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ON A NONCONVEX BOUNDARY VALUE PROBLEM
FOR A FIRST ORDER MULTIVALUED

DIFFERENTIAL SYSTEM

Aurelian Cernea

Abstract. We consider a boundary value problem for first order noncon-
vex differential inclusion and we obtain some existence results by using the
set-valued contraction principle.

1. Introduction

This paper is concerned with the following boundary value problem for first
order differential inclusions
(1.1) x′ ∈ A(t)x+ F (t, x), a.e. (I), Mx(0) +Nx(1) = η

where I = [0, 1], F (·, ·) : I × Rn → P(Rn) is a set-valued map, A(·) is a continuous
(n× n) matrix function, M and N are (n× n) constant real matrices and η ∈ Rn.

The present note is motivated by a recent paper of Boucherif and Chiboub ([1]),
where it is considered problem (1.1) with η = 0 and several existence results are
obtained under growth conditions on F (·, ·) by using topological transversality
arguments, fixed point theorems and differential inequalities.

The aim of our paper is to present two additional results obtained by the
application of the set-valued contraction principle due to Covitz and Nadler ([6]).
The approach we propose allows to avoid the assumption that the values of F (·, ·)
are convex which is an essential hypothesis in [1].

The first result follows a classical idea by applying the set-valued contraction
principle in the space of solutions of the problem. The second result is a Filippov
type theorem concerning the existence of solutions to problem (1.1). Recall that
for a differential inclusion defined by a lipschitzian set-valued map with nonconvex
values, Filippov’s theorem consists in proving the existence of a solution starting
from a given “quasi” solution. This time we apply the contraction principle in the
space of derivatives of solutions instead of the space of solutions. In addition, as
usual at a Filippov existence type theorem, our result provides an estimate between
the starting “quasi” solution and the solution of the differential inclusion. The
idea of applying the set-valued contraction principle in the space of derivatives of
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the solutions belongs to Tallos ([7, 9]) and it was already used for other results
concerning differential inclusions ([3, 4, 5] etc.).

For the motivation of study of problem (1.1) we refer to [1] and references
therein.

The paper is organized as follows: in Section 2 we recall some preliminary facts
that we need in the sequel and in Section 3 we prove our main results.

2. Preliminaries

In this short section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space and consider a set valued map T on X with

nonempty values in X. T is said to be a λ-contraction if there exists 0 < λ < 1
such that:

dH(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ X ,

where dH(·, ·) denotes the Pompeiu-Hausdorff distance. Recall that the Pompeiu-
-Hausdorff distance of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max
{
d∗(A,B), d∗(B,A)

}
, d∗(A,B) = sup

{
d(a,B); a ∈ A

}
,

where d(x,B) = infy∈B d(x, y).
The set-valued contraction principle ([6]) states that if X is complete, and

T : X → P(X) is a set valued contraction with nonempty closed values, then T (·)
has a fixed point, i.e. a point z ∈ X such that z ∈ T (z).

We denote by Fix(T ) the set of all fixed points of the set-valued map T . Obviously,
Fix(T ) is closed.

Proposition 2.1 ([8]). Let X be a complete metric space and suppose that T1, T2
are λ-contractions with closed values in X. Then

dH
(

Fix(T1),Fix(T2)
)
≤ 1

1− λ sup
z∈X

d
(
T1(z), T2(z)

)
.

Let I = [0, 1], let |x| be the norm of x ∈ Rn and ‖A‖ be the norm of any matrix
A. As usual, we denote by C(I,Rn) the Banach space of all continuous functions
from I to Rn with the norm ‖x(·)‖C = supt∈I |x(t)|, AC(I,Rn) is the space of
absolutely continuous from I to Rn and L1(I,Rn) is the Banach space of integrable
functions u(·) : I → Rn endowed with the norm ‖u(·)‖1 =

∫ 1
0
∣∣u(t)

∣∣ dt.
A function x(·) ∈ AC(I,Rn) is called a solution of problem (1.1) if there exists

a function f(·) ∈ L1(I,Rn) with f(t) ∈ F
(
t, x(t)

)
, a.e. (I) such that

(2.1) x′(t) = A(t)x(t) + f(t) , a.e. (0, 1) , Mx(0) +Nx(1) = η .

For each x(·) ∈ AC(I,Rn) define

SF,x :=
{
f(·) ∈ L1(I,Rn); f(t) ∈ F

(
t, x(t)

)
a.e. (I)

}
.

Let Φ(·) be a fundamental matrix solution of the differential equations x′ = A(t)x
that satisfy Φ(0) = I, where I is the (n× n) identity matrix.

