) depending on finitely many

coordinates J such that ‖f − h‖ < ε. From the first part of the proof we have
πJ (h) ∈ ⊠ i∈JA

c(Hi) ⊂
⊗

i∈J A
c(Hi). Thus, h ∈

⊗
i∈I A

c(Hi). Since the space
is closed, we get f ∈

⊗
i∈I A

c(Hi). �

Example 3.50. The assumption on the number of simplicial spaces in Proposi-
tion 3.49 may not be weakened. We show that for every index set I with |I| ≥ 2
there is a family of function spacesHi, i ∈ I, with two non-simplicial spaces, which
does not satisfy the equality in Proposition 3.49. Once again, we use Corollary 3.9
to construct a counterexample.
Let Hi, i ∈ I, be a family of function spaces such that there are i1, i2 ∈ I so

that Hi1 , Hi2 are as in Corollary 3.9. Thus, there is f
′ ∈ (Ac(Hi1)⊠A

c(Hi2)) \
(Ac(Hi1)⊗A

c(Hi2)). Using Proposition 3.49, we can see that neither of the two
spaces is simplicial. Now, define

f := f ′ ⊗ 1Q{Ki:i∈I\{i1,i2}}.

We have f ∈ ⊠ i∈IA
c(Hi), but f /∈

⊗
i∈I A

c(Hi).

Lemma 3.51. Let |I| = 2 and suppose H1 and H2 are simplicial. Then H is
simplicial.

Proof: It is sufficient to show that Ac(H) has W.R.I.P. Let a, b, c, d be functions
from Ac(H) = Ac(H1)⊠A

c(H2) such that a ∨ b < c ∧ d. By Lemma 3.48, there
is a partition of unity {ψj}

m
j=1 ⊂ A

c(H1), {kl}
m
l=1 ⊂ ChH1 K1 and functions

{aj , bj , cj , dj}
m
j=1 ⊂ A

c(H2) so that

(8) ψj(kl) = δjl, 1 ≤ j, l ≤ m,

and for

(9)

a′ :=
m∑

j=1

ψj ⊗ aj , b′ :=
m∑

j=1

ψj ⊗ bj ,

c′ :=

m∑

j=1

ψj ⊗ cj , d′ :=

m∑

j=1

ψj ⊗ dj ,

it holds

(10) a ∨ b < a′ ∨ b′ < c′ ∧ d′ < c ∧ d.

Then also

(11) πk
2 (a

′) ∨ πk
2 (b

′) < πk
2 (c

′) ∧ πk
2 (d

′), k ∈ K1.
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For every j = 1, . . . ,m, we get from (8) and (9)

π
kj

2 (a
′) = aj , π

kj

2 (b
′) = bj , π

kj

2 (c
′) = cj , π

kj

2 (d
′) = dj ,

and from (11)

aj ∨ bj < cj ∧ dj .

Since Ac(H2) has W.R.I.P., there are hj ∈ A
c(H2), j = 1, . . . ,m, such that

(12) aj ∨ bj < hj < cj ∧ dj .

Define h :=
∑m

j=1 ψj ⊗ hj ∈ A
c(H1) ⊗A

c(H2) = A
c(H). The non-negativity of

{ψj}
m
j=1 and inequalities (12) and (10) imply

a ∨ b < h < c ∧ d.

Hence Ac(H) has W.R.I.P. and the proof is complete. �

Now we may prove the theorem, which is a generalization of [6, Theorem 11]
and [16, Theorem 3.1]:

Theorem 3.52. Suppose that Hi is simplicial for each i ∈ I. Then H is simpli-
cial.

Proof: First we prove the theorem for finite I. By Lemma 3.51, the theorem
holds for |I| = 2. Suppose that |I| = n > 2 and the theorem holds for |I| < n.

