Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Jaroslava Jachanová

On permutable quadratic inversions in plane with two common singular points

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica, Vol. 11 (1971), No. 1, 29--36

Persistent URL: http://dml.cz/dmlcz/119951

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1971
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Katedra algebry a geometrie přirodovědecké fakulty
Vedouci katedry: Doc. RNDr. Josef Šimek

ON PERMUTABLE QUADRATIC INVERSIONS IN PLANE WITH TWO COMMON SINGULAR POINTS

JAROSLAVA JACHANOVA.

(Received 31. 3. 1970)

This text refers to the work of S. S. Subramanyam "On Permutable quadratic involutions'" [1]. The author deals there with involutary quadratic transformations and conditions under which two or more involutions are permutable. In section 6.2 the author says that two quadratic inversions with two common singular points can be permutable if one of the common points is the centre for both inversions. Consequently any case is excluded where the centres of both inversions are different and the remaining two singular points of one inversion coincide with the remaining two singular points of the second inversion. But, even in such a case the quadratic inversions can be permutable.

§ 1.

There are two types of quadratic involutory transformations (shortly quadratic involutions):
A. A quadratic involution with three distinct singular points in which to each singular point there exists a corresponding principal line not passing throught it. This is a relationship of polar conjugated points with respect to the pencil of conics.
B. A quadratic involution with three distinct singular points in which to one singular point (called the centre) there exists a corresponding principal line not passing through it and to each of the remaining singular points corresponds a principal line passing through it. This is a relationship of points which are polar conjugated with respect to the conic of invariant points and collinear with a centre of involution. This type of quadratic involution is called the quadratic inversion.
Notation: $I(A)$ will be used to denote the transformation of the element A with the aid of the mapping I. The product I_{2}, I_{1} means to apply the involution I_{1} first and I_{2} next. $J_{(A B C)}$ implies a quadratic involution with the singular points A, B, C; if a quadratic inversion is in question, the centre is underlined: $I_{(A B C)}$.

Theorem 1. A quadratic involution is uniquely determined if its singular points and a pair of self-corresponding points are given. (See [2]. page 616, theorem a) paragraph 257.)

Let us first pay attention to some general properties of the permutable point transformations which will be used for two quadratic inversions later on.

Lemma 1. Let A be an invariant point of the transformation T, and T^{\prime} a transformation permutable with T for which the point A is not the singular point. Then $T^{\prime}(A)=$ $=B$ will be an invariant point of the transformation T also.

$$
\left.\begin{array}{ccc}
T(A)=A & T T^{\prime}=T^{\prime} T \quad T^{\prime}(A)=B \quad T T^{\prime}(A)=T(B) \\
T^{\prime} T(A)=T^{\prime}(A)=B
\end{array}\right\} \begin{aligned}
& \text { that is } \\
& T(B)=B
\end{aligned}
$$

Lemma 2. The product of two involutions is an involution if, and only if both involutions are permutable with each other. Any two permutable involutions together with their product and the identity form the Klein's four-group.

$$
I^{\prime}=I^{\prime} I \Leftrightarrow I I^{\prime}=\left(I I^{\prime}\right)^{-1}
$$

Lemma 3. Let I and I' be two permutable involutions and a point C being singular for neither of them. Then for points $I(C)=A$ and $I^{\prime}(C)=B$ holds true: $I \cdot I^{\prime}(A)=$ $=I^{\prime} . I(A)=B$.

Lemma 4. Any transformation permutable with either of the two given transformations will be permutable together with their product regardless of the order.

$$
\begin{gathered}
T_{1} \cdot T_{2}=T_{2} \cdot T_{1} \quad T_{1} \cdot T_{3}=T_{3} \cdot T_{1} \quad T_{1} \cdot\left(T_{2} \cdot T_{3}\right)=\left(T_{1} \cdot T_{2}\right) \cdot T_{3}= \\
=\left(T_{2} \cdot T_{1}\right) \cdot T_{3}=T_{2} \cdot\left(T_{1} \cdot T_{3}\right)=T_{2} \cdot\left(T_{3} \cdot T_{1}\right)=\left(T_{2} \cdot T_{3}\right) \cdot T_{1} .
\end{gathered}
$$

§ 3.

