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1. Introduction 

In some branches of physics (optics, quantum dispersion theory, communica
tion theory) there occurs a problem which may be mathematically formulated 
as follows: 

Let g(v) be a physically important function of a real variable v. Suppose 
g(v) is not directly accesible to measurement, but the modulus of its Fourier 
transformation y(x) is measurable (x is a real variable). As y(x) is generally 
complex function y(x) = | y(x) | e ' ^ it will be possible to obtain g(v) as the 
inverse Fourier transformation of y(x) if we construct the phase 0(x) of the 
function y(x). 

The solving of this problem is trivial in the case that g(v) is real and symme
tric with respect to a fixed point v0, i.e. g(v0 -(- v) = g(v0 — v). In this case 

+ oo +Jv 

y(x) = / g(v) ei2nvz dv = ei2ftxv» f g(/n + v0) ei2n'M dfi = ei2nxv« | y(x) \, (I) 
— oo —Av 

where 2Av is the width of the function g(v). We see that in this case the phase 
of the function y(x) is 0(x) = 2nxv0. 

In the most of physically important problems g(v) is an one-side function, 
i.e. we may write 

g(v) = 0 v < 0 (2) 
or a finite function, i.e. 

g(v) = 0 | v | > a (3) 
where a is a real number. 

This conditions allowed us to continue the function y(x) analytically over 
the upper half complex plane eventually over the whole complex plane; then 
we can deduce (on the base of Cauchy integral) the relations between the real 
and imaginary part of the function y(x) (Hilbert transformations, dispersion 
relations). As it is necessary to obtain a relation between \y(x) j and phase 
0(x) for the solving of the up formulated problem, it is usual to apply the 
dispersion relations on the function In y(x) = In | y(x) \ ~f i&(x) [9]. 
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Let us quote some authors who worked in this region. J. S. Toll [1] has 
studied the question of a connection between causality and the dispersion 
relations (his work is attended more on the quantum theory of dispersion). 
E. Wolf [2] formulated this problem in optics as a problem of determination 
of the energetic spectrum from the measurement of the degree of coherence 
(i.e. the visibility of the interference patterns). Wolf showed that this problem 
is uniquely soluable in the case that y(z) has no complex zeros in the upper 
half plane (it is the case of the blackbody radiation [3]). The important step 
in the solving of this problem with respect to the possibility of complex zeros 
in the region of analyticity was given by introducing the most general form 
of unimodular analytical signal [4]. The problem of analyticity from the 
standpoint of Fourier formulation of the optical imaging theory with respect 
to the condition (3) is considered by O'Neil and Walther [5], [6] and the 
relation between the amplitude and phase effect of an optical system on the 
image of an object structure with respect to (3) was dealt with in [7]. The 
complex work on this problem was given by P. Roman and A. S. Marathay [8] 
where is this problem moreover transferred on a some nonlinear eigenvalue 
problem. 

In this work we shall give another way of deducing the relation between 
| y(x) | and &(x) based on the solving of a some singular integral equation 
of the Cauchy type by the method given by N. I. Muschelisvili [10]. Then we 
shall deduce the general formula for the spectrum of the function y(x) [i.e. 
for g(v)] with the use of the general unimodular analytical signal which allowed 
us to expand y(z) as the product of a function y0(z) which has no zeros in the 
region of analyticity and so called factors of Blaschke containing zero points. 
On the base of this formula we shall show that the requirement of real spectrum 
g(v) leads to the symmetrical distribution of zero points with respect to the 
imaginary axis (it was shown by another way in [8]). At the end of this work 
we shall take interest in some connections between the unicity of the solution 
of this problem and moments of spectrum. 

2. Reconstruction of the phase in the case that y(z) lias no complex zeros 

Let us suppose that the condition (2) is valid and that J y(z) j tends to zero 
at least as \z\~x for | z | -> oo. Let moreover the function y(z) is quadraticly 
integrable on the real axis (this requirement is ensured by the finitness of 

energy, i.e. f [g(v)]z dv < oo and by the equation f [g(v)]2, dv = j \ y(x) j2 da:). 
0 '' 0 — oo 

Then for the real and imaginary part of the function y(x) we may write the 
Hubert transformations [II] 

R e y W = l p f I n ^ - W , (4, 
' ' 71 J X X 

r / v l r. í ReV(V) , , /r\ 
Im y(x) =-= P i , n '- dx'. (5) 

•JI J X X 
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On t h e base of this re lations we can get t h e relat ions between modu lus | y(x) \ 
a n d t h e phase @(x) of t h e function 

y(x) = | y(x) i e^x\ (6) 
I t is valid t h a t 

! y(x) ! = V[ReWJF+ TWto-f1 (V 
a n d 

S u b s t i t u t i n g from (8) to (4) we obta in 

I m y(x] 

tgФ(. >(x) Я J X — X ;-.>. 