Clearly ⊠n
i=1Hi = (⊠

n−1
i=1Hi) ⊠Hn is simplicial and Ac(H) = Ac(⊠n

i=1Hi) has
W.R.I.P. Therefore H is simplicial.
Now, let I be infinite. Choose a, b, c, d from Ac(H) = ⊠ i∈IA

c(Hi) such that
a ∨ b < c ∧ d. According to Proposition 3.16(b), there are

a′ ∈

[

⊠
i∈I

Ac(Hi)

]

Ia

, b′ ∈

[

⊠
i∈I

Ac(Hi)

]

Ib

,

c′ ∈

[

⊠
i∈I

Ac(Hi)

]

Ic

, d′ ∈

[

⊠
i∈I

Ac(Hi)

]

Id

,

so that

a ∨ b < a′ ∨ b′ < c′ ∧ d′ < c ∧ d

and J := Ia ∪ Ib ∪ Ic ∪ Id is a finite subset of I. Then also

πJ (a
′) ∨ πJ (b

′) < πJ (c
′) ∧ πJ (d

′).
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From the first part of the proof we know that ⊠ i∈JHi is simplicial, so we can
find h′ ∈ Ac(⊠ i∈JHi) = ⊠ i∈JA

c(Hi) such that

πJ (a
′) ∨ πJ (b

′) < h′ < πJ (c
′) ∧ πJ (d

′).

The function h := h′ ⊗ 1Q{Ki:i∈I\J} ∈⊠ i∈IA
c(Hi) = A

c(H) clearly satisfies

a ∨ b < h < c ∧ d.

Hence Ac(H) has W.R.I.P. and H is simplicial. �

The converse, whose special case has been proved in [18, Proposition 2.10], is
also valid:

Theorem 3.53. Suppose that H is simplicial. Then Hi is simplicial for each

i ∈ I.

Proof: We use the W.R.I.P. property of simplicial spaces again. Choose j ∈ I.
Let aj , bj , cj , dj ∈ A

c(Hj) be such that aj ∨ bj < cj ∧ dj . Denote K
′ :=∏

i∈I\{j}Ki. According to Proposition 3.30,

a := aj ⊗ 1K ′ , b := bj ⊗ 1K ′ , c := cj ⊗ 1K ′, d := dj ⊗ 1K ′,

are elements of Ac(H). Moreover, a ∨ b < c ∧ d. Using simpliciality of H, there
exists h ∈ Ac(H) so that

a ∨ b < h < c ∧ d.

Pick y ∈ K ′. By Proposition 3.28, h ∈ ⊠ i∈IA
c(Hi), therefore π

y
j (h) ∈ A

c(Hj).

Since
aj ∨ bj < π

y
j (h) < cj ∧ dj ,

we conclude that the space Ac(Hj) has W.R.I.P. �

Example 3.54. The space H1 +H2, defined by Grossman (see Remarks 3.44),
does not have to be simplicial, if H1 andH2 are simplicial. Indeed, letK1 = K2 =
[0, 1] ⊂ R and H1 = H2 = A([0, 1]). Obviously, H1 and H2 are simplicial spaces.
Denote K := K1 ×K2. It is easy to prove that H1 +H2 = A(K). However, K is
not a simplex, which is the sought contradiction.

3.8 Maximal measures. We start with two propositions, which are analogies
of [2, Theorem 4]:

Proposition 3.55. Let µ ∈ M+(K) be H-maximal. Let J ⊂ I and let G be a
product of Hi, i ∈ J . Then πJµ is a G-maximal measure.

Proof: According to Proposition 2.2, it suffices to show FπJ(x)(G) ⊂ πJ (Fx(H))
for every x ∈ K. Using Proposition 3.27, we have

FπJ (x)(G) =
∏

i∈J

Fxi(Hi) = πJ (
∏

i∈I

Fxi(Hi)) = πJ (Fx(H)),

for every x = (xi)i∈I ∈ K. �
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Lemma 3.56. Let µ, ν ∈ M+(K) be such that µ �H ν. Then for every J ⊂ I
is πJµ �πJ(H) πJν.