There exist two possible cases for a pair of permutable quadratic inversions with two common singular points. In the first case one of the common singular points is the centre of both inversions (see [1] page 177, par. 6.2). In the second case just the centres of both inversions are different and the remaining two singular points are for both inversions common. A pair of permutable quadratic inversions with a common centre and with one more singular common point is called position I, and a pair of permutable quadratic inversions with two common singular points, neither being the centre of either inversion, is called position II.

Theorem 2. Two quadratic inversions $I_{1\left(A B_{1} C\right)}$ and $I_{2\left(A B_{2} C\right)}$ are in position I if and only if the third singular point of one inversion is the invariant point of the other inversion.

Proof:

1. Let $I_{1} I_{2}=I_{2} I_{1}, I_{2} I_{1}\left(B_{1}\right)=I_{2}\left(B_{1} C\right)=B_{1} C$. Thus there must be $I_{1} I_{2}\left(B_{1}\right)=B_{1} C$, that is $I_{2}\left(B_{1}\right)=I_{1}\left(B_{1} C\right)=B_{1}$. Analogous $I_{1}\left(B_{2}\right)=B_{2}$.
2. Let $C=(1,0,0), A=(0,0,1), B_{1}=(0,1,0), B_{2}=\left(m_{1}, m_{2}, m_{3}\right) ; I_{2}\left(B_{1}\right)=B_{1}$, $I_{1}\left(B_{2}\right)=B_{2} \quad m_{1} m_{2} m_{3} \neq 0$.

Then $I_{1\left(A B_{1} C\right)}$ will be expressed by:

$$
\begin{align*}
& \varrho x_{1}=m_{1}^{2} x_{2}^{\prime} x_{3}^{\prime} \\
& \varrho x_{2}=m_{2} m_{3} x_{1}^{\prime} x_{2}^{\prime} \tag{1}\\
& \varrho x_{3}=m_{2} m_{3} x_{1}^{\prime} x_{3}^{\prime}
\end{align*}
$$

and $I_{2\left(A B_{2} C\right)}$ by:

$$
\begin{align*}
& \varrho x_{1}=m_{1} x_{2}^{\prime}\left(m_{3} x_{1}^{\prime}-m_{1} x_{3}^{\prime}\right) \\
& \varrho x_{2}=m_{3} x_{2}^{\prime}\left(m_{2} x_{1}^{\prime}-m_{1} x_{2}^{\prime}\right) \tag{2}\\
& \varrho x_{3}=m_{3} x_{3}^{\prime}\left(m_{2} x_{1}^{\prime}-m_{1} x_{2}^{\prime}\right)
\end{align*}
$$

Combining $I_{2} I_{1}$ and $I_{1} I_{2}$ gives in both cases the same result, namely a quadratic inversion $I_{3\left(B_{1} B_{2} C\right)}$ which can be represented by:

$$
\begin{align*}
& \varrho x_{1}=m_{1} x_{3}^{\prime}\left(m_{2} x_{1}^{\prime}-m_{1} x_{2}^{\prime}\right) \\
& \varrho x_{2}=m_{2} x_{2}^{\prime}\left(m_{3} x_{1}^{\prime}-m_{1} x_{3}^{\prime}\right) \tag{3}\\
& \varrho x_{3}=m_{3} x_{3}^{\prime}\left(m_{3} x_{1}^{\prime}-m_{1} x_{3}^{\prime}\right)
\end{align*}
$$

All the three inversions I_{1}, I_{2}, I_{3} and the identity E form the Klein's four-group.
Theorem 3. Two quadratic inversions $I_{1\left(A B C_{1}\right)}$ and $I_{2\left(A B C_{2}\right)}$ are in the position II if and only if $I_{1}\left(C_{2}\right)=I_{2}\left(C_{1}\right)=D_{3}$ holds true. The product of both inversions gives the quadratic involution $J_{3\left(A B D_{3}\right)}$.