This is a singu lar integra l equat ion of t h e Cauchy t y p e for t h e f u n c t i o n / ^ ) = 
= I m y(x). We shall solve this equat ion with t h e aid of t h e m e t h o d given b y 
Muschelisvili [10]. We shall suppose all functions are satysfying t h e Lipschitz 
condit ion. Firs t , we shall deduce t h e auxi l iary formu las of Sochotzki—P leme l j : 

Let us consider t h e function ip(z) ana lytica l in the upper half p lane inc luding 
t h e real axis, which m a y be represented in t h e integra l form 

(10) ,<*) = + ff<^d,'. 
2m J x —• z 

Using t h e symbolical ident i ty 
t™vhe = P(v)±,lid{X)' (») 
f>0 

where P denotes t h e principa l va lue of Cauchy a n d d(x) is Dirac ' s del ta function, 
we obta in from (10) Sochotzki—Plemel j formu las 

W+(x)~-W-(x)=f(x), (12) 

f+(x) + w~(x) =JjP f j - ^ dx'. (13) 

where y>+(x) a n d ip (x) are t h e b o u n d a r y values of t h e function ip(z) on t h e 
real axis from t h e upper a n d lower half p lane respective ly.*) 

Let us r e t u r n now to t h e equat ion (9). We shall denote 

A{x) = WW) 
*) If f(x) satisfies the Lipschitz condition, ip(z) may be continually extended on the 

real axis from the upper and lower half plane. 
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so t h a t we m a y write (9) in t h e form 

+ oo 

A(x)f(x) + - ~ f 4^'- dx' = 0. (14) 
111 J X X 

Subst i tu t ing from (12) a n d (13) we obta in 

A(x) {ipHx) — V~(x)} + {y>+(x) + y>~(x)} = 0. (15) 

Hence, if y(z) has no zeros in t h e upper half p lane*) we get 

[In y>(x)]+ - [In y>(x)]~ = In ^f^\ -= * x0(x). (16) 

This equat ion will be satisfied with t h e analytica l function 

/•W'),.,„i FWL&, (17) 
. . , 1 ( І2Ф(X') , 1 ( Ф( 
ln гp(z) = — ^ / - - 7 - - — dж' - — / — -r

 2 Я Î J л; — 2 ж J x -

1 / IS **' 
v ( « ) - - e W - - « > * Z . (18) 

F r o m (12) with respect t o (11) we have 

/(ar) = v + («) — y>-(%) = 2* sin ^ j e " ~» ' . (19) 

With regard t o t h e fact t h a t we are solving the homogeneous equat ion, a solu
t ion (19) is de termined a p a r t from t h e cons tant . We shall choose this c o n s t a n t 

so t h a t for 0 = — it would be f(x) = 1. Hence 

/(:r) = I m y(x) = sin ^ ) e ' ~ °° (20) 
a n d from (8) 

I p / f l d , 

Re y(x) = COH 0(x) e'' - » . (21) 

W i t h respect t o (7) we have finally 

|y(a?) | = e J C — * . . (22) 

yj (x\ . j 

*) In this case the function In ,-••+ is not changed after the circulation around 
A{x) + 1 

tho conture and henco it is unambiguous 
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This relation allowed us to compute the amplitude of the function y(x) 
when the phase &(x) is known. For the solving of the above formulated problem 
it is necessary to have the relation which permits to compute the phase when 
the amplitude is known. Such expression may be obtained by the inversion 
of (22). On the base of the Sochotzki — Plemelj formulas the validity of this 
relation may be proved: If for the functions G(x) and H(x) satisfying the Lip-
schitz condition holds 

G(x)=\p f 11{^}-dx' (23) 
m J x —• x 

then 

H(x)= XP f °r
{X^- dx' (24) 

m J x — x ' 

On the base of these relations it follows from (22) 

l\n\y(X)\=XpJ -^-M (25) 
* m J , x — x 

and finally 

*&)=—* jH^**- (2«) 
This is the required expression for the determination of the phase when the 
modulus is known. 