Proof: Choose wJ ∈ W(πJ (H)). Then w := wJ ⊗ 1
Q
{Ki:i∈I\J} ∈ W(H). Thus

µ(w) ≤ ν(w), and we get

(πJµ)(wJ ) = µ(w) ≤ ν(w) = (πJν)(wJ ).

Since wJ is arbitrary, we have πJµ � πJν. �

Proposition 3.57. Let |I| = 2 and let µ ∈ M+(K) be such that πiµ is an
Hi-maximal measure for i = 1, 2. Then µ is H-maximal.
In particular, if µi ∈ M

1(Ki) is an Hi-maximal measure for i = 1, 2, then
µ1 ⊗ µ2 is H-maximal.

Proof: We may proceed exactly as in the second part of the proof of [2, Theo-
rem 4] to show that for every h ∈ H and µ-almost all x ∈ K is

h(x1, x2) = h(π1(x), π2(x)), x1 ∈ Fπ1(x)(H1), x2 ∈ Fπ2(x)(H2).

According to Proposition 3.27, Fx(H) = Fπ1(x)(H1) × Fπ2(x)(H2) for every x ∈

K. Therefore h is constant on Fx(H) for µ-almost all x ∈ K. As follows from
Theorem 2.1, µ is an H-maximal measure. �

Theorem 3.58. Let µ ∈ M+(K) be such that πiµ is an Hi-maximal measure

for every i ∈ I. Then µ is H-maximal.
In particular, if µi ∈ M

1(Ki) is an Hi-maximal measure for every i ∈ I, then⊗
i∈I µi is H-maximal.

Proof: It suffices to show that µ is a (
⊙

i∈I Hi)-maximal measure.
First we prove the assertion for finite products. Suppose that it holds for

|I| ≤ n and let |I| = n+ 1. We know that πn+1µ is an Hn+1-maximal measure.
Since πi(π{1,... ,n}µ) = πiµ is an Hi-maximal measure for every i = 1, . . . , n, the

induction hypothesis implies that π{1,... ,n}µ is a (
⊙n

i=1Hi)-maximal measure.

Thus, both projections are maximal measures and Proposition 3.57 implies that
µ is a ((

⊙n
i=1Hi)⊙Hn+1)-maximal measure, therefore also (

⊙n+1
i=1 Hi)-maximal

measure.
Now, let I be infinite. According to Choquet-Bishop-de Leeuw’s theorem,

there exists a (
⊙

i∈I Hi)-maximal measure ν ∈M
+(K) such that µ �J

i∈I Hi
ν.

Suppose J ⊂ I is finite. By Lemma 3.56, πJµ �
J

i∈J Hi
πJν. From the first

part of the proof is πJµ a (
⊙

i∈J Hi)-maximal measure and therefore πJµ = πJν.
Hence, for every finite subset J ⊂ I and every E =

∏
i∈I Ei, where Ei is a Borel

subset of Ki for each i ∈ I and Ei = Ki for i ∈ I \ J ,

µ(E) = (πJµ)(
∏

i∈J

Ei) = (πJν)(
∏

i∈J

Ei) = ν(E).

Since µ and ν coincide on the Borel cylinder sets, they must coincide as Radon
measures. Therefore µ is a (

⊙
i∈I Hi)-maximal measure. �
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Theorem 3.59. Suppose thatHi is simplicial for each i ∈ I. Then δx =
⊗

i∈I δxi

for every x = (xi)i∈I ∈ K.

Proof: From Proposition 3.22 we have
⊗

i∈I δxi ∈Mx(H) and by Theorem 3.58,
this measure is H-maximal. Since H is simplicial, according to Theorem 3.52, we
get δx =

⊗
i∈I δxi . �

At the end of this section we investigate relationship between maximal measures
in product spaces and Radon products of maximal measures. We denote by Z1(H)
the set of H-maximal measures fromM1(K). Let εChH K := {εx : x ∈ ChH K}
and let D(H) denote the linear span of C(K) ∪ {f∗ : f ∈ C(K)}. We denote by τ
the weak topology onM1(K) generated by D(H). Then we have:

Proposition 3.60. The following assertions hold:

(a) co εChH K ⊂ Z
1(H) ⊂ cow

∗
εChH K ,

(b) Z1(H) = coτ εChH K .

