Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika

Rudolf Oláh

Note on the oscillatory behaviour of bounded solutions of a higher order differential equation with retarded argument

Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika, Vol. 16 (1977), No. 1, 55-60

Persistent URL: http://dml.cz/dmlcz/120051

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1977

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

NOTE ON THE OSCILLATORY BEHAVIOUR OF BOUNDED SOLUTIONS OF A HIGHER ORDER DIFFERENTIAL EQUATION WITH RETARDED ARGUMENT

RUDOLF OLÁH
(Received on January 16th, 1976)

This paper contains two theorems giving sufficient conditions for bounded solutions of the nth order differential equation with retarded argument to be oscillatory. The assertions of those theorems are not true for the corresponding ordinary differential equation.

Some theorems which have specific character for the first, second and the nth order differential equations with retarded argument are given in works [3] - [5]. In [1] D. L. Lovelady had been studying the asymptotic behavior of bounded solutions of differential equations

$$
\begin{gathered}
\left(p_{n-1}\left(\ldots p_{2}\left(p_{1} u^{\prime}\right)^{\prime} \ldots\right)^{\prime}\right)^{\prime}+(-1)^{n+1} q u=0, \\
\left(p_{n-1}(t)\left(\ldots p_{2}(t)\left(p_{1}(t) u^{\prime}(t)\right)^{\prime} \ldots\right)^{\prime}\right)^{\prime}+(-1)^{n+1} F(t, u)=0
\end{gathered}
$$

and the oscillatory behaviour of bounded solutions of differential equations

$$
\begin{gathered}
\left(p_{n-1}\left(\ldots p_{2}\left(p_{1} u^{\prime}\right)^{\prime} \ldots\right)^{\prime}\right)^{\prime}+(-1)^{n} q u=0 \\
\left(p_{n-1}(t)\left(\ldots p_{2}(t)\left(p_{1}(t) u^{\prime}(t)\right)^{\prime} \ldots\right)^{\prime}\right)^{\prime}+(-1)^{n} F(t, u)=0 .
\end{gathered}
$$

We consider the nth order differential equation with retarded argument

$$
\begin{equation*}
\left(p_{n-1}(t)\left(\ldots p_{2}(t)\left(p_{1}(t) y^{\prime}(t)\right)^{\prime} \ldots\right)^{\prime}\right)^{\prime}+(-1)^{n+1} q(t) y(g(t))=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{gather*}
p_{1}, \ldots, p_{n-1} \in C^{1}[[0, \infty),(0, \infty)] \tag{2}\\
q \in C[[0, \infty),[0, \infty)], \tag{3}\\
g \in C[[0, \infty), R], \quad g(t) \leqq t, \quad \lim _{t \rightarrow \infty} g(t)=\infty . \tag{4}
\end{gather*}
$$

A function $y \in C[[0, \infty), R]$ which satisfies the initial conditions $y(t)=\Phi(t)$, $t \leqq 0, \Phi \in C\left[E_{0}, R\right],\left(E_{0}\right.$ is the initial set) $y^{(k)}(0)=y_{0}^{(k)}, k=1,2, \ldots, n-1$, is
called a solution of (1) if and only if y is differentiable, $p_{1} y^{\prime}$ is differentiable, $p_{2}\left(p_{1} y^{\prime}\right)^{\prime}$ is differentiable, $\ldots, p_{n-1}\left(\ldots p_{2}\left(p_{1} y^{\prime}\right)^{\prime} \ldots\right)^{\prime}$ is differentiable, and (1) is true.

A solution $y(t)$ of the equation (1) is called oscillatory if the set of zeros of $y(t)$ is not bounded from the right. A solution $y(t)$ of the equation (1) is called nonoscillatory if it is eventually of constant sign. We consider only such solutions that are not trivial for all sufficiently large t.

Theorem 1. Assume that

$$
\begin{gather*}
p_{1}, \ldots, p_{n-1} \quad \text { are nonincreasing functions, } \tag{5}\\
t-g(t) \geqq h_{0}>0 \tag{6}\\
\limsup _{t \rightarrow \infty}\left[p_{1}(t) \ldots p_{n-1}(t)-\int_{t}^{t+h_{0}} \frac{(s-t)^{n-1}}{(n-1)!} q(s) \mathrm{d} s\right]<0 \tag{7}
\end{gather*}
$$