Proof:

1. If P is an arbitrary point of the line $A B$, different from poits A, B, then $I_{2} I_{1}(P)=$
$=I_{2}\left(C_{1}\right)$ and $I_{1} I_{2}(P)=I_{1}\left(C_{2}\right)$ hence, if $I_{1} I_{2}=I_{2} I_{1}$ then $I_{1}\left(C_{2}\right)=I_{2}\left(C_{1}\right)$.
2. If for any given inversion I_{1} the inversion I_{2} changes $I_{1}\left(C_{2}\right)$ and C_{1}, then $I_{2} I_{1}$ and $I_{1} I_{2}$ are quadratic involutions with the same singular points A, B, D_{3} possessing the points C_{1} and C_{2} as a self-corresponding pair; consequently $I_{2} I_{1}=I_{1} I_{2}=$ $=J_{3\left(A B D_{j}^{2}\right)}$. (Theorem 1.)
Let $A=(0,0,1), B=(0,1,0), C_{1}=(1,0,0), C_{2}=\left(m_{1}, m_{2}, m_{3}\right)$, then the inversion I_{1} can be expressed by:

$$
\begin{align*}
& \varrho x_{1}=a x_{2}^{\prime} x_{3}^{\prime} \\
& \varrho x_{2}=x_{1}^{\prime} x_{2}^{\prime} \quad a \neq 0 \tag{4}\\
& \varrho x_{3}=x_{1}^{\prime} x_{3}^{\prime}
\end{align*}
$$

In the inversion $I_{2\left(A B C_{2}\right)}$ the point $B=(0,1,0)$ must correspond to the line $B C_{2}$ having the equation $m_{3} x_{1}^{\prime}-m_{1} x_{3}^{\prime}=0$ and the point $A=(0,0,1)$ must correspond to the line $A C_{2}$ having the equation $m_{2} x_{1}^{\prime}-m_{1} x_{2}^{\prime}=0$ that is, it holds:

$$
\begin{align*}
& \varrho x_{1}=b\left(m_{2} x_{1}^{\prime}-m_{1} x_{2}^{\prime}\right)\left(m_{3} x_{1}^{\prime}-m_{1} x_{3}^{\prime}\right), \\
& \varrho x_{2}=\left(m_{2} x_{1}^{\prime}-m_{1} x_{2}^{\prime}\right)\left(a_{1} x_{1}^{\prime}-a_{2} x_{3}^{\prime}\right), \tag{5}\\
& \varrho x_{3}=\left(m_{3} x_{1}^{\prime}-m_{1} x_{3}^{\prime}\right)\left(b_{1} x_{1}^{\prime}-b_{2} x_{2}^{\prime}\right)
\end{align*}
$$

This is a quadratic transformation if it holds $b m_{1} \neq 0, a_{1} m_{1}-a_{2} m_{3} \neq 0, b_{1} m_{1}-$ $-b_{2} m_{2} \neq 0$. To the line $A B$ corresponds the point $C_{2}=\left(m_{1}, m_{2}, m_{3}\right)$, that is:

$$
\begin{array}{lr}
\varrho m_{1}=b m_{1}^{2} x_{2}^{\prime} x_{3}^{\prime}, & b m_{1} \neq 0 \text { that is } a_{2}=b m_{2}, \\
\varrho m_{2}=a_{2} m_{1} x_{2}^{\prime} x_{3}, & b_{2}=b m_{3} . \\
\varrho m_{3}=b_{2} m_{1} x_{2}^{\prime} x_{3}^{\prime}, &
\end{array}
$$