Proof: (a) The first inclusion is obvious. The second follows from the fact that

cow
∗
εChH K =M

1(ChH K)

and all maximal measures are supported by ChH K.

(b) We may proceed as in the proof of [1, Theorem I.6.14] to show that Z1(H)
is a τ -closed set and that for every µ ∈ Z1(H) \ coτ εChH K , there are f ∈ C(K)
and α ∈ R such that

sup
x∈ChH K

εx(f) = α < µ(f).

Therefore f(x) ≤ α for every x ∈ ChH K. But since sptµ ⊂ ChH K, also
µ(f) ≤ α, which is a contradiction. �

Example 3.61. From Theorem 3.58 we have co
⊗

i∈I Z
1(Hi) ⊂ Z

1(H). By

Proposition 3.60(a), Z1(H) ⊂ cow
∗
εChH K . Since εChH K =

⊗
i∈I εChHi

Ki
⊂

⊗
i∈I Z

1(Hi), we get

co
⊗

i∈I

Z1(Hi) ⊂ Z
1(H) ⊂ cow

∗ ⊗

i∈I

Z1(Hi).

Now we show that both inclusions may be proper:

Let Ki := [0, 2] ⊂ R, Hi := {f ∈ C(Ki) : f(1) =
f(0)+f(2)

2 }, i = 1, 2. Then
ChHi

Ki = [0, 1)∪(1, 2], i = 1, 2. Choose {xn}n∈N ⊂ [0, 1)∪(1, 2] so that xn → 1
and let (K,H) be a product of (Ki,Hi), i = 1, 2.

(a) Define µ :=
∑∞

n=1 2
−nε(xn,xn). Clearly µ ∈ Z

1(H), since it is supported

by ChH K. However, µ /∈ co(Z1(H1) ⊗Z
1(H2)). Indeed, µ is supported
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by the diagonal ∆ of K, but the only measures of Z1(H1) ⊗ Z
1(H2)

supported by ∆ are εx, x ∈ ∆. Thus, µ would be supported by a finite
set.

(b) Obviously ε(1,1) /∈ Z
1(H). However, ε(xn,xn)

w∗

→ ε(1,1). Thus, ε(1,1) ∈

cow
∗
(Z1(H1)⊗Z

1(H2)).

Proposition 3.62. Z1(H) = coτ
⊗

i∈I Z
1(Hi).

Proof: Using Proposition 3.60(b) and Theorems 3.42 and 3.58, we can write

Z1(H) = coτ εChH K = co
τ

⊗

i∈I

εChHi
Ki
⊂ coτ

⊗

i∈I

Z1(Hi) ⊂ Z
1(H).

�

4. Projective limits of function spaces

Definition 4.1. Let (K1,H1) and (K2,H2) be function spaces. We say that a
continuous surjection ϕ : K2 → K1 is an admissible map, if H1 ◦ϕ := {h ◦ϕ : h ∈
H1} ⊂ H2.
Let I be an up-directed index set. We say that ((Ki,Hi), πij)i,j∈I is a projective

system of function spaces, if every πij : Kj → Ki, i ≤ j, is an admissible map
such that

(i) πii is the identity on Ki for each i,
(ii) πij ◦ πjk = πik for all i ≤ j ≤ k.

Projective limit , denoted by lim←− ((Ki,Hi), πij)i,j∈I , of this projective system is
the function space (K,H), where

K := {(xi)i∈I ∈
∏

i∈I

Ki : xi = πij(xj) for every i ≤ j, i, j ∈ I}

and H is the restriction to K of the function space
⋃

i∈I Hi ◦ πi with πi the i-th
projection map.

