Jiří Keprt Der Einfluß der Feldwölbung und des Astigmatismus auf die optische Übertragungsfunktion

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica, Vol. 12 (1972), No. 1, 313--326

Persistent URL: http://dml.cz/dmlcz/119990

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

1972 – ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURALIUM – TOM 37

Laboratoř optiky přírodovědecké fakulty Vedouci laboratoře: prof. RNDr. Bedřich Havelka, doktor věd

DER EINFLUß DER FELDWÖLBUNG UND DES ASTIGMATISMUS AUF DIE OPTISCHE ÜBERTRAGUNGS-FUNKTION

JIŘÍ KEPRT

(Eingelangt am 31. Mai 1971) Herrn Prof. Dr. B. Havelka, DrSc. zum 65. Geburtstag gewidmet

Astigmatismus und Feldwölbung vom Standpunkt der geometrischen Optik

Wenn v_0, w_0 die reduzierten rechtwinkligen Koordinaten in der kreisförmigen Austrittpupillebene und Y', Z', die rechtwinkligen Koordinaten in der Paraxialbildebene sind (Abb. 1), dann bezeichnen wir die durch die v_0 und optische Achse bestimmte Ebene als Meridionalebene und nennen die durch die w_0 Achse und dem Hauptstrahl (d. h. der Strahl, der durch den Punkt S in der Meridionalebene geht) festgelegte Ebene Sagittalebene. Es ist ersichtlich, daß die beiden Ebenen zueinander senkrecht sind.

Abb. 1

Wenn der Hauptstrahl mit der optischen Achse den Winkel τ' klemmt (Abb. 2) und wenn g' die Entfernung der Paraxialbildebene von der Austrittpugliebene ist, dann charakterisiert man die Feldwölbung (die Krümmung der Bildebene) mit den Abständen der Bildlinien (Fokalen) von der Paraxialebene, d. h. mit den Größen Ax_i' und Ax_i' (Abb. 2). In der Bildebene, die mit dem Abstand x_0 von der Paraxialebene festgestellt wird, wird allgemein der Punkt als kleine Fläche in der Form der Elipse dargestellt (s. [1]). Wenn a, b die, den Werten v_0 und w_0 entsprechenden Halbachsen sind, dann gilt aus der Abb. 2

$$\frac{a}{v_0} = \frac{\Delta x'_t - x_0}{g' + \Delta x'_t},\tag{1}$$

$$\frac{b}{w_0} = \frac{\Delta x'_{\rm s} - x_0}{g' + \Delta x'_{\rm s}}.$$
 (2)

Es gibt $g' \gg x'_t$ und auch $g' \gg x'_s$. Daraus erhalten wir für die maximalen Koordinaten $v_0 = 1$ und $w_0 = 1$, g' = 2c, wo c die Blendezahl des optischen Systems ist. Wir können also schreiben

$$a_0 = \frac{Ax'_t - x_0}{2c} \tag{3}$$

und

$$b_0 = \frac{Ax'_s - x_0}{2c}.$$
 (4)

Das Bild des Punktes wird dann in der Bildebene mit der Gleichung

$$\frac{(Y'-Y'_0)^2}{a_0^2} + \frac{Z'^2}{b_0^2} = 1$$
 (5)

geschrieben, die man in der Form

$$(Ax'_{s} - x_{0})^{2} (Y' - Y'_{0})^{2} + (Ax'_{t} - x_{0})Z'^{2} = \frac{1}{4c^{2}} (Ax'_{t} - x_{0})^{2} (Ax'_{s} - x_{0})^{2}$$
(6)

Machen wir eine Diskussion über die Gleichung (6). Für $x_0 = \Delta x'_s$, bzw. $x_0 = \Delta x'_t$ erhalten wir die Gleichungen der sagittalen, bzw. meridionalen Bildlinien. D. h.

$$(\Delta x'_t - x_0)^2 Z'^2 = 0$$
, resp. $(\Delta x'_s - x_0)^2 (Y' - Y'_0)^2 = 0$, (7)

314

bzw.

wobei diese Bedingungen erfüllt werden, wenn

$$Z' = 0$$
 und $Y' = Y'_0$ (8)

sind. Wenn wir

$$x_0 = \frac{\varDelta x'_{\rm s} + \varDelta x'_{\rm t}}{2} \tag{9}$$

legen und diesen Wert in die Gleichung (6) einsetzen, erhalten wir

$$(Y' - Y'_0)^2 + Z'^2 = \frac{1}{4c^2} \left(\frac{\varDelta x'_t - \varDelta x'_s}{2} \right)^2.$$
(10)

Das ist die Gleichung der Kreislinie, die den Radius $r = \frac{Ax'_t - Ax'_s}{4c}$ hat. Die Größe $Ax'_t - Ax'_t = Ax'_{s,t}$ nennen wir astigmatische Differenz oder Astigmatismus (Abb. 3).