3. The phase reconstruction in the case of existence of complex zeros of the 
function y (z) 

The formula (26) gives us the phase only in'the case that the function y(z) 
has no zeros in the upper half plane, because, if some zeros occured, 
the function In | y(z) \ would have the singularities and (26) would not be 
valid. It was shown in [4], that the most general function regular in the upper 
half plane and unimodular on the real axis can be represented by 

A„(z) = e^YlB,(z) (27) 
A = l 

where c is a real nonnegative constant, Bk(z) is the Blaschke-iactor defined by 

Bt{z) = I " - $ (^8) 
z zk 

where zk is an arbitrary point in the upper half of the complex z-plane. On the 
base of (27) we can express the general function y(z) having zeros in the points 
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zk. of the upper half plane as the product of a function y0(z) which has no zeros 
and for which the results of the preceeding section are valid, and the function 
An(z) which is determined by the positions of zeros, i.e. 

y{z) = y0{z)e**<«U Zf^-. (29) 
t-i z — zk 

On the real axis it will hold 
| y(x) | - | y0(x) |, (30) 

but the phase of the function y(x) will be given 

0(x) = 0o(x) + > arg X Zt + 2ncx 
LJ x — zk 

(31) 

wThere 0o(x) is so called minimal phase determined by the expression (26). 
Therefore we may also write 

+ oo n 

0(x) = l-P f h.\ylxJl dx> + V a r g
 x —1*. + 2ncx. (32) 

n J x — x LA x — z* 
—<» . i-=--i 

The last term on the right causes the shifting of the whole spectrum g(v) 
on the constant value c; hence it does not affect the spectral profile and may 
be dropped from our considerations. The second term on the right of 
(32) shows us that our task will be uniquely soluable only in the case that 
we shall know the positions of all the zero points zk of the function y(z). As y(z) 
is the function which we want to reconstruct, we cannot know a priori the 
positions of its zeros. On the other hand we shall show in the next that some 
restrictions on the zeros 'distribution may be derived on the basis of some 
physical assumptions. 

4. The influence of some physical conditions on the positions of zeros of y(z) 

We shall study in this part, how the distribution of zeros will be affected by 
the natural physical assumptions that the spectrum g(v) is real and nonnegative. 
This question was investigated by another way in [8]. 

The condition that the spectrum is real 

g(v) --= g*(v) (33) 

may be formulated with the aid of the function y(x) as the relation of crossing-
svmmetrv 

y(x) = y*(—x) (34) 

which express the function y(x) for negative values of the argument with the 
aid of the positive values. 
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To determine, how will this conditions affect on the spectrum g(v) let us 
write (the exponential term is dropped) 

y(*) - YM n - ^ S - (35) 

fc=] x • zk 

and for the Fourier transformation of this function we have 

g(v) = f y0(x) n I ;* e-«— dr. ' (36) 

If we write 

}'o(̂ ) = / J7o(") e'**** d " 
o 

we obtain from (36) 

(37) 

+ oo +00 

g(v)= f gMdџ j Д f £ | e*-**'/--.•)<!#. (38) 

Now it will be necessary to compute the integral according to x. This integral 
(denoted J) we shall compute with the use of the Cauchy theorem. Let lis write 

££-̂  = l + ? ! _ - £ = 1 + «,,..), (39) 

where 

X — - .cjj. 

Then 

n ^--"S = n [i + «t(*)] = i + -V Y «*(*) + 
ifc = 1 X Zk k : X 1 ! LU 

7 = 1 

£ V «•(,;) XI(X) I . . . + - i - £ £ - • • ^ O^C) 0^)1 • • • *.,(X) (41) 

We shall suppose firstly that /i > v. With this assumption it is necessary to 
enclose the integration conture over the upper half plane; of course here the 
function under the integral sign has no singularities and therefore J — 0 in 
this case. 
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Let us consider now the case ft ^ v. F r o m (41) we have 

J = f f\ [1 + ock(x)] e^nxiu- v) dx = 

= 6{fi - v) | J | ^ «,(*;) + - i £ ^ a,(,;) a,(;r) + . . . 