If we wish to obtain an involution, it must hold furthermore $a_{1}=b_{1}$. Hence, the inversion I_{2} is given by equations:

$$
\begin{gather*}
\varrho x_{1}=b\left(m_{2} x_{1}^{\prime}-m_{1} x_{2}^{\prime}\right)\left(m_{3} x_{1}^{\prime}-m_{1} x_{3}^{\prime}\right), \\
\varrho x_{2}=\left(m_{2} x_{1}^{\prime}-m_{1} x_{2}^{\prime}\right)\left(a_{1} x_{1}^{\prime}-b m_{2} x_{3}^{\prime}\right), \tag{6}\\
\varrho x_{3}=\left(m_{3} x_{1}^{\prime}-m_{1} x_{3}^{\prime}\right)\left(a_{1} x_{1}^{\prime}-b m_{3} x_{2}^{\prime}\right), \\
I_{1}\left(C_{2}\right)=\left(a m_{2} m_{3}, m_{1} m_{2}, m_{1} m_{3}\right), \quad \\
I_{2}\left(C_{1}\right)=\left(b m_{2} m_{3}, a_{1} m_{2}, a_{1} m_{3}\right),
\end{gather*} \quad I_{2}\left(C_{1}\right) \Rightarrow\left\{\begin{array}{l}
b=a, \\
a_{1}=m_{1}
\end{array} .\right.
$$

Thus, the inversion I_{2} will be expressed as follows:

$$
\begin{array}{ll}
\varrho x_{1}=a\left(m_{2} x_{1}^{\prime}-m_{1} x_{2}^{\prime}\right)\left(m_{3} x_{1}^{\prime}-m_{1} x_{3}^{\prime}\right), & \\
\varrho x_{2}=\left(m_{2} x_{1}^{\prime}-m_{1} x_{2}^{\prime}\right)\left(m_{1} x_{1}^{\prime}-a m_{2} x_{3}^{\prime}\right), & a m_{1} \neq 0, \\
\varrho x_{3}=\left(m_{3} x_{1}^{\prime}-m_{1} x_{3}^{\prime}\right)\left(m_{1} x_{1}^{\prime}-a m_{3} x_{2}^{\prime}\right), & \Delta=m_{1}^{2}-a m_{2} m_{3} \neq 0 . \tag{7}
\end{array}
$$

Compounding $I_{2} I_{1}=I_{1} I_{2}$:

$$
\begin{array}{ll}
\varrho x_{1}=\left(m_{1} x_{1}^{\prime}-a m_{2} x_{3}^{\prime}\right)\left(m_{1} x_{1}^{\prime}-a m_{3} x_{2}^{\prime}\right), \\
\varrho x_{2}=\left(m_{1} x_{1}^{\prime}-a m_{2} x_{3}^{\prime}\right)\left(m_{2} x_{1}^{\prime}-m_{1} x_{2}^{\prime}\right), & a m_{1} \neq 0, \tag{8}\\
\varrho x_{3}=\left(m_{1} x_{1}^{\prime}-a m_{3} x_{2}^{\prime}\right)\left(m_{3} x_{1}^{\prime}-m_{1} x_{3}^{\prime}\right), & \Delta \neq 0 .
\end{array}
$$

$$
8
$$

This is the quadratic involution $J_{3\left(A B D_{3}\right)}$, where $D_{3}=\left(a m_{2} m_{3}, m_{1} m_{2}, m_{1} m_{3}\right)$.
Theorem 4. Two quadratic inversions $I_{1\left(A B C_{1}\right)}$ and $I_{2\left(A B C_{2}\right)}$ are in the position $I I$ if and only if the polars of points C_{1} and C_{2} are pairwise coincident with respect to the conics of invariant points σ_{1}, σ_{2}.

Proof: The conic σ_{1} of invariant points of the inversion I_{1} can be represented by equation:

$$
\begin{equation*}
x_{1}^{2}+a x_{2} x_{3}=0 \tag{9}
\end{equation*}
$$

The conic σ_{2} of invariant points of the inversion I_{2} (starting from relation (6)) can be represented by equation:

$$
\begin{equation*}
a_{1} x_{1}^{2}-b m_{3} x_{1} x_{2}-b m_{2} x_{1} x_{3}-b m_{1} x_{2} x_{3}=0 \tag{10}
\end{equation*}
$$