It follows from standard results on projective limits of compact Hausdorff
spaces (see e.g. [5]), that K is a non-empty compact Hausdorff space, if Ki is non-
empty for every i ∈ I, and that each πi is a surjection. Notice that πij ◦ πj = πi

for every i ≤ j. Clearly, H contains constant functions and separates points of K.
If h = hi ◦ πi ∈ H for some i ∈ I, then also αh ∈ H for every α ∈ R, since
αhi ∈ Hi. Now, let h1, h2 ∈ H. Suppose h1 = hi1 ◦ πi1 , h2 = hi2 ◦ πi2 for some
i1, i2 ∈ I and hi1 ∈ Hi1 , hi2 ∈ Hi2 . Let j ∈ I be such that i1, i2 ≤ j. Then
h1 = hi1 ◦ πi1j ◦ πj and h2 = hi2 ◦ πi2j ◦ πj where hi1 ◦ πi1j , hi2 ◦ πi2j ∈ Hj . Now
it is easy to see that h1+h2 ∈ H, since Hj is a linear space. Thus H is a function
space with each πi being an admissible map.
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Remark 4.2. If (Ki,Hi) = (Xi, A(Xi)) where Xi is a compact convex set for
every i ∈ I, then the projective limit defined above is dense in A(K) as shown
in [13].

Lemma 4.3. Let (Ki,Hi), i = 1, 2, be function spaces, ϕ : K2 → K1 admissible
map and x ∈ K2. If µ ∈Mx(H2), then ϕµ ∈ Mϕ(x)(H1).

Proof: Choose h ∈ H1. Then

(ϕµ)(h) = µ(h ◦ ϕ) = (h ◦ ϕ)(x) = h(ϕ(x)),

since h ◦ ϕ ∈ H2. �

Observation 4.4. If µ ∈ M+(K), then (πiµ, πij)i,j∈I forms a projective system

of measures.

Theorem 4.5. Let (µi, πij)i,j∈I be a projective system of measures with µi ∈

M1(Ki) for each i ∈ I. Then there is a unique measure µ = lim←−µi ∈ M
1(K)

such that πiµ = µi for every i ∈ I.

Proof: See [8, Theorem 418M and Proposition 418O]. �

Proposition 4.6. Let x = (xi)i∈I ∈ K and µ ∈ M
1(K). Then µ ∈ Mx(H) if

and only if (πiµ, πij)i,j∈I is a projective system of measures with πiµ ∈ Mxi(Hi)
for each i ∈ I.

Proof: First assume µ ∈ Mx(H). It follows from Lemma 4.3 that πiµ ∈
Mxi(Hi) for each i ∈ I, since each πi is admissible, and from Observation 4.4
that this system is projective.
On the contrary, suppose πiµ ∈ Mxi(Hi), i ∈ I. Let h ∈ H. Then h = hj ◦ πj

with hj ∈ Hj for some j ∈ I. Thus

µ(h) = µ(hj ◦ πj) = (πjµ)(hj) = hj(xj) = h(x).
�

Corollary 4.7. Let x = (xi)i∈I ∈ K and let (µi, πij)i,j∈I be a projective system

of measures with µi ∈ Mxi(Hi) for each i ∈ I. Then µ := lim←−µi ∈ Mx(H).

Lemma 4.8. Let ϕ : (K2,H2)→ (K1,H1) be an admissible map. Then K
c(H1)◦

ϕ ⊂ Kc(H2).

Proof: Let k ∈ Kc(H1). Choose x ∈ K2 and µ ∈ Mx(H2). Since ϕµ ∈
Mϕ(x)(H1), we have

(k ◦ ϕ)(x) = k(ϕ(x)) ≤ (ϕµ)(k) = µ(k ◦ ϕ).

Thus k ◦ ϕ ∈ Kc(H2). �
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Lemma 4.9. Let ϕ : (K2,H2)→ (K1,H1) be an admissible map. ThenA
c(H1)◦

ϕ ⊂ Ac(H2). In particular,
⋃

i∈I A
c(Hi) ◦ πi ⊂ A

c(H).

