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Products and projective limits of function spaces

MIroOSLAV KACENA

Abstract. We introduce a notion of a product and projective limit of function spaces.
We show that the Choquet boundary of the product space is the product of Choquet
boundaries. Next we show that the product of simplicial spaces is simplicial. We also
show that the maximal measures on the product space are exactly those with maximal
projections. We show similar characterizations of the Choquet boundary and the space
of maximal measures for the projective limit of function spaces under some additional
assumptions and we prove that the projective limit of simplicial spaces is simplicial.
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1. Introduction

Let {X;};cr be a family of Choquet simplexes. We can construct a compact
convex set X as the state space of the space of all continuous multiaffine functions
on [[;c; X;. It has been shown in [6] and [16] that X itself is a simplex with
extreme points being the evaluation functionals at the points (z;);er € [[;c; Xi
with z; € ext X for every ¢ € I. Generalizations to products of arbitrary compact
convex sets followed (see [11], [18]). Characterization of maximal measures on the
product of two compact convex sets, as the measures whose every ‘projection’ is
a maximal measure, appeared later in [3] and [2].

In Section 3 we transfer these results to the context of function spaces. We first
introduce a notion of a product of function spaces with several special products.
We compare these products and prove appropriate associative laws. Then we
show that the Choquet boundary of a product space is the product of Choquet
boundaries. We prove that the product is simplicial if and only if every of the
original spaces is simplicial. Finally we show that maximal measures on the
product of arbitrary many spaces are exactly those with maximal projections.

In Section 4 we transfer known results from [6] and [13] on projective limits
of compact convex sets to function spaces. We use Grossman’s definition of the
projective limit of function spaces from [10] and prove that the projective limit
of simplicial spaces is simplicial. We also derive similar characterizations of the
Choquet boundary and maximal measures as in the case of product of function
spaces.
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2. Preliminaries

Let K be a compact Hausdorff space. We denote by C(K) the space of all
continuous functions on K, by MT(K) the set of all positive Radon measures
on K and by J\/ll(K ) the set of all probability Radon measures on K. Let ez
stand for the Dirac measure at x € K. We say that a linear subspace H of C(K) is
a function space, if it contains 1 (the function identically 1 on K) and separates
the points of K. Let M (H) be the set of all H-representing measures for x € K,
ie,

Me(H) = {p e MYK) : h(z) = / hdu for every h € H}.

K
The set Chy K := {z € K : My(H) = {ez}} is called the Choquet boundary
of H. It is a Gs-set if K is metrizable (see [1, Corollary 1.5.17]). We denote by
V¢ K the Silov boundary of H (see [1, p. 50] for definition) and we remark that
Vi K is equal to the closure of Chy; K (see [1, Theorem 1.5.15] for the proof).
A non-empty closed set £ C K is called H-extremal, if spt u C E for every z € E
and pu € Mgz(H). Finally, for every z € K we denote Fp(H) := U{sptu : p €
Ma(H)}-

We define the space A°(H) of all continuous H-affine functions as the space of
all continuous functions on K satisfying the following formula:

f(w):/ fdu foreach xze€ K and pe Mgy(H).
K

Clearly A€(H) is a uniformly closed function space with My (H) = Mz (A(H))
for every z € K.
Here we recall main examples of function spaces:

(a) Convex case - Let X be a compact convex subset of a locally convex space
and let H be the linear space A(X) of all continuous affine functions on X.
The Choquet boundary is the set ext X of all extreme points of X.

(b) Harmonic case - Let U be a bounded open subset of the Euclidean space
R™ and let the corresponding function space H(U) be the family of all con-
tinuous functions on U which are harmonic on U. The Choquet boundary
coincides with the set dregU of all regular points.

An upper bounded Borel function f is called H-convez if f(z) < u(f) for any
z € K and p € Mg(H). Let K¢(H) denote the family of all continuous H-convex
functions on K. Notice that the space K¢(H) — K¢(H) is uniformly dense in C(K)
due to the lattice version of the Stone-Weierstrass theorem.

The convex cone K¢(H) determines a partial ordering <7y (called the Choquet
ordering) on the space M (K):

pw=3nv if wu(f)<v(f) foreach f[eK(H).
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(If the space H is obvious, we simply write p < v.)

We remark that p < v if and only if u(f) < v(f) for every f € W(H), where
W(H) is the smallest family of functions containing H and closed with respect to
taking supremum of finite families.

For any measure y € M™T(K) there exists a maximal measure v with pu < v.
In particular, for every z € K there exists a maximal H-representing measure.
This is the content of the Choquet-Bishop-de Leeuw theorem [1, Theorem 1.5.19].

If K is metrizable, then a measure p € M™T(K) is maximal if and only if
#(K \ Chyy K) = 0. In nonmetrizable spaces every maximal measure y satisfies
1(G) = 0 for any Gg-set disjoint from Chyy K (see [1, Proposition 1.5.22]).
Theorem 2.1. Let u € M1 (K). Then the following assertions are equivalent:

(i) p is maximal,
(ii) there exists a set S C C(K) separating points of K such that every func-

tion from S is constant on Fy(H) for u-a.e. x € K,
(iii) every function from C(K) is constant on Fy(H) for p-a.e. z € K.

PROOF: See [2, Proposition 2]. O

Proposition 2.2. Let (K’,G) be a function space and p : K — K’ a continuous
mapping such that F,,y(G) C p(Fx(H)) for every x € Chyy K. Then the image
measure pji is a maximal measure on K' for every maximal measure ;1 on K.

PROOF: See [2, Corollary 3]. O

If for every x € K the maximal H-representing measure is uniquely determined,
we say that H is simplicial. In the convex case it is equivalent to say that X is
a Choquet simpler. We denote the unique maximal measure representing x € K
by dz.

We say that H has the weak Riesz interpolation property (W.R.LP.), if for
every aj,ag,bi,be € H such that a; < bj, 1,7 = 1,2, there exists ¢ € H such that
a; < c<bj, i,j=1,2. It can be shown that H is simplicial if and only if A°(H)
has W.R.I.P. (see [1, Corollary I1.3.11] or [4, Theorem 3.3]).

For a function f: K — R we define the upper envelope f* as

[*(z) :=inf{h(z) :h> f,he H}, z€K,

and the lower envelope as fx := —(—f)*. We denote H := {f € C(K): fx = f*}.
It is true that A°(H) = H. By [1, Proposition 1.5.9 and Corollary 1.5.10], we
have:
Proposition 2.3. Let u € M1 (K). Then the following statements are equiva-
lent:

(i) p is maximal,

W
(i) u(f) = p(f*) for every f € C(K),
(iii) w(k) = p(k*) for every k € K¢(H).
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Corollary 2.4. Let x € K. Then the following statements are equivalent:
(1) HASS ChH K,

(ii) f(x) = f*(x) for every f € C(K),
(iii) k(x) = k*(x) for every k € K°(H).

If f and g are functions on K, we write f V g for their pointwise maximum
and f A g for minimum.

Now we introduce a notation concerning cartesian products: Let {E;};cr be a
family of topological spaces and let E := [],c; E; be their cartesian product with
the usual topology. We use the convention [[;cy E; := {0}.

Let J C I. The natural projection from E onto [, ; E; is denoted by 7 ;. Let
A CFE and z € [[;¢p j Ei- We denote by 73(A) the set {x € [[;c; Ei: (z,2) €
A}

We use a similar notation for functions. Let f : £ — R and y € HieI\J E;.
Then 7% (f) : [I;c; Bs — R is defined as

In case f is independent on y, we use notation mj(f).
Finally, for f1 : F1 — R and fo : F2 — R we define f1 ® fo: E1 X Fo — R by

(f1® fo)(x,y) = fi(x)fo(y), =€ E1,y€ Fa.

We conclude this section with known results on products of Radon measures:
Let {(K;,S;, i) }ier be a family of compact Hausdorff spaces with Radon prob-
ability measures. There exists a unique product measure p on Hie 1 K with
(I Licr Ei) = Tlier 1i(E;), whenever E; € S; for each i € I and E; # K; for
finitely many i € I (see [12, Chapter VI, Theorem 5.3]). By [8, Theorem 417Q)], u
can be uniquely extended to a Radon measure X);<; p1;. We call this measure the
Radon product measure. Radon products satisfy associative law (see [8, Theo-
rem 417J]) and we can also use Fubini’s theorem (see [8, Theorem 417H]). Finally
we remark that if two Radon measures coincide on the cylinder sets [[,c; E;,
where E; C K; is Borel for each ¢ € I and E; # K; for finitely many ¢ € I,
then they are equal (see [12, Chapter I, Proposition 5.3] and the proof of [8,
Corollary 417F]).