Abb. 3

Im Fall, daß der Astigmatismus korrigiert wird, d. h. daß für einen Winkel $\tau \Delta x'_{\rm s} = \Delta x'_{\rm t}$ gilt, bekommen wir aus den Ausdrücken (3) und (4)

$$a_0 = b_0 \tag{11}$$

d. h. in diesem Fall ist das Bild eines Punktes der Kreis, der mit der Gleichung

$$(Y' - Y')^2 + Z'^2 = \frac{1}{4c^2} (\Delta x'_s - x_0)^2$$
(12)

eingeschrieben wird. Für den Fall $x_0 = \Delta x'_s = \Delta x'_t$ ist dann die Abbildung punktförmig.

Aus der Abb. 2 ist weiter ersichtlich, daß die Größe der Aberrationen $\Delta Y'$ und AZ' von den Puppillkoordinaten v_0 und w_0 mit den Bezichungen

$$1Y' = a_0 v_0 \quad \text{und} \quad AZ' = b_0 w_0 \tag{13}$$

abhängt.

Die Wellenoptikbeschreibung

Vom Standpunkt der Wellenoptik charakterisiert man den Einfluß der Aberrationen auf die Kvalität der Abbildung mit Hilfe der Deformationen der Wellenfläche, d. h. durch die Wellenaberrationen. Wenn AY' und AZ' die geometrischen Aberrationen sind, dann sind diese mit der Wellenaberration $W(v_0, w_0)$ durch die Bezichungen (s. [2])

$$\frac{\partial W}{\partial v_0} = \frac{1}{2c} A Y', \qquad \frac{\partial W}{\partial w_0} = \frac{1}{2c} A Z'$$
(14)

gegenseitig verbunden. Aus dem Totaldifferential der Wellenaberration

$$\mathbf{d}W = \frac{\partial W}{\partial v_0} \mathbf{d}v_0 + \frac{\partial W}{\partial w_0} \mathbf{d}w_0 \tag{15}$$

kann man die Deformation der Wellenfront

$$W = \frac{1}{2c} \left(\int_{0}^{V_{*}} 4 Y' \, \mathrm{d}v_{0} + \int_{0}^{W_{*}} 4 Z' \, \mathrm{d}w_{0} \right)$$
(16)

bestimmen. In unserem Fall des optischen Systems, das mit Feldwölbung und Astigma-tismus belastet wird, erhalten wir

$$W = \frac{1}{4c} \left(a_0 v_0^2 + b_0 v_0^2 \right) \tag{17}$$

oder mit Hilfe der Beziehungen (3) und (4)

$$W = \frac{1}{8c^2} (x_1 x_s' - x_0) v_0^2 + (x_1 x_t' - x_0) w_0^2.$$
 (18)

Bezeichnen wir weiter die Mittelkrümmung des Feldes

$$\Delta x_{\sigma}' = \frac{\Delta x_{t}' + \Delta x_{s}'}{2}$$
(19)

und den Astigmatismus des Systems

$$\Delta \mathbf{x}_{s,t}' = \Delta \mathbf{x}_{t}' - \Delta \mathbf{x}_{s}' \,. \tag{20}$$

Die Beziehung (18) bekommt dann die Form

$$W = \frac{1}{8c^2} \left[\left(\Delta x'_{\sigma} - x_0 \right) \left(v_0^2 + w_0^2 \right) + \frac{\Delta x'_{s,t}}{2} \left(w_0^2 - v_0^2 \right) \right].$$
(21)

Es ist weiter vorteilhaft die Transformation der Pupillenkoordinaten im Hinblick auf den Winkel ψ (Abb. 4) einzuführen. D. h.