The polar of the point C_{1} with respect to σ_{1} and that of point C_{2} with respect to σ_{2} can by represented by equation:

$$
\begin{equation*}
x_{1}=0 \tag{11}
\end{equation*}
$$

The polar of the point C_{2} with respect to σ_{1} by:

$$
\begin{equation*}
2 m_{1} x_{1}-a m_{3} x_{2}-a m_{2} x_{3}=0 \tag{12}
\end{equation*}
$$

and the polar of the point C_{1} with respect to σ_{2} by:

$$
\begin{equation*}
2 a_{1} x_{1}-b m_{3} x_{2}-b m_{2} x_{3}=0 \tag{13}
\end{equation*}
$$

Since one pair of polars (11) coincides in any case, we prove the theorem for polars (12) and (13) only.

1. Let I_{1} and I_{2} be in the position II. Then $b=a, a_{1}=m_{1}$ hence the polars (12) and (13) coincide.
2. Let the polars (12) and (13) coincide. Then $a_{1}=k m_{1}, b=k a$, by substitution into (6) we obtain (7). Thus, I_{1} and I_{2} are permutable.

Since it holds:

$$
\begin{aligned}
m_{1}\left(x_{1}^{2}-a x_{2} x_{3}\right) & +\left(m_{1} x_{1}^{2}-a m_{3} x_{1} x_{2}-a m_{2} x_{1} x_{3}+a m_{1} x_{2} x_{3}\right)= \\
& =x_{1}\left(2 m_{1} x_{1}-a m_{3} x_{2}-a m_{2} x_{3}\right)
\end{aligned}
$$

and the polar of (11) passes through the points A, B, the polar of (12) must pass through the points M, N, i.e. through another two common points of conics σ_{1}, σ_{2}. Thereby is determined another pair of quadratic inversions in the position II, namely, inversions $I_{\left(M N C_{1}\right)}^{\prime}$ and $I_{\left(M N C_{2}\right)}^{\prime \prime}$.

§ 4.

We can readily find further inversions permutable with inversions I_{1} and I_{2}, respectively. We now ask whether there exists such an inversion I_{3} permutable with both of the two permutable inversions or whether there exist even more such inversions mutually pairwise permutable.

Theorem 5. There cannot exist more than four quadratic inversions mutually pairwise permutable in the position II, of which any three form an Abelian group of order eight.

Proof: The inversion $I_{3\left(A B C_{3}\right)}$ with the centre $C_{3}=\left(y_{1}, y_{2}, y_{3}\right)$ permutable with I_{1} has according to §3. the form:

$$
\begin{array}{ll}
\varrho x_{1}=a\left(y_{2} x_{1}^{\prime}-y_{1} x_{2}^{\prime}\right)\left(y_{3} x_{1}^{\prime}-y_{1} x_{3}^{\prime}\right), & a y_{1} \neq 0, \\
\varrho x_{2}=\left(y_{2} x_{1}^{\prime}-y_{1} x_{2}^{\prime}\right)\left(y_{1} x_{1}^{\prime}-a y_{2} x_{3}^{\prime}\right), & y_{1}^{2}-a y_{2} y_{3} \neq 0, \\
\varrho x_{3}=\left(y_{3} x_{1}^{\prime}-y_{1} x_{3}^{\prime}\right)\left(y_{1} x_{1}^{\prime}-a y_{3} x_{2}^{\prime}\right) . &
\end{array}
$$

If I_{3} is to be permutable with I_{2} it must hold according to theorem 3.: $I_{3}\left(C_{2}\right)=I_{2}\left(C_{3}\right)$.