3. Products of function spaces

3.1 Definitions and relations.



Products and projective limits of function spaces

Definition 3.1. Let {(Kj;, H;)}ier be a family of function spaces and let K :=
[I;c7 Ki- We define

(a) algebraic tensor product ();c; H; as the linear span of the set
{hl Q... hp® 1H{K¢:i€1\{i1,...,in}} s hy € Hik’ ipbel,1<k<n,nec N},

(b) injective tensor product Q)< H; as the closure of (O, H;,
(¢) multiaffine product by

I.XIHi ={feC(K): w?(f) € MHjforall jelandyc H K;}.
el ien\{7)

We say that a function space H on K is a product of function spaces H;, i € I,

if
(OHi cHc KA(H,).

icl €l
In case I is an empty set, we put all products to be equal {(}.

Remark 3.2. It can be shown, that H; © Ha2 is really the ‘algebraic tensor
product’, and if H; and Hsg are closed, i.e., Banach spaces, then H; ® Hg is their
‘weak (injective) tensor product’ (see [19, 20.5.5]). If H; = A(X;) for some com-
pact convex sets X, ¢ € I, then [X;c;H; is the space of all continuous multiaffine
functions on K.

Example 3.3. Let U; C R™, U C R”, be bounded open sets. We take H; :=
H(U;), i = 1,2 (see Example (b) in Section 2). If H is a product of H;, i = 1,2,
then H C H(Uy x Ug). Indeed, choose h € H C A°(H1) K A°(Ha) = H(Up) B
H(Us). Then we have

Ah(xl,xg) = Aﬂ'fz(h)(xl) + Aﬂ'gl (h)(xg) =0, x1 €Uy, z9 €Us.

However, even the largest product does not have to contain all harmonic functions
on the cartesian product. Consider U; := (0,1) C R, ¢ = 1,2. Then H(U;) =
A(U;), i = 1,2. So every product consists only of biaffine functions. Now take
f(z,y) := 22 — y? for 2,y € [0,1]. Clearly, f is harmonic, but not biaffine.

Proposition 3.4. The following assertions hold.
() Ojer Hi € WierHi.
(ii) If all H; are closed, then (D;c;H; C Qe Hi € KierH;. Moreover,
X icrH; is closed.
(iii) If H; is not closed for some j € I, then (O;c;H; € Q;cr™M; and
Ricr Hi & KicrH;.
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PROOF: Statement (i) and the first inclusion in (ii) are trivial. Since (i) holds,
the second inclusion in (ii) will be proved if we show that X ;crH; is closed. So
let {fn}nen C XNierH; be such that f, = f € C(K). Further, let j € T and
y € [Lien(j) Ki- Then W;J(fn) = w?(f), and since w?(fn) € H; for each n and
H; is closed, we have wiy(f) € H;. Thus f € K ;erH;-

Using previous inclusions, it suffices to find f € (®),;c; Hi)\ (X ierH;) to prove
(iii). Let j € I be such that H; is not closed and put K’ := [Licn gy K- Thereare
functions {hn}pen C H; such that by, = h ¢ H;. Then also hy, @ 1 = h@ 1k
Since hp ® 1 € (D;c; H; for every n € N, we have h ® 1/ € @, H;. But
mj(h ® 1) = h ¢ H;, therefore h @ 1/ ¢ e rH;. O
Remark 3.5. Using previous proposition, we can see that all products defined in

Definition 3.1 are indeed function spaces, since they are linear spaces and contain
algebraic tensor product, which contains constants and separates points.

In the rest of this subsection we will show that the two inclusions in Proposi-
tion 3.4(ii) may be proper.
Example 3.6. Let K; :=[0,1] C R, H; :=C(K;), i = 1,2, and denote K := K7 x
Ko. The functions of Hj ® Ha are of the form 2?21 f{ ® f], where f{ € C(K;),
i=1,2,7=1,...,n,n € N. Since H; ® Hg contains all polynomials, we have
H1 ® Ho = C(K). However H1 ® Ha C C(K), as can be seen by considering the
function f(x,y) :=e", x € K1, y € Ko.

This example also shows that algebraic tensor product of closed function spaces
does not have to be closed.

Definition 3.7. A Banach space F is said to have the approximation property,
if, for every compact set C' C E and every € > 0, there is a continuous linear
operator T': F — E of finite rank so that ||Tz — z|| < ¢ for every z € C.

(We refer the reader to [14, Chapter 7] for more information on the approxi-
mation property.)
Theorem 3.8 (Namioka-Phelps). The following statements are equivalent.

(i) For every two compact convex subsets X1, Xo of locally convex Hausdorff
spaces is A(X1) @ A(X2) = A(X1) K A(X32).
(ii) Every Banach space has the approximation property.

PROOF: See [18, Theorem 2.4 and the subsequent remark]. O

Using Theorem 3.8 and Enflo’s counterexample [7] of a Banach space not having
the approximation property, we may state the following:

Corollary 3.9. There exist compact convex sets X1 and Xo such that

A(X1) ® A(X2) € A(X71) K A(X2).
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3.2 Associative laws. In order to be able to use products defined above effec-
tively, we need to establish ‘associative laws’ for them.

Definition 3.10. We say, that {Jy},cr is a partition of a set I, if [, ep Jy =1
and Jo N Jg = () for every o, 3 € I" such that o # 3.

To the end of this subsection, let {(K;,H;)}icr be a family of function spaces
and {Jy},er a partition of /. In the following, we naturally identify spaces

C([Tier K4) and C(I 1 er(ILics, Ki))-
Proposition 3.11. The following assertions hold:

(i) Oier Hi = Oyer(Oier, Hi):
(i) AY(Ojer Hi) = AOyer(Oie, i)

ProOF: To prove (i), it clearly suffices to show, that the generating functions of
both spaces are the same. Function f is a generating function of (,c; H;, if

1 1 n
f=hi®. @@ . . @hy®. .. ®hy™ @ g ier\(ib,... imn}y

forsomeh%GHii,igﬁeJ«,k,l:l,... ,mg, k=1,... n. Since

i m . _
fki=hp®...0h, k®1H{K1~:ierk\{ii,...,i;"’f}} € @ H; for each k=1,...,n,
i€y,

we have
f=h&. . @ fn @K e\ (1), 0.0}

which is a generating function of (O,cp (O;¢ A H;). Reverting the proof we obtain
the converse inclusion.

Assertion (ii) follows from (i) and the fact that A¢(H) = H. O
Proposition 3.12. The following assertions hold:

(1) ®i€] Hl = ®'y€F(®i6J—Y HZ))
(ii) AY®icr Hi) = AY(Qer (Qies, Hi))-

Proor: Using Proposition 3.11, we have

Q=1 = OO M) « QIR 1) = Q(Q) H)-

i€l i€l yeD i€, y€D iedy y€D iedy

For the converse inclusion, it suffices to prove nyel“(@ieh H;) C Qe Hi, since
the latter space is closed. Let f be a generating function of nyel“(®i€]y H;).
We can write

f=h1®. . @ fn @K iel\(JyU..0L,) 1
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where f; € ®j€Jv- Hj;, i =1,...,n. We may assume that f; > 0,7 =1,...,n
(otherwise we write f; = (||f;| +1) — (|| fill + 1 — f;) and use distributive law).
Denote M := max;—1 . p ||fil|. Nowchoose 0 < ¢ < 1sothat f; >¢e,i=1,...,n

For each f; we can find h; € QjEJw- H; such that f; —e < h; < f;. We define

h = hl ® e ® hn ® ln{Ki:ieI\(J'YlU---UJ'm)} S @HZ,
1€l

(we used Proposition 3.11) and compute

|f =Rl = sup e Sup H fi(xi) H Z(xl))
21€]lie s, K @n€lliey,, Ki i=1 i=1
n n
< sup sup (H filzy) — H filzy) —
e1€]lics, Ki  zn€llics,, Ki i=1 i=1
n
= sup sup Z 1)k—1gh—t Z Hfazl"az
mleHiEJql K; wneHzE]-y k=1 |o¢\ n—k 1=1

< Y Tl <si()

k=1|a|=n—Fk i=1 =
Since ¢ is arbitrary, we conclude that f € &);c; H;.
Assertion (ii) follows from (i) and the fact that A¢(H) = . O

Proposition 3.13. The following assertions hold:

(i) MierHi = Kyer(®ies, Hi),

(ii) A“(XierHi) = A (X qer(Kies, Hi))-
PROOF: Let f € X;erH;. Pick 9 € T and k' € HiEI\on K;. We want to prove
that wﬁ;o (f) € Miey,, Hi, ie., that ﬂ'f”(ﬂf}l (f)) € H; for every j € J,, and
K" e Hie]’vo\{j} K;. But this is true, since 7" (ﬂ'ﬁ; ()= w](-k/’kn)(f) € H,;.