Proof: Follows from Lemma 4.8, since Ac(Hi) = K
c(Hi) ∩ (−K

c(Hi)), i = 1, 2.
�

Proposition 4.10. If Hi is simplicial for every i ∈ I, then
⋃

i∈I A
c(Hi) ◦ πi is

dense in Ac(H).

Proof: Let a ∈ Ac(H) and ε > 0. Since a ∈ Ĥ, for every x ∈ K there are
h−x , h

+
x ∈ H such that h

−
x < a < h+x and

a(x)− ε < h−x (x) < a(x) < h+x (x) < a(x) + ε.

These inequalities hold on some open neighbourhood Ux of x. By compactness,
we can choose Ux1 , . . . , Uxn covering K. Suppose that h

−
xm
and h+xm

depend

on coordinates i−m, i
+
m ∈ I, respectively, for m = 1, . . . , n. Let j ∈ I be an

upper bound of the set {i−m, i
+
m}

n
m=1. Denote h

− := h−x1 ∨ . . . ∨ h
−
xn
and h+ :=

h+x1∧. . .∧h
+
xn
. Now we have h− < a < h+ and ‖a−h−‖, ‖a−h+‖ < ε. Since both

h−, h+ depend on coordinate j, using W.R.I.P. for Hj we find aj ∈ A
c(Hj) such

that h− < aj ◦ πj < h+. Hence aj ◦ πj ∈
⋃

i∈I A
c(Hi) ◦ πi and ‖a− aj ◦ πj‖ < ε.

�

Theorem 4.11. If Hi is simplicial for every i ∈ I, then H is simplicial.

Proof: We show that Ac(H) has W.R.I.P. Let a1, . . . , a4 ∈ A
c(H) be such

that a1 ∨ a2 < a3 ∧ a4. By Proposition 4.10, we may assume that a1, . . . , a4 ∈⋃
i∈I A

c(Hi) ◦ πi with am depending on coordinate im, m = 1, . . . , 4. Let j ∈ I
be an upper bound of i1, . . . , i4. Since am, m = 1, . . . , 4, depend on coordinate j,
from W.R.I.P. for Hj there is aj ∈ A

c(Hj) such that

a1 ∨ a2 < aj ◦ πj < a3 ∧ a4.

By Lemma 4.9, aj ◦ πj ∈ A
c(H), which completes the proof. �

Proposition 4.12. Let ϕ : (K2,H2) → (K1,H1) be an admissible map. Then
ϕ(ChH2 K2) ⊃ ChH1 K1.

Proof: See [1, Proposition I.5.20]. �

Proposition 4.13. Let ϕ : (K2,H2) → (K1,H1) be an admissible map, where
H1 is simplicial. Then the following assertions are equivalent:

(i) ϕ(ChH2 K2) = ChH1 K1,
(ii) (k ◦ ϕ)∗ = k∗ ◦ ϕ for every k ∈ Kc(H1),
(iii) ϕ maps H2-maximal measures onto H1-maximal measures.
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Proof: The proof of (i)⇒ (ii) is included in the proof of [15, Theorem 1.3].
Moreover, the proof mentioned above shows that (ii) is a sufficient condition
for ϕ to map maximal measures onto maximal measures. The last implication
(iii)⇒ (i) is immediate. �

A convex versions of the next theorem can be found in [6, Theorem 14] and
[13, Theorem 2]. A proof for closed function spaces has been given in [10, Corol-
lary 4.13]. For the sake of completeness we include the proof using different
approach:

Theorem 4.14. Let x = (xi)i∈I ∈ K. The following assertions hold.

(i) If xi ∈ ChHi
Ki for every i ∈ I, then x ∈ ChH K.

(ii) Suppose thatHi is simplicial for every i ∈ I and πij(ChHj
Kj) ⊂ ChHi

Ki

for every i ≤ j, i, j ∈ I. Then x ∈ ChH K if and only if xi ∈ ChHi
Ki

for every i ∈ I.