' " + "T X X ' " ' S ^.Ifflfj ••• a '^) j e'2^'^^ da;. (42) 

The integrat ion couture mus t be enclosed over the lower half plane now and 
with t he use of the residual theorem we obta in 

J ----- 6(JU - v) — 2ni y (z* — z,) el" 2-̂ *<t<~ "> — 
^_j ' 

~"~"2jri S .S ^^ (2* ~2/) e?'2 *̂( "̂) - • • -

i 

+ 2» I I • • • I -Ш__^1-К) е—<-

Hence 

(43) 

J - Ô(fi — v) - 2m £ (z* - z?.) e
i 2 - ^ - " ' | l + -A- £ a,(z*) + . . . 

? = 1 ' /#=? 

•••+•(»--î)i ^ • • • I a i < L ^ . i l ) } - = 

/ , . . . . .<••+?• 

- «Ŝ u — v) -- 2m y (z* - z,) e ' 2 » ^ " "> f i [1 + a/r(z*)] (44) 
La kdpj 
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a n d we have the result 

J = d(u - v) - 2m J (z* ~ z , ) e**"*' -> 0 " l " 1 7 ^ - • (45) 

The subst i tut ion (45) in to (38) gives us 

9(v) = gM — 2m. Y (z* — z,) e ~ i ^ > f l Z i - : = 4 - f 9M ei2n*m <-/*• (46) 
LA k^j Zf — zfc J 
7 = 1 o 

The formulas (45) a n d (46) are the generalisation of the formulas (2.5) and (2.6) 
from [8]. I t is obvious t h a t according to the original assumpt ion we have again 
g(v) == 0 for v < 0. 

For the next considerations let us denote 

S{Zf) = i ( z * - z , ) f l - t - A - = A, + **/. ( j = 1, 2, . . . n) (47) 
fc^j z;/ — zA. 

where A?-, B? are real. F rom (47) it may be verified t h a t as long as for every j 
there exists I ^ j so t h a t z?- = —z* then 

£{zy.} = S*{z,} (j + /) (48) 
is valid, i.e. 

Af = An B}= - B , (j + / ) . (49) 

The condition (33) gives us with the use of (46) a n d (47) 

^ 8{zf) e - ' w | </„(/*) e f - w d / i = £ #*{%} e^»V j pj(/i) e -****• d/i.(50) 

/--=! 0 ? = 1 0 

According to (48) it is obvious t h a t this ident i ty will be fulfilled if for every j 
on the left there exists I on the r ight so t h a t zi = —z*. I t m a y be noted t h a t 
we shall gain t he same result by pu t t ing I m g(v) = 0 directly from (46). If we 
write Zj = a,} + ibf ((if, b} real) it mus t hold 

I m I \ (Af + iBj) e - - "^(eos 2nvaj — i sin 2xtvaj) I g0(p) e2nlibl (cos 2nf.iaj + 

; = 1 0 

+ i sin 2TTfiUf) á/x \ = 0 (51) 

a n d consequently 

\ e 2«i'6_, J ( ^ c o s 27ri'ff7 + Bf sin 2nvaj) j g0(/x) e-*t*i sin 2̂ /ťCř7- d/ť + 

j - i o 

+ (B?- cos 27ivaf Af sin 27rm?-) / g0(fi) e2n'íb> cos 2 7 ^ 4 ^ 1 = 0. (52) 

d 
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It is obvious according to (49) that for every j there must exist I so that a^ = 
= —a,, fy = b,, i.e. again z} = —z*. Hence zero points must be distributed 
symmetricly with respect to the imaginary axis or must lay on this axis. 
According to representation (29) it means that the poles corresponding to these 
zeros of the function y(z) in the lower half plane are distributed symmetricly 
with respect to the imaginary axis, too. Besides this, there may exist other 
poles y(z) in the lower half plane, we have no information about. 

We have seen that the requirement the spectrum is real admitted the 
existence of zero points in the upper half plane including the imaginary axis. 
We shall see now that the requirement of nonnegative spectrum g(v) > 0 
excludes zeros on the imaginary axis. Let us suppose that y(z) has the zero in 
the point z = ia (a > 0 is real). Then the Fourier transformation gives us 

y(ia) = І g( v) e~*"va áv > 0 (53) 

and consequently z = ia, cannot be the zero point. 
The condition that the spectrum is nonnegative leads moreover to some 

nonlinear eigenvalue problem as it was shown in [8]. 

5. The unicity of the phase reconstruction problem and moments of spectrum 

In quantum theory of decay there occurs a problem of the similar type we 
have formulated here. Chalfin [12] studied the connection between the first 
order moment of spectrum and soluability of this problem. We shall try to 
generalise and apply his methods on our optical case. 