J
Conversely, let f € Kyer(Xies, Hi). Pick j € I and k € Hie]\{j} K;. Then

J € Jy, for some yg € I'. Using the assumption, we have

wh() = a0 O e By gy

j T

Assertion (ii) follows from (i) and the fact that A¢(H) = . O

From now on, we consider (K, H) to be a product of (K;,H;), i € I, unless
said otherwise.
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3.3 Representing measures.

Notation 3.14. Let J C I. We denote by H ; the space of all functions from H
depending on coordinates from J, i.e.,

Hy={heH:zyc K, my(x)=ms(y) = h(z) = h(y)},

and let Hy be the space of all functions from H depending on a finite number of
coordinates, i.e.,

Hp:={heH:3J CI finite, so that h € H}.

Observation 3.15. Using the above notation, we observe:
(a) Lclcl, hEH[l = hEH[2,
(b) heH; & h=m;(h) @ (K, icr\J}>
(c) p€ MH(K), heHy = p(h) = (mu)(m;(h)),
(d) Hy is a product of H;, i € I.

Proposition 3.16. Let us assume either
(a) H C Qe Hy, or
(b) H=WNicrH;.

Then Hy is dense in 'H.

PROOF: Assuming (a), conclusion is trivial, since (O;c;H; C Hy. Assuming
(b), we can use the same technique as in the proof of [16, Theorem 3.1] or [6,

Lemma 4]. O
Corollary 3.17. Cy(K) is dense in C(K).
ProOOF: Notice that C(K) = X ;c7C(K;) and use Proposition 3.16(b). O

Example 3.18. The conclusion of Proposition 3.16 does not have to be true for
all products. Suppose we have f € (X ;erH;)\ (@, Hi), which does not depend
on finitely many coordinates. Let H be the linear span of ();c; H; U {f}. Then
Hf = @ie[ ‘H;, but f ¢ 'Hf.

Now we construct such a function f. Let (K;, H;) := (X;, A(X;)), i = 1,2, be
as in Corollary 3.9. Then there is f1 € (H1 X Hsa) \ (H1 ® H2). This function
is not constant with respect to any of the two coordinates, since f1 ¢ Hi ® Ho.
Set Hon+1 := Hi1, Hopt2 := Ha, n € N, and let f,,+1 := f1 be the function from
(Hon+1 X Hopt2) \ (Hont1 ® Hant2) for every n € N. Set

fi= Z 27"y, @ HT{K:ieN\{2n—1,2n}}-

n=1
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Obviously, f does not depend on finite number of coordinates and f € X ;enH;
since this space is closed. Also f ¢ ®ieN H;. Indeed, if we suppose the contrary,
then

o o
fe@Hi=(Hi®H) @ (R Hs) C (H1@Hz) R () H,)-
€N =3 =3
Thus, for y € [[724 K; is 77?172}(f) € Hi1 ® Ho. But 77?172}(f) = f1 + ¢, where ¢

is a constant, which is a contradiction, since f; ¢ H; ® Ha.

Definition 3.19. Let (K,H) be a product of (K;,H;), ¢ € I. For J C I we
define the projection of H by

mr(H) = {f € C(J[ K) : f ® I[p(xsiensy € M}
ieJ

Observation 3.20. The following assertions hold:
(a) mj(H) is a product of H;, i € J,
(b) 71 (Oier Hi) = Oics Hi
(©) 71 (Qicr Hi) = Qies Hi,
(d) my(RierMi) = KicsHi-
Proposition 3.21. Let x € K, 1 € My (H) and J C I. Then
Ty € My (@) (7 (H)).
PROOF: Let hy € m;(H) and define h:= h; @ 1[1(K;: ier\J}- Then h € H and

hy(my(x)) = h(x) = p(h) = (mp)(hg)- .

Proposition 3.22. Let © = (2;);e; € K and pu; € My, (H;) for every i € I.
Then 1 := @y i € Mz(H).

PrOOF: It suffices to prove the assertion for H = X ;c 1 A%(H;).
(1) First, let |[I| = n € N. Choose h € H. By Fubini’s theorem,

u(h):/Khdu:/K / h(y1,- - s yn) dpn(Yn) - - - dpa (y1)-

Since the function ypn, — h(y1,... ,yn) is in A°(Hy) and un € Mg, (Hy), we have

/]( h’(yla e 7yTL—1; y’ﬂ) d,un(yn) = h’(yla e ;y’n—l; In)
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for every (y1,...,Yn—1) € H?;ll K;. Using induction, we can see that u(h) =
h(x1,...,2p) = h(x). Therefore u € Myz(H).

(2) Now, let I be an arbitrary index set. Choose h € H and ¢ > 0. By
Proposition 3.16(b), there is g € H  for some finite J C I so that

€
—hll< <.
lg—nl < 5
Using the first part of the proof, we write

u(9) = (Q) 1) (m1(9)) = w5 (9)(ms(x)) = g(x).
ieJ

Let us estimate

lu(h) = k()| < |p(h) = w(g)l + |u(g) — 9(2) + [g(z) — h(z)] <e.

Since ¢ is arbitrary, u(h) = h(x). Hence pu € Mgz(H). O
Notation 3.23. Let A; ¢ MY(K;) for every i € I. We denote Rier Ai =
{&jcr i pi € Aiy i €1}

Example 3.24. If || = 2, Proposition 3.22 yields the inclusion
@ (May (H1) ® May(H2)) € Mo(H), = (z1,22) € K.

Now we show that the inclusion may be proper.
Let K; == {ry,s;,t;}, My = {f € C(K;) « f(si) = 5(f(rs) + f(t;))}, i = 1,2.

Er; et

Then M, (H;) = co{es;, —5—}. Suppose (K,H) is a product of these two
spaces. Denote

Ery + €ty Erp + €ty Erq + €ty Ery + Eto
C:=co {551 ® Esy, €51 D .

5 T g DT 2

We see that ©6% (M, (H1) ® Ms,(Hz)) = C. Define

_

sit2) | E(rira) | E(t1,r2)

2 4 4

Obviously 1 € My, ,)(H). For every x € K\ {(s1,12), (r1,72), (t1,72)} we have
p({z}) = 0. However, if p were an element of C, then at least one of the points
(s1,$2), (s1,72), (r1,52), (r1,t2) would have a non-zero measure.
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Example 3.25. Let x € K. Denote MT(H) the set of all 4 € M!(K) such that
(1) € My, () (H;) for every i € I. Proposition 3.21 yields

Mz (H) € Mz(H).

Once again, we show that the inclusion may be proper.
Let (K;,H;), i =1,2, be as in Example 3.24. Consider

E(ri,ra) | E(t1,ta)

H=m 2

We see that m;(pu) = & + % € Ms;(H;), i = 1,2. Thus p € Mﬂsl 52) ( )-
=1,

However p ¢ M(sl,32)(H) Indeed, take f; € H; such that f;(r;) =0, fi(s;)
fi(t;) =2, for i = 1,2. Define f := f1 ® fo. Then f € H, but

fs1,82) =172 = p(f).

Question 3.26. Is there a way to characterize My (H) by M, () (H;), i € I?
Proposition 3.27. Let x = (z;);c; € K. Then Fy(H) = [[;c; Fo;(H;)-

Proor: First we show Fy(H) C [[;c; Fr;(H;). For each p € My(H) and i € I

we have m;(spt 1) = sptm;u and since, by Proposition 3.21, mju € My, (H;), we

get m;(spt w) C Fy; (H;). Therefore m;(Fr(H)) C Fyr;(H;) for every i € I.
Conversely, let y1; € My, (H;) for every i € I. Proposition 3.22 yields @);c t; €

Mg (H) and thus [[;c;spt pi = spt Qe 1i C Fue(H).

3.4 'H-affine functions.

Proposition 3.28. A%(H) C X ;1 A°(Hy).

Proo¥: Choose f € A“(H), j € I and y = (y;) € [L;cp (53 K- We prove that

fi = T Y(f) € A°(H j)- Let x; € Kj and puj € My;(H;). Define z := (z;,y) and

1= [ ® (®icn (i} Eyi)- According to Proposition 3.22, u € Mz (H), so we have

fi@s) = f(x) = p(f) = w;(f5)-
Hence f; € A°(H;). O
Lemma 3.29. Let |I| =2. Then A°(H1) ® A°(H2) C A°(H).
PRrooF: Consider a; € A°(H1), as € A°(H2). We show that a1 ® as € A°(H) by
using the characterization A°(H) = H.
First suppose that a1,as > 0. Choose z = (z1,23) € K and ¢ > 0. Find § > 0

so that
0(a1(z1) + as(z2) +6) <e



Products and projective limits of function spaces

Since a] = a;, 1 = 1,2, there are hy € Hy, h1 > ay and hy € Ha, ha > ag such
that
hi(z1) < ai(x1)+96 and ha(zra) < az(x) + 0.

Obviously hy ® hg € H, h1 ® hg > a1 ® a2 and

a(z1)az(ze) < hi(r1)ha(ze) < (a1(21) + 6)(az(z2) + 9)
= ay(w1)az(z2) + d(a1(z1) + az(x2) +6) < ar(z1)az(x2) + €.

Thus (a1 ® a2)* = a1 ® ag.

Now suppose a1 > 0 and a9 is arbitrary. Then ag + ||az|| > 0. Since f — f* is
a sublinear functional on C(K) and (a1 ® ¢)* = a1 ® ¢ for every constant function
con Ko, we get

a1 ®az < (a1 ®a2)" = (a1 @ (a2 + |laz]| — |laz|))*
= (a1 ® (a2 + [laz]]) — a1 @ [laz]))*
< (a1 ® (a2 + |laz]]))* + (a1 ® (—|az]))*
= a1 @ (a2 + |lazl]) + (a1 @ (=[laz|))) = a1 ® az.
For the lower envelope we have

(a1 ® ag)x = —(a1 ® (—a2))" = —(a1 ® (—a2)) = a1 ® ay.

Thus a1 ® ag € H = A°(H).
Finally, let a1, as be arbitrary. Then

a1 ® ag = (a1 + [la1]]) ® az — [la1]| ® ag € A°(H).

Since A°(H) is a closed linear space, the conclusion follows. ]
Proposition 3.30. ®,c; A°(H;) C A°(H).
Proor: It suffices to prove (O;c; A°(H;) C A°(H), since the latter space is
closed.

(1) Assume first, that |[I| = n € N and the assertion holds for |I| = n — 1.
Using the assumption, previous Lemma 3.29 and the associative law, we get

n n—1 n—1
O AH;) = (() A°(Hy)) © A°(Hn) € A°(() Hi) © A°(Hn)
=1 =1 =1

n—1 n

C A (D H:) @ Hn) = A((DHs) C A(H).

i=1 i=1

559
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(2) Now, let I be an arbitrary index set. Choose f € ;<7 A°(H;). Then
there is a finite J C [ such that f depends only on coordinates from J. So,
according to the first part of the proof, m;(f) € O;c; A°(Hi) € ANO,cy Hi)-
Since f =7 (f) ® 1[]{k,:iec1\J}» We have

feA(OM) oA () Hy) cAUOH) o () M)

1eJ €I\J 1eJ iel\J
= AY((DHi) C A“(H
el
1€ 0
Corollary 3.31. A°(H) is a product of both H;, i € I, and A°(H;), i € I.
PRrROOF: From Proposition 3.30 we have
(OHi ¢ (D A“(H;) € AS(H),
iel el
and from Proposition 3.28
< X A(Hy) = X A“(AS(H)).-
el el
O

Proposition 3.32. If A°(H) C X ;erH;, then H; = A°(H;) for every i € I.
PRrOOF: Choose i € I. We prove that A%(H;) C H;. Pick f; € A°(H;) and define
f = fz X ]‘H{KJJEI\{Z}} Choose = = (Ij)jEI € K and JUS Mm(H) From
Proposition 3.21 we have p; := mjp € Mg, (H;), which implies

f(2) = fi(zi) = pi(fi) = n(f)
Thus f € A°(H) C KierMy, so fi = mi(f) € Hy. 0
Proposition 3.33. Let H = X;c;H;. Then H = A°(H) if and only if H; =
A€(H;) for every i € I.

Proor: If H = A°(H), we use Proposition 3.32. Conversely, from Proposi-
tion 3.28 we have

HC A(H) XA (M) = X Hi = H.
el el
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Corollary 3.34. There are function spaces H1 and Ho such that
A°(H1) ® A°(Hz) & A°(H1 B Ha).

ProoFr: By Corollary 3.9, there are H; and Hg such that H; ® Ho C Hi K Ha
and H; = A%(H;), i = 1,2. Proposition 3.33 implies H1 X Hy = A°(H1 X Ha).
Thus

A°(H1) @ A°(H2) = H1 @ Hoy C H1 X Hy = A°(H1 K Ha). O

Example 3.35. Example 3.6 shows there are function spaces such that

AS(H1) © A°(Hz) C A°(H1 © Ha).

Question 3.36. Is Q,c; A°(H;) = A“(O;cr Hi)?
Question 3.37. Is A°(O;cr Hi) = A (XicrH;)?
Question 3.38. Is A°(X;crH;) = Nier AY(H;)?

3.5 H-extremal sets.

Proposition 3.39. Let E C K be an H-extremal set. Let J C I,y € HieI\J K;,
and let G be a product of H;, i € J. Then ﬂ'z(E) is either empty or a G-extremal
set.

PROOF: Suppose EY := wg(E) is non-empty and not G-extremal. Then there is
x € EY and py € Mz(G) so that sptuy ¢ EY. According to Proposition 3.21,
pi 2= ity € My, () (H;) for every i € J. Since spt 1y C spt @);c ;s f1i, We can see
that spt @;c ;i ¢ EY. Define

W= (® ,Ui) ® ( ® Em(y))'

ieJ ieI\J

Hence, we have (z,y) € E and by Proposition 3.22 also u € M, ,)(H). But
spt i ¢ E, which is a contradiction. O

The next two propositions are generalizations of Proposition 4.1 and Theo-
rem 4.2 from [16] to function spaces:

Proposition 3.40. Let E C K be an H-extremal set. Let ) # J C I and let G
be a product of H;, i € J. Then w;(E) is a G-extremal set.

Proo¥: Let # € my(E) and p € Mgz (G). Then there is y € [[;cp s K; such
that (z,y) € E, i.e., x € 7J(E). By Proposition 3.39, 7¥(E) is a G-extremal set,
therefore spt p1 C 7Y (E) C 77 (E). O
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Proposition 3.41. Let E; C K; be an H;-extremal set for every i € I. Then
E :=[l,c; E; is an H-extremal set.
PROOF: Obviously, F is a closed set.

(1) Assume |I| = 2. Suppose there is © = (z1,22) € E and p € My(H) so
that u(K \ E) > 0. Denote p1 := mp and po := mou. Since

K\ E = ((Ki\ E1) x K2) U (K x (K2 \ E2)),

we have
0 <pu(K\E) < (K1 \ Ev) + po(K2\ Ep).
We may assume p1 (K1 \ E1) > 0. By Proposition 3.21, uj € My, (H1). But this
is a contradiction, because x1 € F7q.
We proceed similarly for arbitrary finite products.

(2) Now, let I be infinite. Suppose there is @ = (2;);e; € E and u € My (H)
so that u(K \ E) > 0. Then there is some g € C(K) such that g = 0 on E and
i(g) > 0. Choose € > 0. According to Corollary 3.17, there is f € Cj(K), where
J C I is finite and [|g — f|| < e. Then mju € My (,)(m;(H)) and by the first
part of the proof, 7 () is an element of the 7 ;(H)-extremal set Ej := [[,c ; E;.
Thus sptmyu C Ejy and |75(f)| < € on Ej. Therefore

(F)] = |y (m s (F))] < /

Ey

3 () i)+ / (D) dm ) < e.

(TLics K\E
Hence we get
0 <u(g)l < lulg) — n(H) + [u(f)] < 2e,
which is a contradiction, since ¢ is arbitrary. (I

Using previous results, we can derive the main theorem of this subsection (cf.
also [6, Lemma 5], [16, Theorem 3.2] and [10, Lemma 5.11]):

Theorem 3.42. Chy K = [[;c; Chy, K;.
ProOF: Follows immediately from Propositions 3.40 and 3.41. O
Corollary 3.43. Vi K = [[;c; Vu, K;.

ProOF: Using Theorem 3.42 we can write

Vi K =Chy K = [ Chyy, K; = [[Chyy, K; = [[ Vi, Ko
i€l il iel
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Remarks 3.44. As has been shown by Grossman [9], the characterizations of
Choquet and Silov boundary hold also for the space H; + Ha defined by

Hi+ Ho :={h1+ hg:hy € Hi, hg € Ha}, where
[h1 + hol(z,y) = ha(z) + ha(y), (z,y) € K1 x Ka.

It is clear that H; + Ho does not have to be a product, since the inclusion Hi ®
Ho C 'H1 + Ho does not have to hold.

Versions of Theorem 3.42 for various tensor products of compact convex sets
have been proved by I. Namioka and R.R. Phelps in [18].

Example 3.45. In Example 3.3 we have shown that the space of all harmonic
functions on a cartesian product does not have to be a product of harmonic spaces.
Moreover, it is not even possible to extend the notion of a product so that the
product of harmonic spaces would be a harmonic space and Theorem 3.42 would
still hold. Indeed, consider the sets from Example 3.3 and denote U := Uy x Us.
Then

ChH(U) U= 8regU =0U 75 {0, 1} X {0, 1} = ChH(Ul) Ul X ChH(Uz) Uz.

3.6 Approximation in product spaces. In the following, we will need some
results on approximation of functions in simplicial spaces. So we first state here
results that are adaptation of Section 2 from [17].

Definition 3.46. Let (K,H) be a function space. A collection of nonnegative
functions {1; };”:1 C H is called a partition of unity on K, if Z;nzl Y; = 1g.

Lemma 3.47. Let (K,H) be a simplicial function space. Let {f;}_; C A°(H)
and € > 0. Suppose that {¢; };”:1 are nonnegative functions defined on Chy K,
{ki}2, € Chy K and {aj : 1 <i<n,1<j<m} are real numbers such that

(i) Xiti¢5=1,

(i) ¢j(ky) =05, 1<4,0<m,

(iil) |f;(k) — ;?1:1 O‘ij¢j(k)| <eg keChy K,1<i<n.
Then there exists a partition of unity {¢;}7"; C A°(H) such that

(iv) (k) =65, 1<41<m,

V) Ifi(k) = 25y (k) <&, ke K, 1<i<n.

PROOF: See [17, Corollary 2.2]. O

The proof of the next lemma is based on the proof of [17, Lemma 2.4]:
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Lemma 3.48. Let (K1, H1) and (Ko, H2) be two function spaces, where Hi
is simplicial. Suppose that {f;}_; C A°(H1) X Hy and € > 0. Then there is
a partition of unity {y;}7, C A°(H1), {ki}]Z; C Chy, K1 and {y;;} C Ha,
1<i1<n,1<j<m,so that

(1) ¢](kl): 3l ]-S‘])lgm)
(i) Ifi = Xje vy @yl <e, 1<i<nm

PRrROOF: Denote by ‘H5 the n-tuple cartesian product of Ho with the maximum
norm, i.e.,
[llmax = max [Imi(y)l| for all y € H3,
where 7; is the projection to the i-th coordinate. We denote by Bj(z) the open
ball with center x and radius r > 0.
Let f be a function from K to Hj defined by

F(k) = (75 (f1),-.. .75 (fn)), k€ K.

Since m; o f is a continuous function for every i = 1,... ,n (we use the fact that
C(K1 x K3) is isometric to C(K1,C(K2))), f is also a continuous function on K.
For each y € Hy set

€
(1) Uy = {k e Ki:lly = F)lmax < 5 } -
The family {Uy}yenp is an open covering of Ki. Let Uy,,... Uy, be a finite

subcovering. Define
Vy; = Uy, NChyy, K1, 1<j5<p.

Without loss of generality we may assume that there is m < p such that {Vyz }f;l
is an open covering of Chyy, K1 and for every [ € {1,...,m} there exists k; € Vj,
such that k; ¢ Vy,, for j #1, 1 <j <m.

Denote

C = {ylu"' 7yp} _Co(y17"' 7ym)7
D .= O—FB%(O).

Choose i € {1,... ,n}. Since C is a compact subset of HY, also m;(C) is a com-
pact subset of Ha. By Arzela-Ascoli’s theorem, the set 7;(C) is equicontinuous.
Therefore, for each £ € Ky we can find its open neighbourhood W such that
oscyy, h < § for every h € m(C). From the open covering {We}¢ck, we choose

a finite subcovering {We, } . For every h € m;(C) there is xj, € Ky such that
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|h(xp,)| = [|h]l. The point xy, is an element of some Wy, and so [|h]| —§ < [h(&r)|-
Thus .
Il = 5 < max &)l < bl b e m(©),

and since 7;(D) C m;(C) + Be (0), also
2
) I - e < max |h()| < bl e (D)

Let ', € (H%)* be a continuous linear functional defined by
Lir(y) = mi(y) (&), 1<i<n, 1<r<gq, ycHy.

From (2) we can write

2
3) 1hllmax — e < max [Ty (A)] < [[hflmax, 1€ D.
1<i<n
1<r<g;
Set
1, fj=min{l:keV,, 1<I< ,
gb](k) = { nJ I’nln{ i m} 1<ji<m,ke ChH1 K.
0, otherwise,

Clearly ¢; >0, ¢;(k;) = 05, 1 < j, 1 <m, and Z?’zl ¢;j = 1. Moreover, for every
k € Chyy, Kj there is a unique index jj so that ¢;, (k) # 0. For this index is
k € Vy;, - Thus, from (1) we have

€
£ (k) = yj, lmax < 3

We can rewrite this inequality as

m

(4) I1f (k Z k)yjl max < = =, k€ Chy, K.

Since f(k) — 7" ¢;(k)y; € D, using (3) and (4) we have

m m
|Fzr Z Ly yj | = |Fzr Z

< Hf Z y]”max

1<:<n 1§T<qi,/€€ChH1K1.
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Lemma 3.47 yields a partition of unity {¢;}7", C A°(H1) such that

€ .
(5) Zw‘] Z’f‘y] 57 1§Z§n71§'f§%7k€K17
(6) Yi(ky) =05, 1<4,1<m.
Since f(k) — 37" ¢j(k)y; € D for every k € K1, using (3) and (5) we get
2 m
”f ij yj”max - 38 < max |FW Z yj
1<i<n —
1<r<g; -
m
= max |I[;
I<ien |Tir( Z Lir y]
1<r<q; -
<< ke K
=3 1-
Hence
m
(7) I1f (k Z ()yilmax < &,k € K.

Finally, define y;; := m;(y;) € H2, 1 < i < n, 1 < j < m. Assertion (i) then
follows from (6) and (ii) follows from (7). O

3.7 Products of simplicial spaces.

Proposition 3.49. Suppose that at most one of the spaces H;, i € I, is not
simplicial. Then

&) A°(H;) = A°(H) = [X] A°(H,)

iel el

PROOF: Due to Propositions 3.30 and 3.28, it suffices to prove X ;1. A°(H;) C

Rjer A“(Hi)-
(1) First we prove the assertion for finite products. Let |I| = n > 2 and
suppose that Hi,...,H,—1 are simplicial. We repeatedly use associative laws

and Lemma 3.48 to get
|§| A°(H;) = A (H1) K (A°(Ho) K (... (A (Hp—1) KA (Hy))...))

C A (H1) @ (AS(H2) B (... . (AS(Hn_1) B A (Hy)) ...))
C...CA(H1) ® (A°(H2) @ (... (A°(Hp—1) @ A°(Hp))...))

=) A“(H
i=1
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(2) Now, let I be infinite. Choose f € X ;c1.A°(H;) and € > 0. According to
Proposition 3.16(b), there is some h € X ;c1.A°(H;) depending on finitely many
coordinates J such that || f — k|| < e. From the first part of the proof we have
my(h) € MiesA“(H;) C @j;eg A°(H;). Thus, h € @, A°(H;). Since the space
is closed, we get f € ;<5 A°(H;). O
Example 3.50. The assumption on the number of simplicial spaces in Proposi-
tion 3.49 may not be weakened. We show that for every index set I with |I| > 2
there is a family of function spaces H;, ¢ € I, with two non-simplicial spaces, which
does not satisfy the equality in Proposition 3.49. Once again, we use Corollary 3.9
to construct a counterexample.

Let H;, i € I, be a family of function spaces such that there are i1,i92 € I so
that H;,, H;, are as in Corollary 3.9. Thus, there is f' € (A°(H;,) B A°(H;,)) \
(A°(H;,) ® A°(H;,)). Using Proposition 3.49, we can see that neither of the two
spaces is simplicial. Now, define

f= f/ &® 1H{Ki:iel\{i1,i2}}'

We have f € ;e A°(H;), but f ¢ @;cr A°(Hy).

Lemma 3.51. Let |I| = 2 and suppose H; and Hy are simplicial. Then H is
simplicial.

PROOF: It is sufficient to show that A¢(H) has W.R.L.P. Let a, b, ¢, d be functions
from A°(H) = A%(H1) X A°(Hz) such that a Vb < ¢ A d. By Lemma 3.48, there
is a partition of unity {y;}7; C A°(H1), {k;};2; C Chy;, Ki and functions
{aj, bj, Cj, dj}gnzl C AC(HQ) so that

(8) Vi(ky) =05, 1<34,1<m,
and for
m m
d = Wj®a;, V=) v;ebj,
j=1 j=1
(9) m -
d ::Zd)j@cj, d ::Zd)j@dj,
j=1 Jj=1
it holds
(10) avb<d v <dnd <cnd
Then also

(11) 5 () v kW) < 75 () A ab(d), ke K.

567
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For every j = 1,... ,m, we get from (8) and (9)

i) =aj, AIW)=bj, wI() =¢;, T(d) =dj,

and from (11)
aj\/bj < Cj/\dj.

Since A°(H2) has W.R.LP., there are h; € A°(H2), j = 1,... ,m, such that
(12) aj\/bj<hj<cj/\dj.

Define h := 377" 1 ¢; ® hj € A°(H1) ® A°(Hz2) = A°(H). The non-negativity of
{1;}72, and inequalities (12) and (10) imply

aVb<h<cAd.

Hence A°(H) has W.R.I.P. and the proof is complete. O

Now we may prove the theorem, which is a generalization of [6, Theorem 11]
and [16, Theorem 3.1]:

Theorem 3.52. Suppose that H,; is simplicial for each i € I. Then 'H is simpli-
cial.

PROOF: First we prove the theorem for finite /. By Lemma 3.51, the theorem
holds for |I| = 2. Suppose that [I| = n > 2 and the theorem holds for |I| < n.
Clearly X"_, H; = (X"Z{H;) K H,, is simplicial and A°(H) = A°(K"_,H;) has
W.R.I.P. Therefore H is simplicial.

Now, let I be infinite. Choose a,b,c,d from A°(H) = X ;c1.A°(H;) such that
a Vb < cAd. According to Proposition 3.16(b), there are

a e [& AC(HZ-)] , Ve [& AC(Hi)] ,
I, Iy

icl el

d e [& AC(HZ-)] , de [& AC(Hi)] ,
I. 14

i€l el

so that
avVb<d v <dnd <cnd

and J:= 1, U I, UI.Ul; is a finite subset of I. Then also

my(a’) V(') <my(c) Amg(d).
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From the first part of the proof we know that [X;cjH; is simplicial, so we can
find ' € A°(K ;e H;) = Mg A°(H;) such that
mya) v ) <h <7mpd)Anmp(d).
The function h := h' ® 111k, .ien\ gy € MierA°(H;) = A°(H) clearly satisfies
aVb<h<cAd.
Hence A°(H) has W.R.IP. and H is simplicial. O

The converse, whose special case has been proved in [18, Proposition 2.10], is
also valid:

Theorem 3.53. Suppose that H is simplicial. Then H; is simplicial for each
1€l
PRrROOF: We use the W.R.I.P. property of simplicial spaces again. Choose j € I.
Let aj,bj,cj,d; € A°(H;) be such that a;j V b; < c¢;j Adj. Denote K =
Hiel\{j} K;. According to Proposition 3.30,
a:=a; @1k, b:=b;Qlg:, c:=c¢;Qlgs, d:=d; 1k,

are elements of A°(H). Moreover, a Vb < ¢ A d. Using simpliciality of H, there
exists h € A°(H) so that

aVb<h<cANd.
Pick y € K'. By Proposition 3.28, h € [X;c1.A°(H;), therefore w?(h) € A°(H;).
Since

a; v bj < Fg(h) <ci A dj,

we conclude that the space A°(H;) has W.R.LP. O
Example 3.54. The space Hj + Ha, defined by Grossman (see Remarks 3.44),
does not have to be simplicial, if H1 and Ho are simplicial. Indeed, let K1 = Ko =
[0,1] € R and Hy = Ha = A([0, 1]). Obviously, H; and Ha are simplicial spaces.
Denote K := K7 x Ka. It is easy to prove that H; + Ho = A(K). However, K is
not a simplex, which is the sought contradiction.

3.8 Maximal measures. We start with two propositions, which are analogies
of [2, Theorem 4]:

Proposition 3.55. Let i € M1 (K) be H-maximal. Let J C I and let G be a
product of ‘H;, v € J. Then 7 ju is a G-maximal measure.

PROOF: According to Proposition 2.2, it suffices to show Fy (,,)(G) C 7 (Fe(H))
for every z € K. Using Proposition 3.27, we have

Fry(0)(G) = [ [ e (M) = 7y (] | Fri (Ha)) = 7 (Fe(H)),
e iel
for every x = (x;);c5 € K. O
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Lemma 3.56. Let y,v € M™(K) be such that i <y v. Then for every J C I
sy Sns(H) TIV-

ProOF: Choose wy € W(m;(H)). Then w := wy @ 11j(k,:ier\s} € W(H). Thus
p(w) < v(w), and we get

(myp)(wy) = pw) < v(w) = (myv)(wy).
Since w is arbitrary, we have myu < 7 jv. O

Proposition 3.57. Let |I| = 2 and let p € M™(K) be such that m;u is an
‘H;-maximal measure for i = 1,2. Then p is H-maximal.

In particular, if p; € MY(K;) is an H;-maximal measure for i = 1,2, then
11 ® p2 is H-maximal.

PROOF: We may proceed exactly as in the second part of the proof of [2, Theo-
rem 4] to show that for every h € H and p-almost all x € K is

h(z1,22) = h(mi(z), m2(2)), @1 € Frj(p)(H1), @2 € Fry(y)(H2).
According to Proposition 3.27, Fy(H) = Fy, (,)(H1) X Fr, () (H2) for every x €

K. Therefore h is constant on Fy(H) for p-almost all x € K. As follows from
Theorem 2.1, p is an H-maximal measure. (]

Theorem 3.58. Let p € M (K) be such that m;u is an H;-maximal measure
for every i € I. Then p is H-maximal.

In particular, if j; € MY(K;) is an H;-maximal measure for every i € I, then
X i is H-maximal.

PROOF: It suffices to show that y is a ((D;c; H;)-maximal measure.

First we prove the assertion for finite products. Suppose that it holds for
|I| < mn and let [I| = n + 1. We know that m,11p is an Hyp41-maximal measure.
Since 7TZ'(7T{17M ’n}u) = ;i is an H;-maximal measure for every ¢ = 1,... ,n, the
induction hypothesis implies that 7y 10 is a (O~ H;)-maximal measure.
Thus, both projections are maximal measures and Proposition 3.57 implies that
pisa (Ol Hi) © Hp+1)-maximal measure, therefore also (@Z":"_ll 'H;)-maximal
measure.

Now, let I be infinite. According to Choquet-Bishop-de Leeuw’s theorem,
there exists a ((D;c; Hi)-maximal measure v € M (K) such that y 20 M Ve
Suppose J C I is finite. By Lemma 3.56, 7 ju j@ie]m myv. From the first

part of the proof is 7y a ((;¢ s H;)-maximal measure and therefore 7 ;1 = 7 yv.
Hence, for every finite subset J C I and every F = Hz‘e 1 Ei, where E; is a Borel
subset of K; for eachi € [ and E; = K; fori € I\ J,

wE) = (mn)(I] Ei) = o) ([ ] E) = v(B),
e e
Since p and v coincide on the Borel cylinder sets, they must coincide as Radon
measures. Therefore p is a ((;c; H;)-maximal measure. 0
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Theorem 3.59. Suppose that H; is simplicial for eachi € I. Then §; = Q¢ 0z,
for every x = (z;)ier € K.

PRrOOF: From Proposition 3.22 we have ), ; dz; € Mz (H) and by Theorem 3.58,
this measure is H-maximal. Since H is simplicial, according to Theorem 3.52, we

get 0z = Qe Oy O

At the end of this section we investigate relationship between maximal measures
in product spaces and Radon products of maximal measures. We denote by Z1(H)
the set of H-maximal measures from M!(K). Let €Chy K = {€x 17 € Chyy K}
and let D(H) denote the linear span of C(K)U {f*: f € C(K)}. We denote by 7
the weak topology on M1 (K) generated by D(H). Then we have:

Proposition 3.60. The following assertions hold:
(a) coecn,, Kk C 2 (H) C @ echy, k-
(b) Z1(H) =0 ecny K-

PROOF: (a) The first inclusion is obvious. The second follows from the fact that
" eCny k= M (Chyy K)

and all maximal measures are supported by Chy K.

(b) We may proceed as in the proof of [1, Theorem 1.6.14] to show that Z1(H)
is a 7-closed set and that for every u € Z1(H) \ 0" echy, K, there are f € C(K)
and a € R such that

sup  ez(f) = a < p(f).
z€Chy K

Therefore f(z) < « for every x € Chyy K. But since sptuy C Chy K, also
w(f) < a, which is a contradiction. O
Example 3.61. From Theorem 3.58 we have co®,c; 21 (H;) C ZY(H). By
Proposition 3.60(a), Z1(H) C Ew*aChH K- Since echy, Kk = Qjerechy, K C
®icr Z' (M), we get

o) 21 (M) € 21 (M) c @ Q) 2(H,).
i€l i€l

Now we show that both inclusions may be proper:

Let K; :=[0,2] C R, H; := {f € C(K;) : f(1) = LOH @1 5 — 12 Then
Chyy, K; =[0,1)U(1,2],4 = 1,2. Choose {zn}nen C [0,1)U(1,2] so that z, — 1
and let (K, H) be a product of (K;, H;), i =1,2.

(a) Define p:= 3702 1 27 "¢y, 5. Clearly € Z1(H), since it is supported
by Chy K. However, u ¢ co(Z1(H1) ® Z1(Hs2)). Indeed, y is supported
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by the diagonal A of K, but the only measures of Z1(H;) ® Z1(Hz)
supported by A are ez, x € A. Thus, u would be supported by a finite
set.

(b) Obviously ;1) ¢ ZY(H). However, E(2nn) = g1,1)- Thus, e 1) €
@ (21 (H1) ® 21 (Hy)).

Proposition 3.62. Z(H) =0 ®,c; 21 (H,).
PRrROOF: Using Proposition 3.60(b) and Theorems 3.42 and 3.58, we can write

ZH(H) = @0 ecny, k = (Q)eony, K, C T Q) Z'(Hi) C ZH(H).
el el

4. Projective limits of function spaces

Definition 4.1. Let (K1, H;1) and (K2, Hz) be function spaces. We say that a
continuous surjection ¢ : Ko — K7 is an admissible map, if Hyop:={hogp:h €
Hi} C Ha.

Let I be an up-directed index set. We say that ((/;, H;), 7i;); jer is a projective
system of function spaces, if every m;; : K; — K;, i < j, is an admissible map
such that

(i) m; is the identity on K; for each 1,

(ii) Tij O Mjk = Tk forall i < j<k.
Projective limit, denoted by lim ((Kj,H;), m;j)i jer, of this projective system is
the function space (K, H), where

K = {(x;)er € HK’ cay = mii(xy) forevery i <j, 4,5 €I}
i€l

and H is the restriction to K of the function space | J;c; H; o m; with 7; the i-th
projection map.

It follows from standard results on projective limits of compact Hausdorff
spaces (see e.g. [5]), that K is a non-empty compact Hausdorff space, if K; is non-
empty for every i € I, and that each 7; is a surjection. Notice that m;; o m; = m;
for every i < j. Clearly, H contains constant functions and separates points of K.
If h = h;om € H for some i € I, then also ah € H for every a € R, since
ah; € 'H;. Now, let hy,ho € H. Suppose hi = h;, o m;,, hg = h;, o m;, for some
i1,%2 € I and h;; € H;,, hy, € H;,. Let j € I be such that iq,i9 < j. Then
hy = h;, om; jom; and hg = h;, o m;,; o m; where hy, o7, j, hi, o m;y; € Hj. Now
it is easy to see that hy + hg € H, since H; is a linear space. Thus H is a function
space with each 7; being an admissible map.
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Remark 4.2. If (K;, H;) = (X;, A(X;)) where X; is a compact convex set for
every i € I, then the projective limit defined above is dense in A(K) as shown
in [13].

Lemma 4.3. Let (K;,H;), i = 1,2, be function spaces, ¢ : Ko — K1 admissible
map and x € Ka. If 1 € Mz(Hz), then op € M,y (Ha).

PrOOF: Choose h € Hy. Then

(pr)(h) = p(h o) = (hop)(x) = hp(z)),
since h o ¢ € Ha. (]

Observation 4.4. If ;€ MT(K), then (mu, m;j); jer forms a projective system
of measures.

Theorem 4.5. Let (u;,7;j); jer be a projective system of measures with y; €

ML(K;) for each i € I. Then there is a unique measure y = lim y; € M (K)
such that mp = p; for every i € I.

PROOF: See [8, Theorem 418M and Proposition 4180)]. O
Proposition 4.6. Let x = (2;);e; € K and yu € MY(K). Then p € My(H) if
and only if (m;uu, 7;); jer Is a projective system of measures with mju € Mg, (H;)
for each i € I.

PrOOF: First assume u € My (H). It follows from Lemma 4.3 that mu €
My, (H;) for each i € I, since each 7; is admissible, and from Observation 4.4
that this system is projective.

On the contrary, suppose mju € Mgy, (H;), i € I. Let h € H. Then h = hjo;
with h; € H; for some j € I. Thus

pi(h) = p(hj o mj) = (mjp)(hj) = hj(z;) = h(z). .

Corollary 4.7. Let x = (z;);er € K and let (115, 7;;); jer be a projective system
of measures with p; € My, (H;) for each i € I. Then p := lim p; € My (H).

Lemma 4.8. Let ¢ : (Ko, H2) — (K1, H1) be an admissible map. Then K¢(H1)o
p C ICC(HQ).

PRrROOF: Let k € K(H1). Choose x € Ko and p € Mg(Hz). Since gu €
M (z)(H1), we have

(kop)(@) = k(p(x)) < (pu)(k) = (ko ).

Thus ko p € K¢(H2). O
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Lemma 4.9. Let ¢ : (Ko, Ha) — (K1, H1) be an admissible map. Then A°(Hj)o
¢ C A°(Hz). In particular, | J;c; A°(H;) o m; C A°(H).

PrROOF: Follows from Lemma 4.8, since A°(H;) = K(H;) N (—K(H;)), i =1, 2.
O

Proposition 4.10. If H; is simplicial for every i € I, then |J;c; A°(H;) o m; is
dense in A°(H).

PRrROOF: Let a € A%(H) and € > 0. Since a € H, for every z € K there are
h,hi € H such that h; < a < h} and

a(z) —e < hy (v) < a(z) < hi(z) < a(z) +e.

These inequalities hold on some open neighbourhood U, of . By compactness,

we can choose Uy, ... ,Uy, covering K. Suppose that h; —and h;‘m depend
on coordinates i,,,i} € I, respectively, for m = 1,...,n. Let j € I be an
upper bound of the set {i,,,i;}" _;. Denote h™ := hy, V...V hy and bt :=

hi A...AhZ . Now we have h~ < a < h' and la—h~]|,la—h™]|| < e. Since both
h~,h" depend on coordinate j, using W.R.LP. for H; we find a; € A°(H;) such
that h~ < a;j om; < h™. Hence a; om; € ;e A°(H;) om; and |la — aj o7j|| <e.
O
Theorem 4.11. If ‘H; is simplicial for every ¢ € I, then H is simplicial.

PRrOOF: We show that A°(H) has W.R.LP. Let ai,...,aq € A°(H) be such
that a1 V as < as A aq. By Proposition 4.10, we may assume that ay,...,aq4 €
User A°(H;) o m; with ay, depending on coordinate iy, m =1,...,4. Let j € I
be an upper bound of i1, ... ,i4. Since a;,, m =1,... 4, depend on coordinate j,
from W.R.L.P. for H; there is a; € A°(H;) such that

a1 Vaz <ajom; <ag/ag.

By Lemma 4.9, a; o 7; € A°(H), which completes the proof. O

Proposition 4.12. Let ¢ : (K3, H2) — (K1, H1) be an admissible map. Then
¢(Chyy, K2) D Chyyy K.

PROOF: See [1, Proposition 1.5.20]. O
Proposition 4.13. Let ¢ : (K2, Ha) — (K1,H1) be an admissible map, where
‘H1 is simplicial. Then the following assertions are equivalent:

(1) (p(Ch'Hz KQ) = Ch'Hl Kla

(if) (ko )" =k* oy for every k € K°(Hy),
(iii) ¢ maps Ho-maximal measures onto Hj-maximal measures.



Products and projective limits of function spaces

PRrROOF: The proof of (i)=-(ii) is included in the proof of [15, Theorem 1.3].
Moreover, the proof mentioned above shows that (ii) is a sufficient condition
for ¢ to map maximal measures onto maximal measures. The last implication
(iii) = (i) is immediate. O

A convex versions of the next theorem can be found in [6, Theorem 14] and
[13, Theorem 2]. A proof for closed function spaces has been given in [10, Corol-
lary 4.13]. For the sake of completeness we include the proof using different
approach:

Theorem 4.14. Let © = (z;);c; € K. The following assertions hold.

(i) If x; € Chy, K; for everyi € I, then x € Chy K.

(ii) Suppose that 'H; is simplicial for everyi € I and m;j(Chyy; Kj) C Chyy, K
for every i < j, 4,j € I. Then v € Chy K if and only if z; € Chy, K;
for every i € I.

PROOF: First assume x; € Chyy, K; for every i € I. Let pn € My (H). According
to Proposition 4.6, (m;u,m;;); jer is a projective system of measures with m;u €
Mg, (H;) for each i € I. Thus m;u = ez, for each ¢ € I and from the uniqueness
of the projective limit of measures we see that y = lim (ex;, 7ij)i jer = €a-

Now assume z € Chyy K and the conditions of (ii) are satisfied. Choose i € I.
According to Corollary 2.4, it is enough to prove that k;(z;) = kf (x;) for every
k; € K¢(H;). So let k; € K¢(H;) and € > 0. Denote k := k; o m; € K(H). Since
x € Chy K, there is some h € H such that £ < h and k(z) < h(z) < k(z) + €.
Without loss of generality suppose that h = h; o m; for some j > i, j € I, and
h; € H;. Then (kjom;j)(x;) < hj(w;) < (k;jom;;)(w;)+e. Using these inequalities
and Proposition 4.13 we get

(ki o mij)(wy) = (ks o miz)* (25) < (ki o mij)(a;) + €.

Hence k] (x;) < k;(2;) 4 €. Since ¢ is arbitrary, we conclude that k;(z;) = k] (z;).
O
Example 4.15. This example shows that the characterization in Theorem 4.14(ii)
does not have to hold, if we omit the assumption of simpliciality, and also that
the converse to Theorem 4.11 is not valid.

Choose a sequence {gn}nen C (0,1) of real numbers such that ¢, — 0. For
every i € N set K; := {0} U{—qn, n}neny C R and

H, ::{feC(Ki);f(O):M,nzi,nem.
Let (K, H) := lim((K;, H;),1d;5); jen, where Id;; : K;j — K; denotes the identity
map. Clearly Chyy, K; = K;\{0} for every i € N. We claim that = := (0,0,...) €
Chy K. Indeed, choose 1 € Mg (H). By Proposition 4.6, m;u € Mo(H;) for every
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i € N and (m;,1d;;); jen is a projective system, so mju = 7;u for every i, j € N.
But the only measure representing 0 in all spaces (K;,H;), ¢ € N, is 9. Hence
p = lim (9,1d;;); jen = €z, which proves the claim. Using Theorem 4.14(i) we
conclude that Chy K = K.

Therefore the conclusion of Theorem 4.14(ii) does not hold and we also see
that the projective limit of non-simplicial spaces may be simplicial.

Example 4.16. Now we show that we cannot take the restriction of a product
space from Section 3 as the definition of the projective limit of function spaces, if
we want Theorem 4.14 to hold.

Let K; :=[-1,1] C R and H; := A(K;) for i = 1,2. Let K stand for the topo-
logical projective limit of the projective system (Kj,1d;;); j=1,2 (i.e., the diagonal
of K1 x K3) and define H := (H1 ® H2) [k-

Clearly all conditions of Theorem 4.14(ii) are satisfied. However, we can see
that 0 ¢ Chyy, K, i = 1,2, but (0,0) € Chy K, since f1 ® fo € H is an exposing
function of (0,0), where f;(x) =z, € K;, i = 1,2. The point (0, 0) is also in the
Choquet boundary of the restriction of any other product space, since H1 ® Ha
is the smallest product.

Lemma 4.17. Let ¢ : (Kg,H2) — (K1, H1) be an admissible map and let u,v €
MT(K3) be such that < v. Then pu = pv.

PRrROOF: Let k € K¢(H1). Since ko p € K¢(Hz), we have

(pu)(k) = p(k o p) < v(kop) = (pv)(k). .

Proposition 4.18. Suppose H; is simplicial for every i € I and wij(Cth K;) C
Chy, K; for every i < j,4,j € 1. Let p € MYK). Then p is H-maximal if and
only if m;u is H;-maximal for every i € I.

PrROOF: First assume that g is maximal and choose ¢ € I. According to Theo-
rem 4.14, 7;(Chy K) = Chy, K;. Using Proposition 4.13 we conclude that m;u
is maximal.

Conversely, let ;11 be maximal for every i € I. Let v € M!(K) be such that
@ 2 v. By Lemma 4.17, m;;n < m;v for every ¢ € I. Therefore m;u = m;v for every
i € I and from the uniqueness of the projective limit p = v. (Il

Definition 4.19. We say that J C I is cofinal, if for every i € I thereis j € J
such that ¢ < j.

Proposition 4.20. Let J C I be cofinal and let (K', H'):= lim ((K;, H3), Ti5)i jeJ-
Then

(a) there is a homeomorphism ¢ : K — K,

(b) ‘H is isometrically isomorphic to H/,
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(C) gf)(Ch’H K) = ChH/ K/,
(d) u € MY (K) is maximal if and only if ¢u is maximal,
(e) H is simplicial if and only if ‘H' is simplicial.
In particular, if there is the greatest element m € I, then previous statements
hold with (K, Hy,) in place of (K', H').

PROOF: (a) The canonical bijection ¢ : (z;);cr — (2;)ics is & homeomorphism
by standard results (see e.g. [5]).

(b) Mapping @ : f — fo ¢ is an isometrical isomorphism of C(K’) onto C(K).
Let us denote by 7; projections on K and by =, projections on K’. Suppose
h = hjowg- € H' for some hj € H; and j € J. Then ®(h) = ho¢ = hjo
7T;» o¢ = hjom; € H. Conversely, let h = h; om; € H for some h; € H; and
i € I. Choose j € J such that i < j and denote h; := h; o m;; € H;. Then
o l(h)=ho¢ l=hjomjo¢ ! =hjon)eH.

(c¢) Notice that the mapping ® above is also order preserving. The statement
follows easily from the characterization of the Choquet boundary (Corollary 2.4)
and properties of ®.

(d) Since ¢ is a homeomorphism, ¢ : MT(K) — M™*(K’) is a bijection. Now
we use Proposition 2.3. Suppose y is H-maximal and let k € K¢(H'). From the
proof of (b) we can see that ¢ is admissible map and (k o ¢)* = k* o ¢. Thus

() (k) = p(k o ¢) = p((k 0 §)%) = u(k™ o ¢) = () (k7).

Since k is arbitrary, maximality of ¢u follows. The converse is analogical.

(e) Let x € K. We claim that ¢ maps Mz(H) onto Mgy (H'). Indeed,
suppose € Mz(H) and let h € H' be arbitrary. Now (¢u)(h) = p(®(h)) =
®(h)(x) = h(¢(x)). Therefore pu € Md,(m)(H/). The converse is analogical.
Hence, using statement (d), ¢ maps maximal representing measures onto maximal
representing measures and the conclusion follows. O
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