Proof: First assume xi ∈ ChHi
Ki for every i ∈ I. Let µ ∈Mx(H). According

to Proposition 4.6, (πiµ, πij)i,j∈I is a projective system of measures with πiµ ∈
Mxi(Hi) for each i ∈ I. Thus πiµ = εxi for each i ∈ I and from the uniqueness
of the projective limit of measures we see that µ = lim←− (εxi , πij)i,j∈I = εx.
Now assume x ∈ ChH K and the conditions of (ii) are satisfied. Choose i ∈ I.

According to Corollary 2.4, it is enough to prove that ki(xi) = k∗i (xi) for every
ki ∈ K

c(Hi). So let ki ∈ K
c(Hi) and ε > 0. Denote k := ki ◦ πi ∈ K

c(H). Since
x ∈ ChH K, there is some h ∈ H such that k ≤ h and k(x) ≤ h(x) < k(x) + ε.
Without loss of generality suppose that h = hj ◦ πj for some j ≥ i, j ∈ I, and
hj ∈ Hj . Then (ki◦πij)(xj) ≤ hj(xj) < (ki◦πij)(xj)+ε. Using these inequalities
and Proposition 4.13 we get

(k∗i ◦ πij)(xj) = (ki ◦ πij)
∗(xj) ≤ (ki ◦ πij)(xj) + ε.

Hence k∗i (xi) ≤ ki(xi) + ε. Since ε is arbitrary, we conclude that ki(xi) = k
∗
i (xi).

�

Example 4.15. This example shows that the characterization in Theorem 4.14(ii)
does not have to hold, if we omit the assumption of simpliciality, and also that
the converse to Theorem 4.11 is not valid.
Choose a sequence {qn}n∈N ⊂ (0, 1) of real numbers such that qn → 0. For

every i ∈ N set Ki := {0} ∪ {−qn, qn}n∈N ⊂ R and

Hi := {f ∈ C(Ki) : f(0) =
f(−qn) + f(qn)

2
, n ≥ i, n ∈ N}.

Let (K,H) := lim←−((Ki,Hi), Idij)i,j∈N, where Idij : Kj → Ki denotes the identity
map. Clearly ChHi

Ki = Ki\{0} for every i ∈ N. We claim that x := (0, 0, . . . ) ∈
ChH K. Indeed, choose µ ∈Mx(H). By Proposition 4.6, πiµ ∈ M0(Hi) for every
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i ∈ N and (πiµ, Idij)i,j∈N is a projective system, so πiµ = πjµ for every i, j ∈ N.
But the only measure representing 0 in all spaces (Ki,Hi), i ∈ N, is ε0. Hence
µ = lim←− (ε0, Idij)i,j∈N = εx, which proves the claim. Using Theorem 4.14(i) we
conclude that ChH K = K.
Therefore the conclusion of Theorem 4.14(ii) does not hold and we also see

that the projective limit of non-simplicial spaces may be simplicial.

Example 4.16. Now we show that we cannot take the restriction of a product
space from Section 3 as the definition of the projective limit of function spaces, if
we want Theorem 4.14 to hold.
Let Ki := [−1, 1] ⊂ R and Hi := A(Ki) for i = 1, 2. Let K stand for the topo-

logical projective limit of the projective system (Ki, Idij)i,j=1,2 (i.e., the diagonal
of K1 ×K2) and define H := (H1 ⊙H2) ↾K .
Clearly all conditions of Theorem 4.14(ii) are satisfied. However, we can see

that 0 /∈ ChHi
Ki, i = 1, 2, but (0, 0) ∈ ChH K, since f1 ⊗ f2 ∈ H is an exposing

function of (0, 0), where fi(x) = x, x ∈ Ki, i = 1, 2. The point (0, 0) is also in the
Choquet boundary of the restriction of any other product space, since H1 ⊙ H2
is the smallest product.

Lemma 4.17. Let ϕ : (K2,H2)→ (K1,H1) be an admissible map and let µ, ν ∈
M+(K2) be such that µ � ν. Then ϕµ � ϕν.