The next result is well known (e.g. [1]).
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Lemma 2.2 ([1]). If f(·) : [0, 1]→ Rn is an integrable function then the problem

(2.2) x′(t) = A(t)x(t) + f(t) , a.e. (0, 1) , Mx(0) +Nx(1) = 0

has a unique solution provided det(M +NΦ(1)) 6= 0. This solution is given by

x(t) =
∫ 1

0
G(t, s)f(s) ds ,

with G(·, ·) the Green function associated to the problem (2.2). Namely,

(2.3) G(t, s) =
{

Φ(t)J(s) if 0 ≤ t ≤ s ,

Φ(t)Φ(s)−1 + Φ(t)J(s) if s ≤ t ≤ 1 ,

where J(t) = −
(
M +NΦ(1)

)−1
NΦ(1)Φ(t)−1.

If we consider the problem with nonhomogeneous boundary conditions, i.e.
problem (2.1), then it is easy to verify that its solution is given by

(2.4) x(t) = Φ(t)
(
M +NΦ(1)

)−1
η +

∫ 1

0
G(t, s)f(s) ds .

In the sequel we assume that A(·) is a continuous (n× n) matrix function, M
and N are (n× n) constant real matrices such that det

(
M +NΦ(1)

)
6= 0.

In order to study problem (1.1) we introduce the following hypothesis on F .

Hypothesis 2.3. (i) F (·, ·) : I ×Rn → P(Rn) has nonempty closed values and for
every x ∈ Rn F (·, x) is measurable.

(ii) There exists L(·) ∈ L1(I,R+) such that for almost all t ∈ I, F (t, ·) is
L(t)-Lipschitz in the sense that

dH
(
F (t, x), F (t, y)

)
≤ L(t)|x− y| ∀ x, y ∈ Rn

and d
(
0, F (t, 0)

)
≤ L(t) a.e. (I).

Denote L0 :=
∫ 1

0 L(s)ds and G0 := supt,s∈I ‖G(t, s)‖.

3. The main results

We are able now to present a first existence result for problem (1.1).

Theorem 3.1. Assume that Hypothesis 2.3 is satisfied, F (·, ·) has compact values
and G0L0 < 1. Then the problem (1.1) has a solution.

Proof. We transform the problem (1.1) in a fixed point problem. Consider the
set-valued map T : C(I,Rn)→ P

(
C(I,Rn)

)
defined by

T (x) :=
{
v(·) ∈ C(I,Rn); v(t) := Φ(t)

(
M +NΦ(1)

)−1
η

+
∫ 1

0
G(t, s)f(s) ds, f ∈ SF,x

}
.
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Note that since the set-valued map F
(
·, x(·)

)
is measurable with the measu-

rable selection theorem (e.g., [2, Theorem III.6]) it admits a measurable selection
f(·) : I → Rn. Moreover, from Hypothesis 2.3∣∣f(t)

∣∣ ≤ L(t) + L(t)
∣∣x(t)

∣∣ ,
i.e., f(·) ∈ L1(I,Rn). Therefore, SF,x 6= ∅.

It is clear that the fixed points of T (·) are solutions of problem (1.1). We shall
prove that T (·) fulfills the assumptions of Covitz-Nadler contraction principle.

First, we note that since SF,x 6= ∅, T (x) 6= ∅ for any x(·) ∈ C(I,Rn).
Secondly, we prove that T (x) is closed for any x(·) ∈ C(I,Rn).
Let {xn}n≥0 ∈ T (x) such that xn(·)→ x∗(·) in C(I,Rn). Then x∗(·) ∈ C(I,Rn)

and there exists fn ∈ SF,x such that

xn(t) = Φ(t)
(
M +NΦ(1)

)−1
η +

∫ 1

0
G(t, s)fn(s) ds .

Since F (·, ·) has compact values and Hypothesis 2.3 is satisfied we may pass
to a subsequence (if necessary) to get that fn(.) converges to f(·) ∈ L1(I,Rn) in
L1(I,Rn).

In particular, f ∈ SF,x and for any t ∈ I we have

xn(t)→ x∗(t) = Φ(t)
(
M +NΦ(1)

)−1
η +

∫ 1

0
G(t, s)f(s) ds ,

i.e., x∗ ∈ T (x) and T (x) is closed.
Finally, we show that T (·) is a contraction on C(I,Rn).
Let x1(·), x2(·) ∈ C(I,Rn) and v1 ∈ T (x1). Then there exist f1 ∈ SF,x1 such

that

v1(t) = Φ(t)
(
M +NΦ(1))−1η +

∫ 1

0
G(t, s)f1(s) ds , t ∈ I .

Consider the set-valued map

G(t) := F
(
t, x(t)

)
∩
{
x ∈ Rn;

∣∣f1(t)− x
∣∣ ≤ L(t)

∣∣x1(t)− x2(t)
∣∣} , t ∈ I .