Let us consider the function y(x) = M(x) eiifw where M, N are real functions. 
Let it be possible to continue analyticaly this function over the upper half 
plane, let on the real axis the relation of crossing-symmetry 

y(x) = y*(—x) [M(x) = M(~~x), N(x) = —- N{—x)] (54) 

be valid, let y(0) = 1, 0 < M(x) ^ 1 and moreover let | In y(z) | ^ A \ z \l, 
|3K00 

I < In — 1; ] In y (z) \ ^B\z \l, I > In — 1, (A, B > 0). 
|z|-*0 

We shall compute the integral 

J-èí^ъ <»sl>' < 5 5 > 

where the integration couture is formed by the real axis and a half circle with 
the center in the origin and with a radius E. With respect to the above formul-

162 



ated assumptions the integral over the half-circle vanishes with R -> oo; 
with the use of (54) we have 

1 f M * ) 1 T\nM(x) i fN(x) 
• J Yn J x*"-aX ~ 2n J a**- dx + Yn J ^ T "" ~ 

1 F\nM(x), 1 F\nM(x) 
- i n } •-&--** = -;} ^-- Ax. (56) 

—oo 0 

With the aid of the integration per partes we obtain 

j _ _ I hm L L__ f r'M dz /67> 
2n (2n — \) z™-*\^ 2n{2n — I) J y\z) z*n~* ' K ' 

c c 
The first term here is equal to —i — , ' — r where TijR) is the 

(2n — 1) It2"-1 

number of zero points of the function y(z) inside the region determined by C. 
For R -> oo this expression vanishes. Using the residual theorem and the 
theorem on the number of zeros and poles (we suppose the zeros are single) 
we have from (57) with R -> oo 

r _ _ • r YW rn~2), _ L _ v J - /58v 
2(2n — 1)! L y(z) Jo ^ 2n— 1 Z J Z*"-1 ' * ' 

where the summation is taken over the all zero points zr of the function y(z) 
in the upper half plane. According to (56) 

2(2n~iy. I y(z) J„ + i h T - 1 Z z ? : T ~ Jt J ~ > ' ~ d :C ' (59> 
J" 0 

Hence separating the real and imaginary parts we have 

1 r [ y'(z) l<2»-2) ! ^ I m ^ - 1 1 A n i f (x) j , _ x 

- 2 W " l T ! I m V 7 5 ) " J o + 2 , = l Z J V T T S ^ ^ i r J ™ ^ d " ( 6 0 ) 

r t) 

and 1 [ y'(z) 1<2»--) 1 v ; ReZ2n-i 

2^r=-nyiKeLW)l ^~i Z K I 2 ^ ~ ~ ( ' 
But it holds 

y'_(x) __ i f » . 
y(aO - Jf(a) + ^ {X)' { } 

M'(x) As-.^r-—/is an odd, jY'(a;) an even function, is Jf(ar) » \ / 

E e f i | > r J § [ f » = 0 , I m M ] < 2 - 2 ' = A — ( 0 ) . (63) 
I 7(2) jo [. J I ( 2 ) Jo, L r(z) Jo 
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Moreover also In y(0) == 0, With the use of (63) we get from (60), (61) and (62) 

N<2«-i>(0) . 1 v Imzf- 1 __ 1 f\nM(x) 
~ 2(2% = T j l + 277= 1 Z fzjW1^ "" T J " ~ ^ " ' (64) 

V Re z?"-1 

V . ^ ^ , ^ 0 (65) 

As z, == ~-z*, (k # 0 it holds 

Re zf-1 = — Re zf-1, | z, | = | z J (66) 

and we see that the condition (65) requires the symmetrical distribution of 
zeros with respect to the imaginary axis. 

Let us compute now the (2n — If order moment of spectrum of the 
function In y(x), i.e. 

u2n-x - ^ J v*n~l ( f \ny(x)e-»* dx\ dv. (67) 

After the changing of the order of integration we have 

foe -1-00 +<» 

!*zn~i = I U\y(x)dx~- J v2n~l e~ivx dv = v"2"-1 J d<2,l~]\x) In y(x) <Lc (68) 

where (5(2n-1,(:r) is the (2n—1)*- order derivative of the Dirac's delta function. 
The integration per partes of (68) gives us 

u - (=1)K - - T&& *--«(*) d* - (^l)n+1 [ - M F (69) 

With respect to (63) 

/"fct-i = (—i)"+i-y<ft-i>(o) (70) 

Instead of (64) we are getting 

J_ f \nM(x) __ __^ 1 Y J m á! ! 1 

TI J o;2" ~l j 2(2% - l ) !~ h2n— i Zi |^j-(-«-D-
(71) 

This expression gives us the relation among the behaviour of the modulus of 
the function at the surroundings of zero and at infinity, the moment of the 
spectrum of the function In y(x) and the number and a distribution of zero 
points of y(z) in the upper half plane. 