$$
\begin{gathered}
I_{3}\left(C_{2}\right)=\left(a\left(y_{2} m_{1}-y_{1} m_{2}\right) \cdot\left(y_{3} m_{1}-y_{1} m_{3}\right) ;\left(y_{2} m_{1}-y_{1} m_{2}\right) \cdot\left(y_{1} m_{1}-a y_{2} m_{3}\right)\right. \\
\left.\left(y_{3} m_{1}-y_{1} m_{3}\right) \cdot\left(y_{1} m_{1}-a y_{3} m_{2}\right)\right)
\end{gathered}
$$

$$
\begin{gathered}
I_{2}\left(C_{3}\right)=\left(a\left(m_{2} y_{1}-m_{1} y_{2}\right) \cdot\left(m_{3} y_{1}-m_{1} y_{3}\right) ;\left(m_{2} y_{1}-m_{1} y_{2}\right) \cdot\left(m_{1} y_{1}-a m_{2} y_{3}\right) ;\right. \\
\left.\quad\left(m_{3} y_{1}-m_{1} y_{3}\right) \cdot\left(m_{1} y_{1}-a m_{3} y_{2}\right)\right), \\
I_{3}\left(C_{2}\right)=I_{2}\left(C_{3}\right) \Leftrightarrow\left\{\begin{array}{l}
y_{1} m_{1}-a y_{2} m_{3}=a m_{2} y_{3}-m_{1} y_{1} \\
y_{1} m_{1}-a y_{3} m_{2}=a m_{3} y_{2}-m_{1} y_{1}
\end{array}\right\} \Leftrightarrow \\
\Leftrightarrow 2 m_{1} y_{1}-a m_{3} y_{2}-a m_{2} y_{3}=0,
\end{gathered}
$$

that is, the point C_{3} is a point of the line $2 m_{1} x_{1}-a m_{3} x_{2}-a m_{2} x_{3}=0$, which is the line (12). With the exception of intersections with the conics σ_{1} and $\sigma_{2} M, N$ and the intersection K with the line $A B$, each point of the line (12) is the centre of the quadratic inversion I_{3} which is in the position II with respect to both inversions I_{1} and I_{2}. For the points $M=\left(a m_{2} m_{3} ; m_{2}\left(m_{1}+\sqrt{\Delta}\right) ; m_{3}\left(m_{1}-\sqrt{\Delta}\right)\right), N=\left(a m_{2} m_{3}\right.$; $\left.m_{2}\left(m_{1}-\sqrt{\Delta}\right) ; m_{3}\left(m_{1}+\Delta\right)\right)$ we obtain no involutory mapping; for the point $K=\left(O, m_{2},-m_{3}\right)$ we get a linear mapping, a harmonic homology whose centre is the point K and its axis is the line $C_{1} C_{2}$.

Thus the centre of another inversion permutable with the foregoing three inversions will lie on the line (12) and on the polar of the point C_{3} with respect to the conic σ_{2} (\equiv the polar of the point C_{2} with respect to the conic σ_{3}), or on the polar of the point C_{1} with respect to σ_{3} (\equiv the polar of the point C_{3} with respect to σ_{1}). However all the three lines will intersect in the single point C_{4} because every cubic containing any eight simple intersections of two cubics will contain the ninth one as well. (see [2], page 423, theorem a, par. 170.) Let

$$
\begin{aligned}
\sigma_{1} \cap \sigma_{2} & =\{A, B, M, N\} \\
\sigma_{1} \cap \sigma_{3} & =\{A, B, P, Q\} \\
\sigma_{2} \cap \sigma_{1} & =\{A, B, R, S\}
\end{aligned}
$$

then the cubic $k_{1}=\sigma_{1} \cdot R S, k_{2}=\sigma_{2} . P Q, k_{3}=\sigma_{3} . M N$.
The common points of the cubics k_{1} and k_{2} are the points A, B, M, N, P, Q, R, S and the intersection of the line-pairs $P Q, R S$. As the cubic k_{3} likewise contains the first eight points, it must evidently contain also the ninth one lying on the line MN.