$$v_0 = v \cos \psi - w \sin \psi$$
(22)
$$w_0 = v \sin \psi + w \cos \psi .$$

Durch die Einsetzung (22) in (21) erhalten wir

$$W = \frac{1}{8c^2} \left\{ (\Delta x'_a - x_b) \left(v^2 + w^2 \right) + \frac{\Delta x'_{s,1}}{2} [2vw \sin 2\psi + (w^2 - v^2) \cos 2\psi] \right\}.$$
 (23)

Die optische Übertragungsfunktion

Die Übertragungsfunktion ergibt die Abhängigkeit des Kontrastes von der Raumfrequenz R, bzw. normierten Raumfrequenz $\rho = R\lambda c$. Die Übertragungsfunktion berechnen wir aus dem Integralausdruck (s. [5]).

wo $f(v_0, w_0)$ die Pupillenfunktion ist. Diese Funktion bezeichnet die Komplexenamplitude in der Pupille und man kann sie mit der Beziehung

$$f(v_0, w_0) = \langle e^{ikW(v_0, w_0)} \\ 0 \qquad \qquad \text{für } v_0^2 + w_0^2 \langle \frac{\leq 1}{> 1} \\ 0 \rangle$$
(25)

einschreiben (s. [3]), wo $k = \frac{2\pi}{\lambda}$ die Wellenzahl ist.

Die Größen s und t sind die normierten Raumfrequenzen, die der Raumfrequenz R entsprechen, und die in der Richtung der Koordinatachsen in der Pupille orientiert werden. Es gibt

$$\vec{\mathbf{s}} = \vec{\mathbf{R}}_1 \lambda \boldsymbol{c} \dots \vec{\mathbf{R}}_1 = R \frac{\mathbf{y}_0}{v_0}$$

$$\vec{\mathbf{t}} = \vec{\mathbf{R}}_2 \lambda \boldsymbol{c} \dots \vec{\mathbf{R}}_2 = R \frac{\vec{\mathbf{w}}_0}{v_0}.$$
(26)

Dann ist ersichtlich, daß die Funktion

$$f\left(v_{0} + \frac{s}{2}, w_{0} + \frac{t}{2}\right) = \left\langle \begin{array}{c} e^{ikW\left(v_{0} + \frac{s}{2}, w_{0} + \frac{t}{2}\right)} \\ 0 \\ \text{für}\left(v_{0} + \frac{s}{2}\right)^{2} + \left(w_{0} + \frac{t}{2}\right)^{2} \right\rangle \leq \frac{1}{2} \qquad (27)$$

über dem kreisförmigen Gebiet mit dem Mittelpunkt $S_1\left(-\frac{s}{2}, -\frac{t}{2}\right)$ definiert wird. Analogisch wird die Funktion

$$f^{*}\left(v_{0} - \frac{s}{2}, w_{0} - \frac{t}{2}\right) = \left\langle \frac{e^{-ikW}\left(v_{0} - \frac{1}{2}, w_{0} - \frac{t}{2}\right)}{0} \right.$$

$$f \ddot{u}r\left(v_{0} - \frac{s}{2}\right)^{2} + \left(w_{0} - \frac{t}{2}\right)^{2} \left\langle \frac{s}{2} \right|$$
(28)

über dem Kreisgebiet mit dem Mittelpunkt $S_2\left(\frac{s}{2},\frac{t}{2}\right)$ definiert. Das Produkt der Funktionen (27) und (28) wird also über dem gemeinsamen Gebiet dieser Einheitskreise definiert (Abb. 5). Wenn wir jetzt die Transformation der Koordinaten (22) ausnützen und die normierten Raumfrequenzen mit Hilfe der Polarkoordinaten ϱ und φ ausdrücken,

wobei

$$s = 2\varrho \cos \psi \tag{29}$$

$$t=2\varrho\sin\psi$$

ist, können wir aus der Abb. 5 ersehen, daß die Mittelpunkte bei der Benutzung der Transformationskoordinaten in den Punkten $S_1(-\varrho, 0)$ und $S_2(+\varrho, 0)$