Then every bounded solution of (1) is oscillatory.
Proof. We shall use the methods from [1] and [2]. Let $y(t)$ be a bounded nonoscillatory solution of (1). We may suppose without any loss of generality that $y(t)>0$ for $t \geqq t_{0}, t_{0} \in[0, \infty)$ (the case $y(t)<0$ is treated similarly). By (4) there exists $t_{1} \geqq t_{0}$ such that $g(t) \geqq t_{0}$ for $t \geqq t_{1}$. Thus, $y(g(t))>0$ for $t \geqq t_{1}$. Let $v_{1}=$ $=y(t), v_{2}=p_{1} v_{1}^{\prime}, \ldots, v_{n}=p_{n-1} v_{n-1}^{\prime}$ on $\left[t_{1}, \infty\right)$. Now the system

$$
\begin{align*}
v_{1}^{\prime} & =\frac{v_{2}}{p_{1}} \\
v_{2}^{\prime} & =\frac{v_{3}}{p_{2}} \\
& \vdots \tag{8}\\
v_{n-1}^{\prime} & =\frac{v_{n}}{p_{n-1}} \\
v_{n}^{\prime} & =-(-1)^{n+1} q y(g)
\end{align*}
$$

is satisfied.
By (8), v_{n}^{\prime} is one-signed on $\left[t_{1}, \infty\right)$, so v_{n} is eventually one-signed. Thus v_{n-1}^{\prime} is eventually one-signed, so v_{n-1} is eventually one-signed. Continuing this, we see that there is t_{2} in $\left(t_{1}, \infty\right)$ such that each $v_{k}, 1 \leqq k \leqq n$, is one-signed on $\left[t_{2}, \infty\right)$. Now we shall prove that if $k \geqq 2$ then $v_{k} v_{k}^{\prime} \leqq 0$ in $\left[t_{2}, \infty\right)$. If $k \geqq 2$ and $t \geqq t_{2}$ then

$$
\begin{equation*}
v_{k-1}(t)=v_{k-1}\left(t_{2}\right)+\int_{t_{2}}^{t} \frac{v_{k}(s)}{p_{k-1}(s)} \mathrm{d} s \tag{9}
\end{equation*}
$$

Suppose that $k \geqq 2$ and $v_{k} v_{k}^{\prime} \leqq 0$ fails on $\left[t_{2}, \infty\right)$. Since v_{k} and v_{k}^{\prime} are both one-signed on $\left[t_{2}, \infty\right)$, we see that $v_{k} v_{k}^{\prime}>0$ on $\left[t_{2}, \infty\right)$ for some $k \geqq 2$. Thus v_{k} is either eventually positive and nondecreasing or eventually negative and nonincreasing. In either case, (9) and (5) say that v_{k-1} is unbounded and has the same eventual sign as v_{k}. Repeating this procedure $k-1$ times, we see that $y(t)$ is unbounded, a contradiction,
so we conclude that $v_{k} v_{k}^{\prime} \leqq 0$ on $\left[t_{2}, \infty\right.$) whenever $k \geqq 2$. By (8) and $v_{k} v_{k}^{\prime} \leqq 0$ for $k \geqq 2$ is $v_{k} \leqq 0$ on $\left[t_{2}, \infty\right)$ if k is even and $v_{k} \geqq 0$ on $\left[t_{2}, \infty\right)$ if k is odd. Thus each $v_{k}, k \geqq 1$, is either nonnegative and nonincreasing or nonpositive and nondecreasing Integrating the last equation of (8) from $t>t_{2}$ to ∞, we have

$$
\begin{gathered}
(-1)^{n+1}\left[v_{n}(\infty)-v_{n}(t)\right]=-\int_{t}^{\infty} q(s) y(g(s)) \mathrm{d} s, \\
(-1)^{n+1} v_{n}(t) \geqq \int_{t}^{\infty} q(s) y(g(s)) \mathrm{d} s \\
(-1)^{n+1} p_{n-1}(t) v_{n-1}^{\prime}(t) \geqq \int_{t}^{\infty} q(s) y(g(s)) \mathrm{d} s .
\end{gathered}
$$

Integrating the above inequality from t to $u>t>t_{2}$,

$$
\begin{gathered}
(-1)^{n+1}\left[p_{n-1}(u) v_{n-1}(u)-p_{n-1}(t) v_{n-1}(t)-\int_{t}^{u} p_{n-1}^{\prime}(s) v_{n-1}(s) \mathrm{d} s\right] \geqq \\
\geqq \int_{t}^{u}(s-t) q(s) y(g(s)) \mathrm{d} s+\int_{u}^{\infty}(u-t) q(s) y(g(s)) \mathrm{d} s .
\end{gathered}
$$

In view of (5) and letting $u \rightarrow \infty$, we have

$$
\begin{gathered}
(-1)^{n+1}\left[-p_{n-1}(t) v_{n-1}(t)\right] \geqq \int_{t}^{\infty}(s-t) q(s) y(g(s)) \mathrm{d} s, \\
(-1)^{n+1}\left[-p_{n-1}(t) p_{n-2}(t) v_{n-2}^{\prime}(t)\right] \geqq \int_{t}^{\infty}(s-t) q(s) y(g(s)) \mathrm{d} s .
\end{gathered}
$$