Proof: Let k ∈ Kc(H1). Since k ◦ ϕ ∈ K
c(H2), we have

(ϕµ)(k) = µ(k ◦ ϕ) ≤ ν(k ◦ ϕ) = (ϕν)(k).
�

Proposition 4.18. Suppose Hi is simplicial for every i ∈ I and πij(ChHj
Kj) ⊂

ChHi
Ki for every i ≤ j, i, j ∈ I. Let µ ∈ M1(K). Then µ is H-maximal if and

only if πiµ is Hi-maximal for every i ∈ I.

Proof: First assume that µ is maximal and choose i ∈ I. According to Theo-
rem 4.14, πi(ChH K) = ChHi

Ki. Using Proposition 4.13 we conclude that πiµ
is maximal.
Conversely, let πiµ be maximal for every i ∈ I. Let ν ∈ M

1(K) be such that
µ � ν. By Lemma 4.17, πiµ � πiν for every i ∈ I. Therefore πiµ = πiν for every
i ∈ I and from the uniqueness of the projective limit µ = ν. �

Definition 4.19. We say that J ⊂ I is cofinal , if for every i ∈ I there is j ∈ J
such that i ≤ j.

Proposition 4.20. Let J ⊂ I be cofinal and let (K ′,H′):= lim←− ((Ki,Hi), πij)i,j∈J .

Then

(a) there is a homeomorphism φ : K → K ′,

(b) H is isometrically isomorphic to H′,
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(c) φ(ChH K) = ChH′ K ′,

(d) µ ∈ M+(K) is maximal if and only if φµ is maximal,
(e) H is simplicial if and only if H′ is simplicial.

In particular, if there is the greatest element m ∈ I, then previous statements
hold with (Km,Hm) in place of (K

′,H′).

Proof: (a) The canonical bijection φ : (xi)i∈I 7→ (xi)i∈J is a homeomorphism
by standard results (see e.g. [5]).

(b) Mapping Φ : f 7→ f ◦φ is an isometrical isomorphism of C(K ′) onto C(K).
Let us denote by πi projections on K and by π

′
i projections on K

′. Suppose
h = hj ◦ π

′
j ∈ H

′ for some hj ∈ Hj and j ∈ J . Then Φ(h) = h ◦ φ = hj ◦

π′j ◦ φ = hj ◦ πj ∈ H. Conversely, let h = hi ◦ πi ∈ H for some hi ∈ Hi and

i ∈ I. Choose j ∈ J such that i ≤ j and denote hj := hi ◦ πij ∈ Hj . Then

Φ−1(h) = h ◦ φ−1 = hj ◦ πj ◦ φ
−1 = hj ◦ π

′
j ∈ H

′.

(c) Notice that the mapping Φ above is also order preserving. The statement
follows easily from the characterization of the Choquet boundary (Corollary 2.4)
and properties of Φ.

(d) Since φ is a homeomorphism, φ :M+(K)→M+(K ′) is a bijection. Now
we use Proposition 2.3. Suppose µ is H-maximal and let k ∈ Kc(H′). From the
proof of (b) we can see that φ is admissible map and (k ◦ φ)∗ = k∗ ◦ φ. Thus

(φµ)(k) = µ(k ◦ φ) = µ((k ◦ φ)∗) = µ(k∗ ◦ φ) = (φµ)(k∗).

Since k is arbitrary, maximality of φµ follows. The converse is analogical.

(e) Let x ∈ K. We claim that φ maps Mx(H) onto Mφ(x)(H
′). Indeed,

suppose µ ∈ Mx(H) and let h ∈ H′ be arbitrary. Now (φµ)(h) = µ(Φ(h)) =
Φ(h)(x) = h(φ(x)). Therefore φµ ∈ Mφ(x)(H

′). The converse is analogical.

Hence, using statement (d), φ maps maximal representing measures onto maximal
representing measures and the conclusion follows. �
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