318

und

liegen. Dann können wir die Beziehung (24) in der Form

$$D(\varrho, \psi) = \frac{1}{\pi} \iint_{q} f(v + \varrho, w) f^{\star}(v - \varrho, w) \,\mathrm{d}v \,\mathrm{d}w \tag{30}$$

einschreiben, woAdas Integrationsgebiet (der gemeinsame Teil der Einheitskreise) in der Abb. 5. ist. Nach (25) ist die Funktion

$$f(v+\varrho,w) = \left\langle \begin{matrix} e^{ikW(v+\varrho,w)} \\ 0 \end{matrix} & \text{für } (v+\varrho)^2 + w^2 \left\langle \begin{matrix} \leq 1 \\ > 1 \end{matrix} \right\rangle \right\rangle$$
(31)

und

$$f^{\star}(v-\varrho,w) = \left\langle \begin{matrix} e^{-ikW(v-\varrho,w)} \\ 0 \end{matrix} \right| \quad \text{für } (v-\varrho)^2 + w^2 \left\langle \begin{matrix} \leq 1 \\ > 1 \end{matrix} \right\rangle$$
(32)

Mit Hilfe der Beziehung (23) erhalten wir weiter

$$kW(v + \varrho, w) = \frac{\pi}{4} \{ (C_1 + C_\sigma) (v^2 + 2v\varrho + \varrho^2 + w^2) + C_{s,t} [2vw \sin 2\psi + 2vw \sin 2\psi + (w^2 - v^2 - 2v\varrho - \varrho^2) \cos 2\psi] \}$$
(33)

und

$$kW(v - \varrho, w) = \frac{\pi}{4} \{ (C_1 + C_{\sigma})(v^2 - 2v\varrho + \varrho^2 + w^2) + C_{s,l}[2vw\sin 2\varphi - 2\varrho w\sin 2\varphi + (w^2 - v^2 + 2v\varrho - \varrho^2)\cos 2\varphi] \}$$
(34)

wo wir

$$C_1 = -\frac{x_0}{\lambda c^2}, \quad C_{\sigma} = \frac{\Delta x'_{\sigma}}{\lambda c^2}, \quad C_{s,t} = \frac{\Delta x'_{s,t}}{2\lambda c^2}$$
 (35)

bezeichnet haben. Also

bezeichnet naben. Also $kW(v + \varrho, w) - kW(v - \varrho, w) = \pi \varrho \left[(C_1 + C_\sigma)v + C_{s,1}(w \sin 2\psi - v \cos 2\psi) \right]$ (36)

Die Übertragungsfunktion wird dann in unserem Fall mit der Beziehung

$$D(\varrho, \psi) = \frac{1}{\pi} \iint_{A} e^{i \eta \ell (C_1 + C_\sigma) v + C_{s,1} (w \sin \varphi - v \cos \varphi)]} \, \mathrm{d} v \, \mathrm{d} w \tag{37}$$

festgestellt. Weil das Integrationsgebiet A in Betracht zur w Achse symmetrisch ist, wird der imaginäre Teil des Ausdrucks (37) gleich Null sein und wir können die Übertragungsfunktion in der Form

$$D(\varrho, \psi) = \frac{1}{\pi} \iint_{\mathcal{A}} \cos \pi \varrho \left[(C_1 + C_\sigma) v + C_{s,1}(w \sin 2\psi - v \cos 2\psi) \right] dv dw$$
(38)

 $_{\sigma}$ schreiben. Die Beziehung (38) ist der endgültige Ausdruck für die Berechnung der Übertragungsfunktion des optischen Systems, das mit der Feldwölbung und Astigmatismus belastet ist. Durch Anwendung einer geeigneten Integrationsmethode, besonders bei der Verwendung von automatischen Rechenmaschinen, kann man die Funktion (38) für jeden beliebigen, durch die Koeffizienten C_{σ} , $C_{s, v}$ und C_1 bestimmten Korrektionszustand des Systems feststellen (s. [6]).

Diskussion

1) Sei $\psi = 0^{0}$, d. h. daß die Richtung der Raumfrequenz (das ist die Richtung der Normale zur Linienstruktur) mit der Richtung der Achse v_{0} identisch ist. Wir sprechen über die Abbildung in der Meridionalebene. Dann

$$D(\varrho, 0^{\circ}) = \frac{1}{\pi} \iint_{\mathcal{A}} \cos \pi \varrho v (C_1 + C_{\sigma} - C_{\mathrm{s}, \mathrm{t}}) \, \mathrm{d}v \, \mathrm{d}w \tag{39}$$

Es ist ersichtlich, daß die Übertragung in der Meridionalebene für verschiedene Kombinationen der Koeffizienten gleichgültig ist, für welche

$$C_{\sigma} - C_{\rm s,\,t} = k \tag{40}$$

gilt. In dem günstigsten Fall, wenn k = 0 ist, bekommen wir die Übertragungsfunktion des physikalisch vollkommenen Systems (s. [5])

 $C_1 +$

$$D_{0}(\varrho, 0^{0}) = \frac{2}{\pi} (\arccos \varrho - \varrho / 1 - \varrho^{2})$$
(41)

Diesen Zustand kann man z. B. für eine beliebige Meridionalkrümmung $\Delta x'_t$ erreichen, wenn

$$x_0 = \Delta x'_{\rm s} \tag{42}$$

Sei $\varphi = 90^{\circ}$, d. h. wir untersuchen die Abbildung in der Sagittalebene. Dann gilt

$$D(\varrho, 90^\circ) = \frac{1}{\pi} \iint_{\mathcal{A}} \cos \pi \varrho v (C_1 + C_{\delta} + C_{\delta, t}) \, \mathrm{d}v \, \mathrm{d}w \tag{43}$$

Die Übertragung des Kontrastes, die mit der Funktion (41) identisch werden soll, tritt für

$$C_1 + C_8 + C_{s,t} = 0$$
 (44)
ein. Das ist z. B. für eine beliebige Krümmung $\Delta x'_s$ möglich, wenn

$$x_0 = \Delta x_1' \tag{45}$$

ist. Die Beziehungen (42) und (45) werden dann gleichzeitig erfüllt, wenn $\Delta x'_{s}$

$$= \Delta x_{i}$$
 (46)

ist, d. h. wenn der Astigmatismus $\varDelta x_{i_{s,t}}'=0$ und auch $C_{\mathrm{s,t}}=0$ ist. Für diesen Fall ist die Abbildung nach der Beziehung (38) von der Veränderung des Azimutes ψ ganz unabhängig. In der Praxis wird aber der Astigmatismus nur für einen Winkel τ korrigiert, wie man z. B. im Weiteren schen kann und daher haben diese Ergebnisse nur theoretische Bedeutung.

2. Erwägen wir jetzt den Fall, daß der Astigmatismus nicht korrigiert ist. Suchen wir solche Werte der Koeffizienten C_1, C_σ und $C_{s,t} \neq 0$, wo die Abbildung vollkommen oder womöglich am günstigsten wäre. Wir verlangen, daß der Ausdruck

$$\alpha = (C_1 + C_{\alpha})v + C_{s,t}(w\sin 2\psi - v\cos 2\psi)$$
(47)

gleich Null wäre. Es ist ersichtlich, daß man z. B. für $\psi = 45^{\circ}$ oder $\psi = 135^{\circ}$ niemals diese Bedingung erreichen kann. Legen wir daher

$$C_1 + C_\sigma = 0, \qquad (48)$$

daraus folgt

$$x_0 = \frac{Ax'_t + Ax'_s}{2} \tag{49}$$

Die Lage der Bildebene liegt dann in der Mitte der astigmatischen Differenz

Die Lage der Bildebene liegt dann in der Mitte der astigmatischen Differenz $\Delta x'_{\star,t}$ bzw. in der günstigsten Lage vom Standpunkt der Kvalität der Abbildung des Punktes (s. [2]). Für $\psi = 0^{\circ}$ und $\psi = 90^{\circ}$ bekommen wir $\alpha = \pm C_{s,t} v$ und für $\psi = 45^{\circ}$ und $135^{\circ} \alpha = \pm C_{s,t} v$. Die Übertragungsfunktion für den Astigmatismus $\Delta x'_{s,t} = 4\lambda e^2$ und $\Delta x'_{s,t} = 8\lambda e^2$ wird in der Abb. 6 und Abb. 7 dargestellt. Wenn z. B. $\Delta x'_{t} = -\Delta x'_{s}$ für alle τ ist, dann $\Delta x'_{o} = 0$ und auch $x_{o} = 0$. Wenn z. B. $\Delta x'_{s,t} = 8\lambda e^2$ der Astigmatismus für den maximalen Winkel τ ist, dann ist für $\tau < \tau_{max}$ auch $\Delta x'_{s,t} < 8\lambda e^2$. Die Abbildung ist also im ganzen Gebiet des Gesichtsfeldes für alle Azimute ψ günstiger. 3. Führen wir weiter noch andere optische Systeme an, die mit Astigmatismus und Feldwölburg belastet sind.

und Feldwölbung belastet sind.