Proceeding in this fashion we see that for $t>t_{2}$

$$
\begin{aligned}
& p_{n-1}(t) \ldots p_{2}(t) v_{2}(t) \leqq-\int_{t}^{\infty} \frac{(s-t)^{n-2}}{(n-2)!} q(s) y(g(s)) \mathrm{d} s \\
& p_{1}(t) \ldots p_{n-1}(t) y^{\prime}(t) \leqq-\int_{t}^{\infty} \frac{(s-t)^{n-2}}{(n-2)!} q(s) y(g(s)) \mathrm{d} s
\end{aligned}
$$

Integrating the above inequality from $t_{3}>t_{2}$ to $t>t_{3}$, we obtain

$$
\begin{aligned}
p_{1}(t) \ldots & p_{n-1}(t) y(t)-p_{1}\left(t_{3}\right) \ldots p_{n-1}\left(t_{3}\right) y\left(t_{3}\right)-\int_{t_{3}}^{t}\left[p_{1}(s) \ldots p_{n-1}(s)\right]^{\prime} y(s) \mathrm{d} s \leqq \\
& \leqq-\int_{t_{3}}^{t} \frac{\left(s-t_{3}\right)^{n-1}}{(n-1)!} q(s) y(g(s)) \mathrm{d} s-\int_{t}^{\infty} \frac{\left(t-t_{3}\right)^{n-1}}{(n-1)!} q(s) y(g(s)) \mathrm{d} s .
\end{aligned}
$$

With regard to (5) we get

$$
\begin{gathered}
p_{1}(t) \ldots p_{n-1}(t) y(t) \leqq p_{1}\left(t_{3}\right) \ldots p_{n-1}\left(t_{3}\right) y\left(t_{3}\right)- \\
\quad-\int_{t_{3}}^{t} \frac{\left(s-t_{3}\right)^{n-1}}{(n-1)!} q(s) y(g(s)) \mathrm{d} s .
\end{gathered}
$$

For $t=t_{3}+h_{0}$ we get

$$
\begin{gathered}
p_{1}\left(t_{3}+h_{0}\right) \ldots p_{n-1}\left(t_{3}+h_{0}\right) y\left(t_{3}+h_{0}\right) \leqq p_{1}\left(t_{3}\right) \ldots p_{n-1}\left(t_{3}\right) y\left(t_{3}\right)- \\
-\int_{t_{3}}^{t_{3}+h_{0}} \frac{\left(s-t_{3}\right)^{n-1}}{(n-1)!} q(s) y(g(s)) \mathrm{d} s .
\end{gathered}
$$

In view of (7) we can choose t_{3} so large that

$$
p_{1}\left(t_{3}\right) \ldots p_{n-1}\left(t_{3}\right)<\int_{t_{3}}^{t_{3}+h_{0}} \frac{\left(s-t_{3}\right)^{n-1}}{(n-1)!} q(s) \mathrm{d} s
$$

Then for $t \in\left[t_{3}, t_{3}+h_{0}\right]$ we have

$$
\begin{gathered}
p_{1}\left(t_{3}+h_{0}\right) \ldots p_{n-1}\left(t_{3}+h_{0}\right) y\left(t_{3}+h_{0}\right) \leqq \\
\leqq y\left(t_{3}\right)\left[p_{1}\left(t_{3}\right) \ldots p_{n-1}\left(t_{3}\right)-\int_{t_{3}}^{t_{3}+h_{0}} \frac{\left(s-t_{3}\right)^{n-1}}{(n-1)!} q(s) \mathrm{d} s\right],
\end{gathered}
$$

which is the contradiction with $y(t)>0$ for $t \geqq t_{0}$.
Corollary. Assume that the conditions (2)-(6) are satisfied and, in addition,

$$
\lim _{t \rightarrow \infty} \sup \left[p_{1}(t)-\int_{t}^{t+h_{0}} q(s) \mathrm{d} s\right]<0 .
$$

Then each solution of the differential equation with retarded argument

$$
p_{1}(t) y^{\prime}(t)+q(t) y(g(t))=0
$$

is oscillatory.
Proof. This follows from Theorem 1 with $n=1$ and the observation that each nonoscillatory solution of (10) is bounded.