Consequently, there now exists just another one inversion, permutable with those foregoing three. If $C_{4} \neq K$, the inversion $I_{4\left(A B C_{4}\right)}$ is a quadratic one, $C_{4} \neq K \Rightarrow C_{3} \neq$ $\neq D_{3}, C_{3} \neq M, N \Rightarrow C_{4} \neq M, N$. The points C_{3} and C_{4} give rise to a point invotion with invariant points M, N on the line (12). To the point K in this involution corresponds the intersection of line (12) with the connecting-line C_{1}, C_{2}, that is the point D_{3}.
For the results of the composition holds:

$$
\begin{aligned}
& I_{1} I_{2}=I_{2} I_{1}=J_{3\left(A B D_{3}\right)} \\
& I_{1} I_{3}=I_{3} I_{1}=J_{2\left(A B D_{2}\right)} \\
& I_{2} I_{3}=I_{3} I_{2}=J_{1\left(A B D_{1}\right)} \\
& I_{1} I_{2} I_{3}=I_{4\left(A B C_{4}\right)} .
\end{aligned}
$$

Further relations among the particular involutions are given in the Cayley table below:

E	I_{1}	I_{2}	I_{3}	I_{4}	J_{1}	J_{2}	J_{3}
I_{1}	E	J_{3}	J_{2}	J_{1}	I_{4}	I_{3}	I_{2}
I_{2}	J_{3}	E	J_{1}	J_{2}	I_{3}	I_{4}	I_{1}
I_{3}	J_{2}	J_{1}	E	J_{3}	I_{2}	I_{1}	I_{4}
I_{4}	J_{1}	J_{2}	J_{3}	E	I_{1}	I_{2}	I_{3}
J_{1}	I_{4}	I_{3}	I_{2}	I_{1}	E	J_{3}	J_{2}
J_{2}	I_{3}	I_{4}	I_{1}	I_{2}	J_{3}	E	J_{1}
J_{3}	I_{2}	I_{1}	I_{4}	I_{3}	J_{2}	J_{1}	E

The points $C_{1}, C_{2}, C_{3}, C_{4}$ form a complete quadrilateral; the points D_{1}, D_{2}, D_{3} are its diagonal vertices. The side $C_{i} C_{j}$ of this quadrilateral is the polar of the point C_{k} with respect to the conic σ_{n} and simultaneously the polar of the point C_{n} with respect to the conic $\sigma_{k}, i, j, k, n=1,2,3,4$.

It is possible to construct even more extensive groups of permutable quadratic involutions with two common singular points, neither of which is the centre of any quadratic inversion. Naturally then, not all the inversions are mutually pairwise permutable.

REFERENCES:

[1] S. S. Subramanyam: On permutable quadratic involutions (J. Indian. math. Soc. 1963/64). [2] B. Bydžovský: Úvod do algebraické geometrie (Praha, JČMF 1948).

Shrnutí

O ZÁMĚNNÝCH ROVINNÝCH KVADRATICKÝCH INVERSÍCH SE DVĔMA SPOLEČNÝMI HLAVNÍMI BODY

JAROSLAVA JACHANOVÁ

Práce ukazuje existenci a vlastnosti záměnných kvadratických inversí se dvěma společnými hlavními body. Nazveme poloha I. pár záměnných kvadratických inversí se společným středem a dalším jedním společným hlavním bodem. Dvě kvadratické inverse $I_{1\left(A B_{1} C\right)}$ a $I_{2\left(A B_{2} C\right)}$ jsou v poloze I. tehdy a jen tehdy, je-li tretí hlavní bod jedné inverse samodružným bodem inverse druhé. Složení obou inversí je opět kvadratická inverse $I_{3\left(B_{1} B_{2} C\right)}$, která je v poloze I. s každou z inversí I_{1}, I_{2}. Všechny tři spolu s identitou tvoří Kleinovu čtyřgrupu involucí.

Nazveme poloha II. pár záměnných kvadratických inversí se dvěma společnými hlavními body, z nichž žádný není středem některé z inversí. Dvě kvadratické inverse $I_{1\left(A B C_{1}\right)}, I_{2\left(A B C_{2}\right)}$ jsou v poloze II. tehdy a jen tehdy, platí-li $I_{1}\left(C_{2}\right)=I_{2}\left(C_{1}\right)=D_{3}$. Součinem obou inversí je kvadratická involuce $J_{3\left(A B D_{3}\right)}$. Existují nejvýše čtyři kvadratické inverse navzájem po dvou v poloze II., kde každé tři z těchto inversí generují abelovskou grupu řádu osm.