 $x_0 = 0$, $\Delta x'_t = 6 \lambda c^2 \Delta x'_s = 2 \lambda c^2$ oder für $x_0 = 4 \lambda c^2$, $\Delta x'_t = -\Delta x'_s = 2 \lambda c^2$ u. s. w. cintreten.

We we confident in the control of t

Es ist ersichtlich, daß die Übertragung in der Meridionalebene und Sagittale-bene für beide Systeme ($C_1 + C_\sigma + C_{s,t} = 6$) gleich aber für andere Azimute wallgemein verschieden ist. Abb. 10 und Abb. 11 zeigen den Einfluß der Größe $C_1 + C_\sigma$ auf die Übertragungsfunktion, wenn der Astigmatismus $C_{s,t}$ konstant bleibt.

Die Berechnung für das gegebene optische System

Untersuchen wir die Kvalität der Übertragung des optischen Systems bei der Abbildung mit dem monochromatischen Licht $\lambda = 0.5893 \ \mu m$. Die Parameter des Systems: Radiuse r, Dicken und die Abstände der optischen Flächen d und Brechungsindexe n sind in der Tab. 1 angeführt. Die maximale Einfallshöhe

 $h_{\rm k} = 15$ mm, die Brennweite f = 100 mm. Also die Blendezahl $c_0 = \frac{f}{2h_{\rm k}} \doteq 3,33$. Die Abhängigkeit der meridionalen und sagittalen Krümmung, bzw. des Astigmatismus von dem Einfallswinkel v wird in der Tab. 2 angeführt. Dasselbe Astigmatismus von dem Einfallswinkel τ wird in der 1 ab. 2 angetuhrt. Dassebbe wird in der Abb. 12 dargestellt. Aus der Tab. 2. wie auch aus der Abb. 12 ist ersichtlich, daß der größte Unterschied $4x'_{a,1} = 0,654$ mm für $\tau = 17,5^{\circ}$ eintritt. Probieren wir nun die Übertragung für diesen Winkel zu untersuchen, wobei wir voraussetzen, daß die Lage der Bildebene in der günstigsten Lage ($C_1 + C_{\sigma} = 0$) sein würde. Da $\cos(-\alpha) = \cos(\alpha)$ gilt, wird die Übertragung für die Azimute $\psi = 0^{\circ}$ und $\psi = 90^{\circ}$ gleich sein und aus demselben Grund werden die Übertragungsfunktionen für $\psi = 45^{\circ}$ und 135° identisch sein. In der Tab. 3 sind die Werte des Kontrastes in der Abhängigkeit von der Raumfre-guenz $\rho = R\dot{\rho}_c$ angeführt, wo R die Nummer der Linien pro Millimeter ist. quenz $\varrho = R\lambda c$ angeführt, wo R die Nummer der Linien pro Millimeter ist. Wie wir sehen können, wird die Übertragung sehr ungünstig sein. Die Grenzraumfrequenz ist nämlich $\varrho \doteq 0,024$, d. h. R = 3 L/mm. Das ist aber die

Übertragung in der ungünstigsten Richtung; z. B. für $\tau = 23^{\circ}$ wird schon die Abbildung vollkommen sein.

Im Hinblick auf das ganze Gesichtsfeld wird wahrscheinlich für unseren Korrektionszustand die günstigste Bildebene näher der Paraxialebene liegen. In der Tab. 4 und Tab. 5 wird deshalb noch die Übertragung in der Paraxialebene für $\tau = 17.5^{\circ}$ und $\tau = 25^{\circ}$ angegeben.