Theorem 2. Assume that the condition (6) is satisfied and, in addition,

$$
\begin{gather*}
r \in C^{1}[[0, \infty),(0, \infty)] \quad \text { is nonincreasing function, } \tag{11}\\
p_{\mathrm{i}}(t) \leqq r(t), \quad i=1, \ldots, n-1, \tag{12}\\
\lim _{t \rightarrow \infty} \sup \left[(r(t))^{n-1}-\int_{t}^{t+h_{0}} \frac{(s-t)^{n-1}}{(n-1)!} q(s) \mathrm{d} s\right]<0 \tag{13}
\end{gather*}
$$

Then every bounded solution of (1) is oscillatory.
Proof. Let $y(t)$ be a nonoscillatory bounded solution of (1). We shall assume that $y(t)$ is eventually positive. Now we are proceeding similarly as in the proof of Theorem 1 and we shall prove that if $k \geqq 2$ then $v_{k} v_{k}^{\prime} \leqq 0$ on some interval $\left[t_{2}, \infty\right)$. If we suppose that $v_{k} v_{k}^{\prime}>0$ for some $k \geqq 2$, then v_{k} is either eventually positive and increasing or eventually negative and decreasing. In either case with regard to the inequalities

$$
v_{k-1}(t) \geqq v_{k-1}\left(t_{2}\right)+\int_{t_{2}}^{t} \frac{v_{k}(s)}{r(s)} \mathrm{d} s, \quad \text { for } v_{k}>0
$$

$$
v_{k-1}(t) \leqq v_{k-1}\left(t_{2}\right)+\int_{t_{2}}^{t} \frac{v_{k}(s)}{r(s)} \mathrm{d} s, \quad \text { for } v_{k}<0
$$

and (11) we see that v_{k-1} is unbounded and has the same eventual sign as v_{k}. Repeating this procedure $k-1$ times, we see that $y(t)$ is unbounded, which is a contradiction. Thus $v_{k} \leqq 0$ on $\left[t_{2}, \infty\right)$ if k is even and $v_{k} \geqq 0$ on $\left[t_{2}, \infty\right)$ if k is odd.

Integrating the last equation of (8) from $t>t_{2}$ to ∞ and with regard to (12), we get

$$
(-1)^{n+1} r(t) v_{n-1}^{\prime}(t) \geqq \int_{t}^{\infty} q(s) y(g(s)) \mathrm{d} s
$$

Integrating the last inequality from t to $u>t>t_{2}$ and then letting $u \rightarrow \infty$, we have

$$
(-1)^{n+1}\left[-r^{2}(t) v_{n-2}^{\prime}(t)\right] \geqq \int_{t}^{\infty}(s-t) q(s) y(g(s)) \mathrm{d} s
$$

If we proceed similarly as in the proof of Theorem 1 , for $t \in\left[t_{3}, t_{3}+h_{0}\right]$ we get

$$
\left(r\left(t_{3}+h_{0}\right)\right)^{n-1} y\left(t_{3}+h_{0}\right) \leqq y\left(t_{3}\right)\left[\left(r\left(t_{3}\right)\right)^{n-1}-\int_{t_{3}}^{t_{3}+h_{0}} \frac{\left(s-t_{3}\right)^{n-1}}{(n-1)!} q(s) \mathrm{d} s\right]
$$

If we choose t_{3} so large that

$$
\left(r\left(t_{3}\right)\right)^{n-1}<\int_{t_{3}}^{t_{3}+h_{0}} \frac{\left(s-t_{3}\right)^{n-1}}{(n-1)!} q(s) \mathrm{d} s
$$

then we get a contradiction with $y(t)>0$ for $t \geqq t_{0}$.

References

[1] Lovelady, D. L.: On the Oscillatory Behavior of Bounded Solutions of Higher Order Differential Equations, J. Diff. Eq. 19 (1975), 167-175.
[2] Kusano, T. and Onose, H.: Oscillation of solutions of nonlinear differential delay equations of arbitrary order, Hiroshima Math. J. 2 (1972), 1-13.
[3] Tramov, M. I.: Uslovia koleblemosti rešenij differencialnych uravnenij pervogo poriadka s zapazdyvajuščim argumentom, Izv. VUZov. Matem. 3 (1975), 92-96.
[4] Ladde, G. S.: Oscillations of nonlinear functional differential equations generated by retarded actions, Delay and Functional Differential Equations and Their Applications, p. 355, Academic Press, New York, 1972.
[5] Ladas, G., Lakshmikantham, V. and Papadakis, J. S.: Oscillations of higher-order retarded differential equations generated by the retarded argument, Delay and Functional Differential Equations and Their Applications, p. 219, Academic Press, New York, 1972.

Author's address:
01088 Žilina, Marxa-Engelsa 25
(Vysoká škola dopravná).

POZNÁMKA K OSCILATORICKÝM VLASTNOSTIAM OHRANIČENÝCH RIEŠENÍ DIFERENCIