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Abstract characterization of Orlicz-Kantorovich

lattices associated with an L0-valued measure
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Abstract. An abstract characterization of Orlicz-Kantorovich lattices constructed by a
measure with values in the ring of measurable functions is presented.

Keywords: Orlicz-Kantorovich lattice, vector-valued measure, Orlicz function

Classification: 46B42, 46E30, 46G10

1. Introduction

The development of the theory of integration for measures with values in the
algebra L0 of all real measurable functions has inspired the study of Banach
L0-modules of measurable functions. The theory of Lp-spaces associated with
a vector-valued measure is given in monographs [7], [10]. Precise description of
Orlicz-Kantorovich spaces LM (∇,m) associated with a complete Boolean algebra
∇, an N -function M and an L0-valued measure m defined on ∇ is given in
[13], [14], [15]. Spaces LM (∇,m) are important examples of Banach-Kantorovich
spaces (see, for example, [7], [8], [4] for definition and basic properties).

The abstract characterization of Banach lattices isomorphic to Lp-spaces is
well known (see, for example, [9]). The same is done for Orlicz spaces in [2].
One can expect similar results for Banach L0-modules Lp(∇,m) and LM (∇,m).
This problem was considered in [7] for Lp(∇,m). Here we solve this problem
for LM (∇,m).

We use terminology and notations from the theory of Boolean algebras from
[11], the theory of vector latices from [12], [5], the theory of vector integration from
[10], [8], the theory of lattice-normed spaces from [7], [8], and also terminology
for Orlicz-Kantorovich lattices from [13], [14].

2. Preliminaries

Let E be a vector lattice, E+ be the set of all non-negative elements from E.
Any element x ∈ E can be uniquely decomposed as x = x+−x−, where x+, x− ∈
E+ and x+ ∧ x− = 0. The element |x| = x+ + x− is called the absolute value
of x, and elements x+ and x− are called the positive and negative parts of x,
respectively. Elements x, y ∈ E are disjoint iff |x| ∧ |y| = 0.
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Let u ∈ E+. If no non-zero element is disjoint with u, then u is called a weak
order unit. Fix some weak order unit (if it exists) I. An element e ∈ E+ is called
a unitary element if e ∧ (I − e) = 0. The set ∇(E) of all unitary elements from
E is a Boolean algebra with respect to the order induced from E. A complement
in ∇(E) is given as I− e.

A vector lattice is called complete (σ-complete) if supA and inf A exist for
every (countable) bounded subset A.

Let E be a σ-complete vector lattice with weak unit I. For every x ∈ E, the
element ex := sup{I ∧ (n|x|) : n ∈ N} is unitary. It is called the support of
x. Define ext := e(tI−x)+ . The set {ext }t∈R is called a family of spectral unitary

elements of x. If xn ∈ E, x = inf xn, then ext = supn≥1 e
xn
t for all t ∈ R (see [12,

Lemma IV.10.2]).

Suppose that a σ-complete vector lattice E is of countable type, i.e. every set
of non-zero mutually disjoint elements from E is at most countable. Then E is
order complete. Moreover, for every bounded set A ⊂ E, there exists a subset
{xn}∞n=1 ⊂ A, such that supA = supn≥1 xn.

A Boolean algebra ∇ is called complete (σ-complete) if supA exists for every
(countable) subset A ⊂ ∇. Let E be a complete (σ-complete) vector lattice with a
weak unit. Then, the Boolean algebra ∇(E) (see above) is complete (σ-complete).
Evidently, the operation sup is the same in E and ∇(E). The decomposition of
a unit in Boolean algebra is an arbitrary set (eα)α∈A satisfying supα∈A eα = I,
eα 6= 0, eα ∧ eβ = 0, α 6= β, α, β ∈ A.

Let (Ω,Σ, µ) be a σ-finite measurable space. Let L0 = L0(Ω) be the algebra
of all real measurable functions on (Ω,Σ, µ) (functions equal a.e. are identified).
L0 is a complete vector lattice with respect to the natural order (x ≥ y if x(ω) ≥
y(ω) for almost all ω). The weak order unit is 1(ω) ≡ 1. The set ∇(Ω) of all
idempotents in L0 is a complete Boolean algebra.

The support ex of an element x ∈ L0 is also denoted by s(x). It is clear that
s(x) = χ{|x|>0}. Also, xs(x) = x. If xy = 0 then s(x)y = 0. In particular,

|x| ∧ |y| = 0 if and only if s(x)s(y) = 0.

Let e = χA ∈ ∇(Ω). Set eΩ = (A,ΣA, µ), where ΣA = {B ∩ A : B ∈ Σ}. The
rings L0(eΩ) and eL0(Ω) can be canonically identified. The Boolean algebras
∇(eΩ) and e∇(Ω) = {g ∈ ∇(Ω) : g ≤ e} can also be identified canonically. Define
the map µ : ∇(Ω) → [0,∞] as µ(e) = µ(A) if e = χA ∈ ∇(Ω). Obviously, µ is
a strongly positive (i.e. µ(e) > 0 for e 6= 0) countably additive σ-finite measure
on ∇(Ω).

A sequence {xn} ⊂ L0 converges locally with respect to a measure µ to the

element x ∈ L0 (notation: xn
l.µ
−→ x) if for anyA ∈ Σ with µ(A) <∞ the sequence

xnχA converges with respect to the measure to xχA. If µ(Ω) < ∞, then local
convergence with respect to the measure coincides with convergence with respect
to the measure. There exists a countable set of non-zero disjoint idempotents
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{en} ⊂ ∇(Ω) such that supn≥1 en = 1 and µ(en) < ∞. The algebra L0(Ω) is

canonically identified with the direct product
∏∞
n=1 L0(enΩ). Local convergence

with respect to the measure is now identified with convergence of each coordinate
with respect to the measure. L0(Ω) with this topology is a complete metrizable
topological vector lattice.

Now we define a Banach-Kantorovich space for an L0-valued norm.
Let E be a vector space over the field R. A mapping ‖ · ‖ : E → L0 is said to

be a vector (L0-valued) norm if it satisfies the following axioms:

1. ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = 0 (x ∈ E);
2. ‖λx‖ = |λ|‖x‖ (λ ∈ R, x ∈ E);
3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖ (x, y ∈ E).

A norm ‖·‖ is called decomposable or Kantorovich if the following property holds:

Property 1. If e1, e2 ≥ 0 and ‖x‖ = e1 + e2, then there exist x1, x2 ∈ E such
that x = x1 + x2 and ‖xk‖ = ek (k = 1, 2).

If property 1 is valid only for disjoint elements e1, e2 ∈ L0, the norm is called
disjointly decomposable or, briefly, d-decomposable.

A pair (E, ‖ · ‖) is called a lattice-normed space (shortly, LNS). If the norm
‖ · ‖ is decomposable (d-decomposable), then so is the space (E, ‖ · ‖).

A sequence {xn} ⊂ E (bo)-converges to x ∈ E if the sequence {‖xn − x‖}
(o)-converges to 0 in L0. A sequence {xn} is said to be a (bo)-Cauchy sequence

if supn,k≥m ‖xn − xk‖
(o)
−→ 0 as m → ∞. An LNS is called (bo)-complete if

any (bo)-Cauchy sequence (bo)-converges. A Banach-Kantorovich space (shortly,
BKS) is a d -decomposable (bo)-complete LNS. It is well known that every BKS
is a decomposable LNS.

Suppose that (E, ‖·‖) is an LNS and a vector lattice simultaneously. The norm
‖ · ‖ is called monotone if |x| ≤ |y| implies that ‖x‖ ≤ ‖y‖. BKS with a monotone
norm is called a Banach-Kantorovich lattice.

Let E be an L0-module. It is called a normal L0-module if

1. for any non-zero e ∈ ∇(Ω), there exists x ∈ E such that ex 6= 0;
2. for any decomposition of unit {en}∞n=1 ⊂ ∇(Ω) and any {xn}∞n=1 ⊂ E,

there exists x ∈ E such that enx = enxn for all n;
3. if x ∈ E and {en} ∈ ∇(Ω) is a disjoint sequence, then enx = 0 for all n

implies that (supn≥1 en)x = 0.

An ordered normal L0-module E is called an L0-vector lattice if for any x, y, z ∈
E, λ ∈ L0, λ ≥ 0, the inequality x ≤ y implies x + z ≤ y + z and λx ≤ λy.
The simplest example of an L0-vector lattice is L0 itself considered as a module
over L0.

Lemma 2.1. Let E be an L0-vector lattice, x, y ∈ E, x ≥ 0, y ≥ 0, e, g ∈ ∇(Ω),
eg = 0. Then the elements ex and gy are disjoint.
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Proof: Let z = ex ∧ gy. Since ex ≥ 0, gy ≥ 0, we have z ≥ 0 and it follows
that 0 ≤ ez ≤ egy = 0, i.e. ez = 0. Further, 0 ≤ (1 − e)z ≤ (1 − e)ex = 0, and
therefore (1− e)z = 0, i.e. z = ez = 0. �

Remark 2.2. If x, z ∈ E, e ∈ ∇(Ω) and 0 ≤ z ≤ ex, then z = ez.

Lemma 2.3. Let E be an L0-vector lattice with a weak order unit I. Then

(i) λI 6= 0 for any non-zero λ ∈ L0;
(ii) (λI) ∨ 0 = λ+I for any λ ∈ L0.

Proof: (1) Let λ ∈ L0, λ ≥ 0, λ 6= 0. Then λ ≥ εe for some e ∈ ∇(Ω), e 6= 0,
ε > 0. Hence, λI ≥ εeI. Let us show that eI 6= 0. Select x ∈ E such that
ex 6= 0. Let x = x+ − x−. Either ex+ 6= 0 or ex− 6= 0. Let ex+ 6= 0. Set
z = (ex+) ∧ I 6= 0. If eI = 0, then by Remark 2.2, 0 ≤ ez = z ≤ eI = 0,
i.e. z = 0. Therefore, eI 6= 0 and λI 6= 0. Let now λ be an arbitrary element
from L0, and λ = λ+ − λ−, moreover λ− 6= 0. Suppose λ+I − λ−I = 0. Then
λ−I = s(λ−)λ−I = s(λ−)λ+I = 0, which is not the case.

(2) It is clear that λ+I ≥ 0 and λ+I − λI = λ−I ≥ 0, i.e. λ+I ≥ λI ∨ 0. On
the other hand, if a = λI ∨ 0, then

a ≥ s(λ+)a ≥ s(λ+)λI = λ+I.

Hence, λ+I = (λI) ∨ 0. �

Submodules and morphisms are defined in a usual way.

Proposition 2.4. Let E be an L0-vector lattice and I be a weak order unit in E.
Then N = {λI : λ ∈ L0} is a normal L0-submodule in E and a vector sublattice
in E, canonically isomorphic to L0. Moreover, N(Ω) = {eI : e ∈ ∇(Ω)} is a
σ-Boolean subalgebra in ∇(E).

Proof: Only the second assertion needs to be proved. It follows from Lemma 2.1
that N(Ω) is a Boolean subalgebra of ∇.

Let {en} ⊂ ∇(Ω) and e = sup en. If g ∈ ∇ and g ≥ enI, then I−g ≤ (1−en)I,
and therefore en(I−g) ≤ en(1−en)I = 0. Hence, en(I−g) = 0. Then e(I−g) = 0
because E is normal. Hence, eI = supn≥1 enI. This means that N(Ω) is a σ-
subalgebra in ∇(E). �

Proposition 2.5. Let E be a σ-complete L0-vector lattice, I a weak order unit
in E and let {αn} ⊂ L0 be bounded from above (below). Then supn≥1(αnI) =
(supn≥1 αn)I (infn≥1(αnI) = (infn≥1 αn)I, respectively).

Proof: First, let us show that the equality

eαI := sup
n≥1

(I ∧ n|α|I) = s(α)I
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holds for any α ∈ L0. One can assume that α ≥ 0. Let gn = {α ≥ 1
n} be a spectral

idempotent for α in L0. It is obvious that gn ↑ s(α) and by Proposition 2.4,
gnI ↑ s(α)I.

Let fn = s(α) − gn and βn = nαfn, n = 1, 2, . . . . It is clear that 0 ≤ βn ≤
fn ≤ 1 and βngi = 0 for all i = 1, 2, . . . , n. Hence, 0 ≤ βnI ≤ fnI ≤ fiI ≤ I
as n ≥ i. Let an = supk≥n βkI and a = infn≥1 an. Since an ≤ fnI, we have
a ≤ fnI for all n = 1, 2, . . . . We thus have 0 ≤ gna ≤ gnfnI = 0, i.e. gna = 0,
n = 1, 2, . . . . Hence, s(α)a = (supn≥1 gn)a = 0. On the other hand, a ≤ fnI ≤

s(α)I. By Remark 2.2 we obtain a = s(α)a, and so a = 0. Thus, βnI
(o)
−→ 0.

Since 1 ∧ nα = gn + βn, it follows that I ∧ (nα)I = (1 ∧ nα)I = gnI + βnI.
Hence, eαI = (o)- lim(I ∧ (nα)I) = (o)- lim gnI + (o)- limβnI = s(α)I. Now let
us show that infn≥1(αnI) = (infn≥1 αn)I for any bounded from below sequence
(αn) in L0. Let α = infn≥1 αn, x = infn≥1 αnI.

Consider in E the families {ext }t∈R and {eαnIt }t∈R of spectral unitary elements
for x and αnI, respectively. By Lemma 2.3(ii) we have

eαnIt = e(tI−αnI)+ = e((t1−αn)I)+ = e(t1−αn)+I = s((t1− αn)+)I.

This together with Proposition 2.4 and [11, Lemma IV.10.2] imply that

ext = sup
n≥1

eαnIt = sup
n≥1

(s((t1− αn)+)I)

=
(

sup
n≥1

s((t1− αn)+)
)
I = s((t1− α)+)I = gαt ,

where {gαt }t∈R is the family of spectral idempotents for α in L0. Similarly, for

the family of spectral idempotents {eαIt }t∈R we have

eαIt = e(tI−αI)+ = s((t1− α)+)I = gαt I.

Hence, ext = eαIt for all t ∈ R.

It follows from the spectral theorem for σ-complete vector lattices [11, Theo-
rem IV.10.1] that x = αI, i.e. infn≥1(αnI) = (infn≥1 αn)I. If {αn} is a bounded
from above sequence from L0, then passing to the sequence {−αn}, we obtain
supn≥1(αnI) = (supn≥1 αn)I. �

Remark 2.6. Let E be a σ-complete L0-vector lattice with a weak order unit.
Then L0 can be identified with the normal L0-submodule N in E. In addition,
operations sup and inf are identical in L0 and N . The Boolean algebra ∇(Ω) is
a σ-subalgebra in ∇(E).
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3. Banach L0-vector lattices

Let E be a normal L0-module. An L0-valued norm ‖ · ‖ : E → L0 is said
to be compatible with the structure of the L0-module E (shortly, L0-norm) if
‖λx‖ = |λ|‖x‖ for any x ∈ E and λ ∈ L0. Then, the pair (E, ‖ · ‖) is called a
normed L0-module.

Let E be a normed L0-module. Let t be the topology of local convergence
with respect to the measure in L0. A sequence {xn} ⊂ E t-converges to x ∈ E if

‖xn − x‖
t

−→ 0. Cauchy sequences are defined as usual. A normed L0-module E
is called Banach (t-Banach) if any (bo)-Cauchy (t-Cauchy, respectively) sequence
in E (bo)-converges (t-converges, respectively). E is a Banach L0-module if and
only if it is a t-Banach L0-module.

Let E be a BKS over L0. It is possible to define a structure of L0-module on E.
This structure makes E a Banach L0-module. Vice versa, any Banach L0-module
E is a BKS over L0.

If E is a normed L0-module and simultaneously an L0-vector lattice with a
monotone norm, then E is called a normed L0-vector lattice. Any norm complete
L0-vector lattice is called a Banach L0-vector lattice. The class of Banach L0-
vector lattices coincides with the class of Banach-Kantorovich lattices over L0.

Let us give examples of Banach L0-vector lattices.

Suppose ∇ is a complete Boolean algebra. Denote by X(∇) the Stone com-
pactification of ∇. Let L0(∇) be the set of all continuous functions x : X(∇) →
[−∞,+∞] such that x−1({±∞}) is a nowhere dense subset of X(∇) (see [10, V,
§2]). Evidently, L0(∇) is a ring and an order complete vector lattice. The func-
tion 1, equal to 1 identically on X(∇), is a weak order unit in L0(∇). The
order ideal generated by the element 1 coincides with the space C(X(∇)) of all
continuous real functions on X(∇).

A mapping m : ∇ → L0 is called an L0-valued measure on ∇ if

1. m(e) ≥ 0 for any e ∈ ∇,
2. m(e ∨ g) = m(e) +m(g) if e, g ∈ ∇ and e ∧ g = 0,
3. if en ↓ 0, en ∈ ∇, then m(en) ↓ 0.

A measure m is called strongly positive if m(e) = 0, e ∈ ∇ implies e = 0.
Using Lebesgue construction, one can obtain an integral Im : x →

∫
xdm for

every strongly positive L0-valued measure m (see [10], [8]). There exists the
greatest order ideal L := L1(∇,m) in L0(∇) containing ∇ with the following
properties:

1. Ime = m(e) for any e ∈ ∇,
2. Im(ax+ by) = aImx+ bImy, x, y ∈ L, a, b ∈ R,

3. if xn, x ∈ L and xn ↑ x then Imxn
(o)
−→ Imx.

The mapping Im satisfying the above properties is uniquely defined. The norm on
L1(∇,m) is defined as ‖x‖1 =

∫
|x| dm. Now, (L1(∇,m), ‖ ·‖1) is a (bo)-complete
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LNS over L0 (see [10]).
We suppose that ∇(Ω) is a regular Boolean subalgebra in ∇, i.e. supA ∈ ∇(Ω)

for every A ⊂ ∇(Ω). We can always obtain this by considering the complete ten-
sor product ∇ ⊗ ∇(Ω) of the Boolean algebras ∇ and ∇(Ω) (see [2, VII, §7.2]).
One can canonically identify L0(Ω) with a subalgebra in L0(∇). It is also a reg-
ular vector sublattice in L0(∇). Moreover, sup and inf operations in L0(Ω) and
L0(∇) coincide. Hence, L0(∇) becomes an L0-vector lattice (multiplication of el-
ements from L0(∇) by elements from L0 coincides with the natural multiplication
in L0(∇)).

From now on, we require the measure m : ∇ → L0 to be compatible with the
module structure, i.e. m(ge) = gm(e) for all e ∈ ∇, g ∈ ∇. In this case, L1(∇,m)
becomes a BKS over L0. In addition, the following property holds:

Let x ∈ L1(∇,m) and α ∈ L0. Then, αx ∈ L1(∇,m) and
∫
αxdm = α

∫
xdm.

In particular, L0 ⊂ L1(∇,m) and
∫
αdm = αm(1) for all α ∈ L0 (see [6, 6.1.10]).

Let p > 1. Set

Lp(∇,m) := {x ∈ L0(∇) : |x|p ∈ L1(∇,m)} .

Then Lp(∇,m) is a normal L0-module and a Banach L0-vector lattice with

respect to the norm ‖x‖p := (
∫
|x|p dm)1/p (see [1, 4.2.2], or [2, VIII, §8.2]).

Now we give examples of L0-valued measures compatible with the module
structure.

Example 1. Let (Ω,Σ, µ) be a σ-finite complete measure space. Let A ⊂ Σ
be a σ-subalgebra. Denote by m(e) = E(e|A) the conditional expectation. It
is clear that m is a strongly positive L0(Ω,A, µ)-valued measure on ∇(Ω,Σ, µ)
compatible with the module structure.

Example 2. Let (Ω,Σ, µ) be the same space as in Example 1, X be another
complete Boolean algebra with a strongly positive scalar measure ν. Step map-
pings u : (Ω,Σ, µ) → X are defined in the usual way. Let Γ(X) be the set of all
step mappings u : (Ω,Σ, µ) → X . A mapping u : (Ω,Σ, µ) → X is said to be mea-
surable if there exists a sequence {un} ⊂ Γ(X) such that ν(u(ω)△un(ω)) → 0
as n → ∞ for a.e. ω ∈ Ω, Here, e△g = (e ∧ Cg) ∨ (Ce ∧ g), e, g ∈ X . Let
L0(Ω, X) be the set of all measurable maps from (Ω,Σ, µ) into X . For arbitrary
u, v ∈ L0(Ω, X) we set u ≤ v if u(ω) ≤ v(ω) for all ω ∈ Ω. Then, L0(Ω, X)
becomes a Boolean algebra. Its unit is 1(ω) ≡ 1X . Its zero is 0(ω) = 0X . The
complement is defined as (Cu)(ω) = C(u(ω)). Moreover (u∨v)(ω) = u(ω)∨v(ω),
(u ∧ v)(ω) = u(ω) ∧ v(ω), ω ∈ Ω.

Consider the ideal J = {u ∈ L0(Ω, X) : u(ω) = 0 a.e.}. Define L0(Ω, X) as a
Boolean factor-algebra L0(Ω, X)/J . L0(Ω, X) is a complete Boolean algebra (see
[1]). ∇(Ω) = {u ∈ L0(Ω, X) : u = χA, A ∈ Σ} is a regular Boolean subalgebra in
L0(Ω, X). If u ∈ Γ(X), then the scalar function ν ◦u ∈ L0(Ω). Hence, for any v ∈
L0(Ω, X), the function ν(v(ω)) = limn→∞ ν(vn(ω)) ∈ L0(Ω). Here vn ∈ Γ(X),
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ν(v(ω)△vn(ω)) → 0. So, we defined a mapping ν : L0(Ω, X) → L0(Ω). It is
an L0-valued strongly positive measure on L0(Ω, X) compatible with the module
structure (see [1]).

Let (E, ‖ · ‖ be a normed L0-vector lattice. A norm in E is called order con-

tinuous if for any {xn} ⊂ E+, xn ↓ 0 implies ‖xn‖
t

−→ 0.
The following order and topological properties of normed L0-vector lattices can

be proved in the same way as in the case of normed lattices.

Theorem 3.1. Let (E, ‖ · ‖) be a normed L0-vector lattice. Then

1. if {xn} ⊂ E is an increasing t-converging sequence, then

lim
n→∞

xn = sup
n
xn.

2. (Amemiya theorem). The following conditions are equivalent:
(a) E is a Banach L0-vector lattice;
(b) if {xn} is a (bo)-Cauchy increasing sequence from E+, then {xn}

(bo)-converges in E;
(c) if {xn} is a (bo)-Cauchy increasing sequence from E+, then there
exists x = (supn≥1 xn) ∈ E.

3. Let (E, ‖ · ‖) be a σ-complete normed L0-vector lattice with an order
continuous norm. Then E is of countable type. Therefore E is an order
complete vector lattice.

4. Let E be a Banach L0-vector space. The following conditions are equiva-
lent:

(a) E is an order complete lattice and ‖ · ‖ is order continuous.
(b) Any bounded sequence of positive mutually disjoint elements t-con-
verges to zero.

4. Orlicz-Kantorovich lattices associated with Orlicz L0-modulators

Let us start with some definitions.

Definition. ψ : [0,∞) → R is called an Orlicz function if it is a convex non-
negative function such that ψ(0) = 0 and ψ(t) > 0 for t > 0. An additional
requirement is the so called (δ2,∆2)-condition, i.e. ψ(2t) ≤ cψ(t) for all t ≥ 0 and
a constant c > 0.

Let x ∈ L0(∇). By definition, G = {t ∈ X(∇) : |x(t)| < ∞} ⊂ X(∇) is an
open and dense subset. Hence, we can define y ∈ L0(∇) as y = ψ ◦ |x| := ψ(|x|).
Define

Lψ := Lψ(∇,m) := {x ∈ L0(∇) : ψ(|x|) ∈ L1(∇,m)} .

It is clear that Lψ is a normal L0-submodule and a vector sublattice in L0(∇).
Let P(L0) = {λ ≥ 0 ∈ L0 : s(λ) = 1}. Obviously, for any λ ∈ P(L0) there

exists λ−1 ∈ P(L0).
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Lemma 4.1. Let x ∈ Lψ. There exists λ ∈ P(L0) such that

∫
ψ(λ−1|x|) dm ≤ 1.

Proof: Let λ0 =
∫
ψ(|x|) dm+ 1. It is clear that λ0 ∈ P(L0) and 0 ≤ λ−10 ≤ 1.

Since ψ(st) ≤ sψ(t) for all s ∈ [0, 1], we are done. �

Hence, we can define an L0-valued function

‖x‖(ψ) = inf

{
λ ∈ P(L0) :

∫
ψ(λ−1|x|) dm ≤ 1

}
.

Theorem 4.2. (Lψ, ‖ · ‖(ψ)) is a Banach L0-vector lattice.

We need some lemmas to prove Theorem 4.2.

Lemma 4.3. Let xn, x ∈ L0(∇), 0 ≤ xn ↑ x. Then ψ(xn) ↑ ψ(x).

The proof of this lemma is similar to that of Lemma 2.4 from [14].

Lemma 4.4. ‖x‖(ψ) is a monotone L0-norm on Lψ, i.e. (Lψ, ‖ ·‖(ψ)) is a normed
L0-vector lattice.

Proof: Obviously, ‖ · ‖ is monotone, convex and positive. Assume now that
‖x‖ = 0 for some x ∈  Lψ. Consider λ ∈ P(L0) such that

∫
ψ(λ−1|x|) dm ≤ 1.

Then, λ ∧ 1 ∈ P(L0) and 0 ≤ λ ∧ 1 ≤ 1. Obviously, (λ ∧ 1)−1|x| = λ−1|x|{λ <
1} + |x|{λ ≥ 1}. Hence, ψ((λ ∧ 1)−1|x|) = ψ(λ−1|x|){λ < 1} + ψ(|x|){λ ≥ 1}.
Therefore,

∫
ψ((λ ∧ 1)−1|x|) dm = {λ < 1}

∫
ψ(λ−1|x|) dm+ {λ ≥ 1}

∫
ψ(|x|) dm

≤ {λ < 1} +

∫
ψ(|x|) dm ≤ 1+

∫
ψ(|x|) dm.

However, ψ((λ ∧ 1)−1|x|) ≥ (λ ∧ 1)−1ψ(x). Therefore,

∫
ψ(|x|) dm ≤ (λ ∧ 1)

(
1+

∫
ψ(|x|) dm

)
.

Now, one can take infimum over all such λ and obtain
∫
ψ(|x|) dm = 0. Hence,

x = 0. �
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Lemma 4.5. Let x ∈ Lψ, e = 1− s(‖x‖(ψ)). Then

∫
ψ

((
‖x‖(ψ) + e

)−1
|x|

)
dm ≤ 1.

Proof: Obviously, s(x) = s(‖x‖(ψ)). Hence (1−e)|x| = |x|. Since L0 has count-

able type, then there exists a sequence {λn} ⊂ P(L0), such that
∫
ψ(λ−1n |x|) ≤ 1

and λn ↓= ‖x‖(ψ). Set αn = λn(1− e) + e, n = 1, 2, . . . . Then αn ↓ (‖x‖(ψ) + e)

and α−1n = (λ−1n (1 − e) + e) ↑ (‖x‖(ψ) + e)−1. Hence, ψ(α−1n |x|) ↑ ψ((‖x‖(ψ) +

e)−1|x|) (see Lemma 4.3). By the monotone convergence theorem (see [6, 6.1.5]),
we have

∫
ψ

((
‖x‖(ψ) + e

)−1
|x|

)
dm = sup

n≥1

∫
ψ
(
α−1n |x|

)
dm

= sup
n≥1

∫
ψ
((
λ−1n (1− e) + e

)
|x|
)
dm

= sup
n≥1

∫
ψ(λ−1n |x|) dm ≤ 1.

�

Proof of Theorem 4.2: Consider a (bo)-Cauchy increasing sequence {xn} ∈
(Lψ)+. Obviously, the sequence ‖xn‖(ψ) is a (o)-Cauchy sequence in L0. That is,

‖xn‖(ψ) ↑ α. Set en = 1− s(xn) and αn = ‖xn‖(ψ) + en. Then 0 ≤ αn ≤ α+ 1.

By Lemma 4.5,
∫
ψ(α−1n xn) ≤ 1. Therefore,

∫
ψ((α+1)−1xn) ≤ 1. The sequence

ψ((α+1)−1xn) ∈ L1 is monotone and L1-bounded. Hence, ψ((α+1)−1xn) ↑ y ∈
L1. Therefore, xn ↑ (α+ 1)ψ−1(y) ∈ Lψ. �

A Banach L0-vector lattice (Lψ, ‖·‖(ψ)) is called the Orlicz-Kantorovich space.
See examples after Theorem 5.1.

Denote Φ(x) =
∫
ψ(|x|) dm. It is easy to see that the mapping Φ : Lψ → L0

satisfies the following properties:

1. Φ(x) ≥ 0 and Φ(x) = 0 ⇔ x = 0;
2. Φ(x) ≤ Φ(y) if |x| ≤ |y|;
3. Φ(αx + (1− α)y) ≤ αΦ(x) + (1− α)Φ(y), α ∈ L0, 0 ≤ α ≤ 1;
4. Φ(2x) ≤ cΦ(x) for some constant c > 0;
5. Φ(x+ y) = Φ(x) + Φ(y) if x ∧ y = 0;
6. Φ(ex) = eΦ(x) for all e ∈ ∇(Ω);
7. Φ(t1) = ϕ(t)Φ(1) for all t ≥ 0, where ϕ : [0,∞) → [0,∞) is a scalar

function.
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Now we define an Orlicz L0-lattice. Let E be an L0-vector lattice with a weak
order unit I. A map Φ : E → L0 is called an Orlicz L0-modulator if Φ satisfies
properties 1–7. Obviously, Φ(x) = Φ(|x|) and Φ(αx) ≤ αΦ(x) for α ∈ L0, 0 ≤
α ≤ 1. The element Φ(I) is invertible in L0. Indeed, let e = s(Φ(I)). Then
Φ((1 − e)I) = (1 − e)Φ(I) = 0. Hence, (1 − e)I = 0 and e = 1. Properties 1–7
imply that ϕ is an Orlicz function satisfying the (δ2,∆2)-condition.

Set B(x) = {λ ∈ P(L0) : Φ(λ−1x) ≤ 1}. If λ = Φ(x) + 1, then Φ(λ−1x) ≤
λ−1Φ(x) ≤ 1. Hence B(x) is a non-empty set. For any x ∈ E, set ‖x‖Φ = inf{λ :
λ ∈ B(x)}.

Proposition 4.6. (E, ‖ · ‖Φ) is a normed L0-vector lattice.

Proof: Obviously, ‖ ·‖Φ is monotone, convex and positive. If ‖x‖Φ = 0, then re-
peating the proof of Lemma 4.4 and using properties of the Orlicz L0-modulator Φ,
we obtain x = 0. Let x, y ∈ E, λ1 ∈ B(x), λ2 ∈ B(y). Then

Φ((λ1 + λ2)
−1(x+ y)) = Φ(λ1(λ1 + λ2)

−1λ−11 x+ λ2(λ1 + λ2)
−1λ−12 y)

≤ λ1(λ1 + λ2)
−1Φ(λ−11 x) + λ2(λ1 + λ2)

−1Φ(λ−11 y) ≤ 1,

i.e. λ1 + λ2 ∈ B(x+ y). This means that B(x) +B(y) ⊆ B(x + y), and so

‖x+ y‖Φ ≤ ‖x‖Φ + ‖y‖Φ.

Let us now show that ‖ex‖Φ = e‖x‖Φ for any idempotent e ∈ L0 and x ∈ E.
Take λ, β ∈ P(L0) such that Φ(λ−1x) ≤ 1, Φ(β−1xe) ≤ 1. Then γ = βe+ λ(1−
e) ∈ P(L0), in addition γ−1 = β−1e+ λ−1(1− e) and

Φ(γ−1x) = Φ(γ−1xe) + Φ(γ−1x(1− e))

= Φ(β−1xe) + Φ(λ−1x(1− e))

= eΦ(β−1xe) + (1− e)Φ(λ−1x)

≤ e+ (1− e) = 1.

Hence, ‖x‖Φ ≤ γ and therefore e‖x‖Φ ≤ ‖ex‖Φ.
Since |ex| ≤ |x|, we have ‖ex‖Φ ≤ ‖x‖Φ. That is why e‖x‖Φ ≤ e‖ex‖Φ ≤

e‖x‖Φ, i.e. e‖x‖Φ = e‖ex‖Φ.
Further, if λ ∈ P(L0) and Φ(λ−1ex) ≤ 1, then Φ(β−1ex) = Φ(λ−1ex) ≤ 1 for

β = λe + ε(1− e). Hence ‖ex‖Φ(1− e) = 0 and ‖ex‖Φ = e‖ex‖Φ = e‖x‖Φ.
Let now α be an invertible element from L0. Then

‖αx‖Φ = inf
{
λ ∈ P(L0) : Φ(λ−1αx) ≤ 1

}

= inf
{
|α|γ : Φ(γ−1x) ≤ 1, γ = λ|α|−1 ∈ P(L0)

}
= |α|‖x‖Φ.
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If α is an arbitrary non-zero element from L0, e = 1 − s(α), then α + e is
invertible in L0, and therefore

‖αx‖Φ = ‖(α+ e)(1− e)x‖Φ = (|α| + e)‖(1− e)x‖Φ

= (|α| + e)(1− e)‖x‖Φ = |α|‖x‖Φ.

Thus, (E, ‖ · ‖Φ) is a normed L0-vector lattice. �

Definition. A norm-complete L0-vector lattice (E, ‖ · ‖Φ) is called an Orlicz
L0-lattice.

The Orlicz-Kantorovich space (Lψ, ‖ · ‖(ψ)) is a good example of Orlicz L0-

lattices.

Theorem 4.7. The Orlicz L0-lattice (E, ‖ · ‖Φ) is an order complete lattice, and
the L0-norm ‖ · ‖Φ is order continuous.

Proof: Consider a disjoint bounded sequence {xn} ⊂ E+. Since xn ≤ x ∈ E+,
we have

∑n
i=1 xi ≤ x. Using property 5, we obtain

∑n
i=1Φ(xi) ≤ Φ(x). Hence,

Φ(xn)
(o)
−→ 0. For any fixed i = 1, 2, . . . , Φ(2ixn)

(o)
−→ 0. The element λ =

Φ(x) + 1 ∈ B(x). Hence, ‖x‖Φ ≤ Φ(x) + 1. Therefore, ‖xn‖Φ ≤ 2−iΦ(2ixn) +

2−i1. Thus, (o)-lim‖xn‖Φ ≤ 2−i1 for any i. Hence, (o)-lim‖xn‖Φ = 0. By
Theorem 3.1.4, we are done. �

Lemma 4.8. Let ‖x‖Φ ≤ 1 and {‖x‖Φ = 1} = 0. Then Φ(x) ≤ ‖x‖Φ.

Proof: As in Proposition 2.7 from [13], one can choose λn ∈ B(x) such that
λn ↓ ‖x‖Φ. Let λ ∈ L0, λ ≥ 0, ‖x‖Φ ≤ λ ≤ 1 and {λ = ‖x‖Φ} = 0. Then, λ is
invertible. Set fn = {λ < λn}. Obviously, fn ↓ 0. We have

Φ
(
λ−1x

)
= Φ

((
λ−1n λnλ

−1
)
x
)

= fnΦ
(
λ−1n xλnλ

−1
)

+ (1− fn)Φ
(
λ−1n x

(
λnλ

−1 (1− fn)
))

≤ fnΦ
(
λ−1n xλnλ

−1
)

+ (1− fn)Φ(λ−1n x)

≤ fnΦ(λ−1n xλnλ
−1) + (1− fn).

Since fn ↓ 0, fnΦ(λ−1n xλnλ
−1)

(o)
−→ 0. After switching to (o)-limit, we obtain

Φ(λ−1x) ≤ 1. Since λ ≤ 1, we have λ−1Φ(x) ≤ Φ(λ−1x) ≤ 1.

Let αn = ‖x‖Φ+n−1(1−‖x‖Φ). Then ‖x‖Φ ≤ αn ≤ 1 and {‖x‖Φ = αn} = 0.
Hence Φ(x) ≤ αn, n = 1, 2, . . . and Φ(x) ≤ ‖x‖Φ. �
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Proposition 4.9. Let (E, ‖·‖Φ) be an Orlicz L0-lattice, yn ∈ E. Then ‖yn‖Φ
(o)
−→

0 if and only if Φ(yn)
(o)
−→ 0.

Proof: Let Φ(yn)
(o)
−→ 0. Then, ‖yn‖Φ

(o)
−→ 0 (see the proof of Theorem 4.7).

Set gn = {‖yn‖Φ < 1}. Since ‖yn‖Φ
(o)
−→ 0, we have gn

(o)
−→ 1. Obviously,

‖gnyn‖Φ = gn‖yn‖Φ ≤ 1 and {gn‖yn‖Φ = 1} = 0. By Lemma 4.8, Φ(gnyn) ≤

‖gnyn‖Φ = gn‖yn‖Φ
(o)
−→ 0. Since (1 − gn)

(o)
−→ 0, we have (1 − gn)Φ(yn)

(o)
−→ 0.

Hence, Φ(yn) = Φ(gnyn) + Φ((1− gn)yn)
(o)
−→ 0. �

Proposition 4.10. Let xn ↑ x. Then Φ(xn) ↑ Φ(x).

Proof: Obviously, supn≥1Φ(xn) ≤ Φ(x). Further, for any number a ∈ (0, 1], we

have x = (1 − a)xn + a(xn + a−1(x − xn)). Using properties of Φ, we obtain

Φ(x) ≤ (1 − a)Φ(xn) + aΦ
(
xn + a−1(x− xn)

)

≤ Φ(xn) + 2−1ac
(

Φ(xn) + Φ
(
a−1(x− xn)

))
.

By Theorem 4.7, ‖a−1(x− xn)‖Φ
(o)
−→ 0. By Proposition 4.9, Φ(a−1(x−xn)) ↓ 0.

Hence,

Φ(x) ≤ (o)- lim sup
n→∞

(
Φ(xn) + 2−1ac

(
Φ(xn) + Φ

(
a−1(x − xn)

)))

= (1 +
1

2
ac) sup

n≥1
Φ(xn).

Since a is arbitrary, we obtain Φ(x) ≤ supn≥1Φ(xn). �

5. Abstract characterization of Orlicz-Kantorovich L0-spaces

Definition (compare with [2]). An Orlicz L0-lattice (E, ‖ · ‖Φ) is called compo-
nent-invariant if

Φ(te) = Φ(e)Φ−1(I)Φ(tI)

for all t ≥ 0, e ∈ ∇.

The Orlicz-Kantorovich space (Lψ(∇,m), ‖ · ‖(ψ)) is a component-invariant

Orlicz L0-lattice. The reverse assertion is proved in Theorem 5.1. This can be
considered as an abstract characterization of Orlicz-Kantorovich spaces in the
class of Banach L0-vector lattices.
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Theorem 5.1. Let (E, ‖ · ‖Φ) be a component-invariant Orlicz L0-lattice. There
exists a strongly positive measure m on ∇, with values in L0, such that (E, ‖ ·‖Φ)
is isometrically isomorphic to the Orlicz-Kantorovich space (Lψ(∇,m), ‖ · ‖(ψ)).

Here ψ(t) · 1 = Φ(tI)Φ−1(I).

Proof: E can be identified (see [12]) with a normal vector sublattice in L0(∇) =
C∞(X(∇)) so that I coincides with the f ≡ 1. Moreover, e ∈ ∇ if and only if
e is a characteristic function of an open-closed set from X(∇). For any e ∈ ∇,
set m(e) = Φ(e). Obviously, m(e) ∈ L0, m(e) ≥ 0. If e ∧ g = 0, e, g ∈ ∇,
then m(e ∨ g) = m(e) + m(g). Clearly, m(e) = 0 if and only if e = 0. Let
{en} ⊂ ∇ and en ↓ 0. By Theorem 4.7, we have ‖en‖Φ ↓ 0. Proposition 4.9
implies Φ(en) ↓ 0. This means that m is a strongly positive measure on ∇ with
values in L0. Obviously, m(eg) = em(g). Hence, m is compatible with the module
structure.

Let x be a positive simple element from L0(∇), i.e. x =
∑n
i=1 λigi. Here,

λi ≥ 0 and gi ∈ ∇ are mutually disjoint. sup gi = I. Obviously, x ∈ E and
x ∈ Lψ(∇,m).

Using the component invariance of (E, ‖ · ‖Φ), we obtain

Φ(x) =

n∑

i=1

Φ(λigi) =

n∑

i=1

Φ(gi)Φ
−1(I)Φ(λiI) =

n∑

i=1

ψ(λi)m(gi)

=

∫ n∑

i=1

ψ(λi)gi dm =

∫
ψ

(
n∑

i=1

λigi

)
dm =

∫
ψ(x) dm.

Thus, ‖x‖Φ = inf{λ ∈ P(L0) : Φ(λ−1x) ≤ I} = inf{λ ∈ P(L0) :
∫
ψ(λ−1x) dm

≤ I} = ‖x‖(ψ) for any positive simple element x from L0(∇).

However, simple elements are dense in E as well as in Lψ. �

We now use Theorem 5.1 to construct examples of Orlicz-Kantorovich spaces.
Let (Ω,Σ, µ), (X, ν) be as in Example 2. Let Lψ(X, ν) be an Orlicz space

associated with (X, ν) and with the Orlicz function ψ satisfying the (δ2,∆2)-
condition. We denote by Γ(Lψ(X, ν)) the set of all step mappings u : (Ω,Σ, µ) →
Lψ(X, ν) having the form u =

∑n
i=1 xiχAi where xi ∈ Lψ(X, ν), Ai ∈ Σ, Ai ∩

Aj = ∅, i 6= j, i, j = 1, . . . , n, n ∈ N.
A mapping u : (Ω,Σ, µ) → Lψ(X, ν), is called measurable if there exists

a sequence {uk} ⊂ Γ(Lψ(X, ν)) such that ‖u(ω) − un(ω)‖Lψ(X,ν) → 0 as

n → ∞ for a.e. ω ∈ Ω. Let L0(Ω, Lψ(X, ν)) be the set of all measur-
able mappings from (Ω,Σ, µ) into Lψ(X, ν). Obviously, L0(Ω, Lψ(X, ν))
is an L0(Ω)-module, in addition ‖u(ω)‖Lψ(X,ν) is a measurable function on

(Ω,Σ, µ) for all u ∈ L0(Ω, Lψ(X, ν)). Consider an L0(Ω)-submodule J = {u ∈
L0(Ω, Lψ(X, ν)) : u(ω) = 0 a.e.} and denote by L0(Ω, Lψ(X, ν)) the factor-
module L0(Ω, Lψ(X, ν))/J . Then (L0(Ω, Lψ(X, ν)), ‖ · ‖) is a Banach L0-vector
lattice [3], where ‖ũ‖ = [‖u(ω)‖Lψ(X,ν)]

∼.
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The norm in Lψ(X, ν) is order continuous, and therefore gn, g ∈ X , ν(gn△g) →
0 implies that ‖gn − g‖Lψ(X,ν) → 0. Hence, the complete Boolean algebra

L0(Ω, X) from Example 2 is a subset of L0(Ω, Lψ(X, ν)). Moreover, the Boolean
algebra of unitary elements from L0(Ω, Lψ(X, ν)) with respect to the weak unit
1(ω) = 1X , ω ∈ Ω coincides with L0(Ω, X). It is clear that m(ẽ) = [ν(e(ω))]∼ is
a strongly positive L0-valued measure on L0(Ω, X) and m is compatible with the
module structure (see Example 2).

Theorem 5.2. The Banach L0-vector lattices L0(Ω, Lψ(X, ν)) and
Lψ(L0(Ω, X),m) are order and isometrically isomorphic.

Proof: Without loss of generality, one can assume that ψ(1) = 1. For any
u =

∑n
i=1 xiχAi ∈ Γ(Lψ(X, ν)), set

Φ0(u)(ω) =

∫
ψ(|u(ω)|) dν =

n∑

i=1

(∫
ψ(|xi|) dν

)
χAi(ω), ω ∈ Ω.

Let v ∈ L0(Ω, Lψ(X, ν)) and {un} be a sequence from Γ(Lψ(X, ν)) such that
‖v(ω)−un(ω)‖Lψ(X,ν) → 0 as n→ ∞ for a.e. ω ∈ Ω. Fix ω ∈ Ω for which ‖v(ω)−

un(ω)‖Lψ(X,ν) → 0. Let us show that limn→∞ Φ0(un)(ω) =
∫
ψ(|u(ω)|) dν. If

not, then there exist ε > 0 and a sequence {unk(ω)} such that

(1)

∣∣∣∣
∫
ψ(|u(ω)|) dν −

∫
ψ(|unk(ω)|) dν

∣∣∣∣ > ε, k = 1, 2, . . .

Choose a subsequence as = unks (ω) which is (o)-converging to u(ω) in Lψ(X, ν)
[11, VII, §2]. Then the sequence {ψ(as)} (o)-converges to ψ(u(ω)) in L1(X, ν),
which contradicts (1).

Thus there exists a limit

Φ0(v)(ω) :=

∫
ψ(|v(ω)|) dν = lim

n→∞

∫
ψ(|un(ω)|) dν = lim

n→∞
Φ0(un)(ω),

for a.e. ω ∈ Ω, in particular, Φ0(v) ∈ L0(Ω). Let Φ(ũ) = [Φ0(u)]∼. Clearly, Φ
is a component-invariant L0-modulator on L0(Ω, Lψ(X, ν)), in addition Φ(t1) =
ψ(t)Φ(1), t ≥ 0.

If ũ ∈ L0(Ω, Lψ(X, ν)), λ ∈ P(L0), then

Φ(λ−1ũ) ≤ 1⇔

∫
ψ(λ−1(ω)|u(ω)|) dν ≤ 1 a.e. ⇔

‖u(ω)‖Lψ(X,ν) ≤ λ(ω) a.e. ⇔ ‖ũ‖ ≤ λ.

Hence,

‖ũ‖ = inf{λ ∈ P(L0) : ‖ũ‖ ≤ λ} = inf{λ ∈ P(L0) : Φ(λ−1ũ) ≤ 1} = ‖ũ‖Φ.

Thus, (L0(Ω, Lψ(X, ν)), ‖ ‖) is a component-invariant Orlicz L0-lattice. In ad-
dition, (L0(Ω, Lψ(X, ν)), ‖ ‖) and Lψ(L0(Ω, X),m) are isometrically isomorphic
(Theorem 5.1). �
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Remark 5.3. If ψ(t) = tp, p ≥ 1, then L0(Ω, Lp(X, ν)) is isometrically isomor-
phic to Lp(L0(Ω, X),m).
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