From Hypothesis 2.3 one has

dH
(
F (t, x1(t)), F (t, x2(t))

)
≤ L(t)

∣∣x1(t)− x2(t)
∣∣ ,

hence G(·) has nonempty closed values. Moreover, since G(·) is measurable, there
exists f2(·) a measurable selection of G(·). It follows that f2 ∈ SF,x2 and for any
t ∈ I ∣∣f1(t)− f2(t)

∣∣ ≤ L(t)
∣∣x1(t)− x2(t)

∣∣ .
Define

v2(t) = Φ(t)
(
M +NΦ(1)

)−1
η +

∫ 1

0
G(t, s)f2(s) ds , t ∈ I ,
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and we have∣∣v1(t)− v2(t)
∣∣ ≤ ∫ 1

0
‖G(t, s)‖ ·

∣∣f1(s)− f2(s)
∣∣ ds ≤ G0

∫ 1

0
|f1(s)− f2(s)|ds

≤ G0

∫ 1

0
L(s)

∣∣x1(s)− x2(s)
∣∣ ds ≤ G0L0‖x1 − x2‖C .

So, ‖v1 − v2‖C ≤ G0L0‖x1 − x2‖C .
From an analogous reasoning by interchanging the roles of x1 and x2 it follows

dH
(
T (x1), T (x2)

)
≤ G0L0‖x1 − x2‖C .

Therefore, T (·) admits a fixed point which is a solution to problem (1.1). �

The next theorem is the main result of this paper. As one can see it is, in fact,
no necessary to assume that F (·, ·) has compact values as in Theorem 3.1.

Theorem 3.2. Assume that Hypothesis 2.3 is satisfied and G0L0 < 1. Let
y(·) ∈ AC(I,Rn) be such that there exists q(·) ∈ L1(I,R+) with d

(
y′(t)−A(t)y(t),

F (t, y(t))
)
≤ q(t), a.e. (I). Denote µ = My(0) +Ny(1).

Then for every ε > 0 there exists x(·) a solution of problem (1.1) satisfying for
all t ∈ I∣∣x(t)−y(t)

∣∣ ≤ 1
1−G0L0

sup
t∈I
|Φ(t)(M+NΦ(1))−1(η−µ)|+ G0

1−G0L0

∫ 1

0
q(t) dt+ε .

Proof. For u(·) ∈ L1(I,Rn) define the following set valued maps

Mu(t) = F
(
t,Φ(t)(M +NΦ(1))−1η +

∫ 1

0
G(t, s)u(s) ds

)
, t ∈ I ,

T (u) =
{
φ(·) ∈ L1(I,Rn); φ(t) ∈Mu(t) a.e. (I)

}
.

It follows from the definition and (2.4) that x(·) is a solution of problem
(1.1)–(2.2) if and only if x′(·)−A(·)x(·) is a fixed point of T (·).

We shall prove first that T (u) is nonempty and closed for every u ∈ L1(I,Rn).
The fact that the set valued map Mu(·) is measurable is well known. For example
the map t → Φ(t)

(
M + NΦ(1)

)−1
η +

∫ 1
0 G(t, s)u(s) ds can be approximated by

step functions and we can apply in [2, Theorem III.40]. Since the values of F are
closed with the measurable selection theorem ([2, Theorem III.6]) we infer that
Mu(·) admits a measurable selection φ. One has∣∣φ(t)

∣∣ ≤ d(0, F (t, 0)
)

+ dH

(
F (t, 0), F (t,Φ(t)(M+NΦ(1))−1η +

∫ 1

0
G(t, s)u(s) ds)

)
≤ L(t)

(
1 +

∣∣Φ(t)
(
M +NΦ(1)

)−1
η
∣∣+G0

∫ 1

0
|u(s)| ds) ,

which shows that φ ∈ L1(I,Rn) and T (u) is nonempty.
On the other hand, the set T (u) is also closed. Indeed, if φn ∈ T (u) and

‖φn − φ‖1 → 0 then we can pass to a subsequence φnk such that φnk(t)→ φ(t) for
a.e. t ∈ I, and we find that φ ∈ T (u).

We show next that T (·) is a contraction on L1(I,Rn).
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Let u, v ∈ L1(I,Rn) be given and φ ∈ T (u). Consider the following set-valued
map:

H(t) = Mv(t) ∩
{
x ∈ Rn;

∣∣φ(t)− x
∣∣ ≤ L(t)

∣∣∣ ∫ 1

0
G(t, s)

(
u(s)− v(s)

)
ds
∣∣∣} .

From Proposition III.4 in [2], H(·) is measurable and from Hypothesis 2.3 ii) H(·)
has nonempty closed values. Therefore, there exists ψ(·) a measurable selection of
H(·). It follows that ψ ∈ T (v) and according with the definition of the norm we
have

‖φ− ψ‖1 =
∫ 1

0
|φ(t)− ψ(t)| dt ≤

∫ 1

0
L(t)

(∫ 1

0
‖G(t, s)‖ ·

∣∣u(s)− v(s)
∣∣ ds) dt

=
∫ 1

0

(∫ 1

0
L(t)‖G(t, s)‖ dt

)∣∣u(s)− v(s) = big| ds ≤ G0L0‖u− v‖1 .

We deduce that
d
(
φ, T (v)

)
≤ G0L0‖u− v‖1 .

Replacing u by v we obtain

dH
(
T (u), T (v)

)
≤ G0L0‖u− v‖1 ,

thus T (·) is a contraction on L1(I,Rn).
We consider next the following set-valued maps

F1(t, x) = F (t, x) + q(t)B , (t, x) ∈ I × Rn ,

M1
u(t) = F1 =

(
t,Φ(t)(M +NΦ(1))−1µ+

∫ 1

0
G(t, s)u(s) ds

)
,

T1(u) =
{
ψ(·) ∈ L1(I,Rn); ψ(t) ∈M1

u(t) a.e. (I)
}
, u(·) ∈ L1(I,Rn) ,

where B denotes the closed unit ball in Rn. Obviously, F1(·, ·) satisfies Hypothesis
2.3.

Repeating the previous step of the proof we obtain that T1 is also aG0L0-contraction
on L1(I,Rn) with closed nonempty values.

We prove next the following estimate

(3.1) dH
(
T (u), T1(u)

)
≤ sup
t∈I

∣∣Φ(t)
(
M +NΦ(1)

)−1(η − µ)
∣∣L0 +

∫ 1

0
q(t) dt .

Let φ ∈ T (u) and define

H1(t) = M1
u(t)∩

{
z ∈ Rn;

∣∣φ(t)− z
∣∣ ≤ L(t)

∣∣Φ(t)
(
M +NΦ(1)

)−1(η−µ)
∣∣+ q(t)

}
.

With the same arguments used for the set valued map H(·), we deduce that
H1(·) is measurable with nonempty closed values. Hence let ψ(·) be a measurable
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selection of H1(·). It follows that ψ ∈ T1(u) and one has

‖φ− ψ‖1 =
∫ 1

0

∣∣φ(t)− ψ(t)
∣∣ dt ≤ ∫ 1

0

[
L(t)

∣∣Φ(t)
(
M +NΦ(1)

)−1(η − µ)
∣∣

+ q(t)
]
dt ≤

∫ 1

0
L(t)|Φ(t)(M +NΦ(1))−1(η − µ)|dt+

∫ 1

0
q(t)

≤ L0 sup
t∈I

∣∣Φ(t)
(
M +NΦ(1)

)−1(η − µ)
∣∣+
∫ 1

0
q(t) dt .

As above we obtain (3.1).
We apply Proposition 2.1 and we infer that

dH
(

Fix(T ),Fix(T1)
)

≤ L0

1−G0L0
sup
t∈I

∣∣Φ(t)
(
M +NΦ(1)

)−1(η − µ)
∣∣ 1
1−G0L0

∫ 1

0
q(t) dt .

Since v(·) = y′(·) − A(·) y(·) ∈ Fix (T1) it follows that there exists u(·) ∈
Fix (T ) such that for any ε > 0

‖v − u‖1 ≤
L0

1−G0L0
sup
t∈I

∣∣Φ(t)
(
M +NΦ(1)

)−1(η − µ)
∣∣

+ 1
1−G0L0

∫ 1

0
q(t) dt+ ε

G0
.

We define x(t) = Φ(t)
(
M +NΦ(1)

)−1
η +

∫ 1
0 G(t, s)u(s) ds, t ∈ I and we have∣∣x(t)− y(t)

∣∣ ≤ ∣∣Φ(t)
(
M +NΦ(1)

)−1(η − µ)
∣∣

+
∫ 1

0
‖G(t, s)‖ ·

∣∣u(s)− v(s)
∣∣ ds ≤ sup

t∈I

∣∣Φ(t)(M +NΦ(1))−1(η − µ)
∣∣

+ G0L0

1−G0L0
sup
t∈I

∣∣Φ(t)
(
M +NΦ(1)

)−1(η − µ)
∣∣+ G0

1−G0L0

∫ 1

0
q(t) dt+ ε

≤ 1
1−G0L0

sup
t∈I

∣∣Φ(t)
(
M +NΦ(1)

)−1(η − µ)
∣∣+ G0

1−G0L0

∫ 1

0
q(t) dt+ ε ,

which completes the proof. �

Remark 3.3. Taking into account Hypothesis 2.3 ii) the assumptions in Theorem
3.2 is satisfied by y(·) = 0 and q(·) = L(·).
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