If n — 1 we have according to (69) 

l*x - -iy'(0) (72) 
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because y(0) = 1 and for the Ist order moment of the spectrum of y(x) it holds 

-j oo | oo -i-aj +00 

(x)x = — - I v l I y(ic)e~'"v*da;| dv = / y(a;)da; • I v e~ivx dv =. 

= » f y(ar)d'(a;)dr-=--ty'(O) (73) 

and consequently a>x = //j and from (71) the relation follows given in [12] 

1 Г ln M(x) __ __ a>. ү Im zт 

"T J ~ï5 ~úx- lГ + ZT-Tľ (74) 

From this relation with respect to 0 < JL(.>;) < 1 and Im zr > 0 it follows 
that the minimal value of the moment a)x is 

a n d 

2 C Jn i l í » , 
< ' " = — - - o dx > 0 

TI J a;2 

2 f Jn M(x) . , n V h"zr 

TTJ ~ Í - "daí + 2Zuri» 

= 7 > ì 

(76) 

is valid. 

If we reconstruct the phase of the function y(x) with the use of the dispersion 
relation under the assumption that the Is' order moment of the function y(x) 
will be minimal, the function y(z) will not have zeros in tlie upper half 
plane and the reconstruction is unique. The phase of the function y(x) is 
determined by (26). 

The existence of the integral (74) leads to the existence of the moment <ox 

and vice versa. 

6. Con elusion 

In this paper we haVe given the general solution of the problem of the phase 
reconstruction. We have shown that this solution was unique only in the case 
that tlie function y(z) has no zeros in tlie upper half plane. If there are some 
zeros of y(z) the resulting phase depends on tlie positions of these zeros. We 
have studied how the natural physical condition of real and nonnegative spec
trum leads to the requirement of a symmetrical distribution of zeros ac
cording to the imaginary axis and nonexistence zeros on the imaginary axis. 
It seems to be true that it will not be possible to determine the positions of 
zeros without any other physical information. It is possible that these informa
tion might be given by measurements of moments of spectrum. This question 
was not yet investigated in detaiJ. 
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On the other hand there exists another way for finding some additional 
restrictions on the function y(z) in the optical case [when y(x) is the optica! 
autocorrelation function] from some knowledge of the statistical fluctuations 
in the beam as it was suggested by Wolf and Mandel [2], [13] in a connection 
with the analysis of the experimental results [14]. From the knowledge of the 
radiation mechanism of the light source it would be possible to gain the informa
tion on zeros [for example Kano and Wolf have proved [3] that for the 
blackbody radiation the function y(z) has no zeros in the upper half plane]. 

There exists still one possibility of solving this problem. As it was mentioned 
at the end of the part 4, this problem may be transferred on some nonlinear 
eigenvalue problem. The solution of this mathematical task leads then to 
defining some regions in the upper half plane in which no zeros can occure. 

At present it cannot be decided which of the methods given above will 
be more succesful. In every case it is obvious that this is the problem, a definite 
solution of which would have certain importance not only in optics but in 
many other branches of physics. 

The authors wish to thank Professor B. Havelka for the possibility of 
discussing this problem in his seminar on actual problems in optics. 
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S H R N U T I 

REKONSTRUKCE FÁZE A PODMÍNKA ANALYTIČNOSTI 

J A N P E Ř I N A A J O S E F T I L L I C H 

V práci byl studován problém rekonstrukce fáze fyzikálně významné 
funkce y(z) z její amplitudy na základě analytičnosti této funkce v horní polo
rovině. Řešení tohoto problému dovoluje určit energetické spektrum z na
měřených hodnot kontrastu interferenčních proužků. Bylo ukázáno, že problém 
je řešitelný jednoznačně jen v případě že funkce y(z) nemá nuly v horní polo
rovině. Dále byla diskutována otázka vlivu některých fyzikálních podmínek 
na rozložení nulových bodů a souvislost jednoznačné řešitelnosti problému 
s požadavky kladenými na momenty spektra. 
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