LITERATURA

Havelha B.: Geometrická optika I, ČSAV Praha (1955).
 Havelka B.: Zobrazení z hlediska vlnové optiky, SPN Praha (1966).
 De M.: Proc. Roy. Soc. A 233 (1955) 91
 Hapkin: H. H.: Proc. Roy. Soc. B 70 (1957) 449.
 Kept J.: Acta UP 24 (1967) 91
 Kept J.: Acta UP 30 (1969) 187.

Tabulka 1

r	d	n
44,03 449,704 18,049 21,487 408,547 21,945 108,353 - 78,132	2,534 0,422 2,534 4,458 1,008 9,881 2,534	1,6227 1,0000 1,6227 1,0000 1,6208 1,0000 1,62363 1,0000

			I ADUIRA 2				
· τ°		∆ix _i		$\begin{array}{c} 1x_{9}'\\ 0,0061\\ 0,4256\\ -0,5953\\ -0,6088\\ 0,5343\\ -0,4177\\ -0,2901\\ -0,1725\\ -0,0795\\ 0,0795\\ 0,0203\end{array}$		$-1x'_{8,4}$ 0.3868 0.3461 0.6204 0.6538 0.5694 0.4373 0.2980 0.1743 0.0794 0.0201	
25 22,5 20 17,5 15 12,5 10 7,5 5 2,5	0,3807 0,0795 0,0250 0,0450 0,0196 0,0196 0,0079 0,0018 0,0002 -0,0002						
			Tabulka : D(q)	3			
v /e	0,01	0,02	0,03	0,04	0,05	0,06	0,07
0°, 90° 45°, 135°	0,717 0,714	0,197 0,183	0,103	- 0,085 0,069	0,030 0,045	0,053 0,038	- 0,002 - 0,023
			Tabulk $D(\varrho), \tau \rightarrow$	a 4 17,5°			
¶∕Q	0,01	0,02	0,03	0,04	0,05	0,06	0,07
0° 45° 90° 135°	0,257 0,807 0,980 0,290	- 0,109 0,412 0,951 0,507	0,060 0,092 0,914 0,255	- 0,036 0,017 0,869 0,134	0,012 0,004 0,818 0,010	0,002 0,030 0,763 0,102	- 0,012 0,021 0,705 0,006
			Tabulk D(q), 1	a 5 25°			
ψ∕2	0,01	0,02	0,03	0,04	0,05	0,06	0,07
0° 45° 90° 135°	0,985 0,688 0,644 0,916	0,973 0,045 0,072 0,724	0,968 	0,948 - 0,501 - 0,010 0,251	0,935 -0,237 0,058 0,083	0,922 0,049 0,001 0,005	0,910 0,148 0,036 - 0,02

SHRNUTÍ

VLIV ZKLENUTÍ POLE A ASTIGMATISMU NA OPTICKOU FUNKCI PŘENOSU

JIŘÍ KEPRT

V práci je studován vliv zklenutí pole a astigmatismu na kvalitu zobrazení z hlediska přenosu prostorových frekvencí optickou soustavou. Je odvozen integrální vztah pro výpočet přenosové funkce optické soustavy. Koeficienty vad charakterizující rozostření C_1 , střední zklenutí C_a a astigmatismus C_{u_i} (sou vyjádřeny pomocí veličin vypočítaných sledováním paprsků, dopadajících pod různými úhly zorného pole v tangenciální rovině. Je diskutováno několik idealisovaných optických soustav a ukázán příklad výpočtu přenosové funkce pro skutečnou soustavu s korekcí na astigmatismus při zobrazení monochromatickým světlem vlnové délky λ .

РЕЗЮМЕ

ВЛИЯНИЕ КРИВИЗНЫ ПОЛЯ И АСТИГМАТИЗМА НА ОПТИЧЕСКУЮ ФУНКЦИЮ ПЕРЕНОСА

иржи кепрт

В работе изучается влияние кривизны поля и астигматизма на качество изображения с точки зрения перспоса пространственных часто оптической системой. Выведено интегральное отношение для расчета функции перспоса оптической системы. Коэффициенты аберраций характеризующие расфокуспровку C_1 среднюю кривизиу C_σ и астигматизм $C_{s,1}$ выражены с помощью величии рассчитанных преследованием лучей надающих под разными углами поля зрения в тангенциальной плоскости.

Дискутировано несколько примеров, описывающих идеализированные коррекции и показан пример расчета действительной оптической системы при изображении монохроматическим светом длинной волпы λ.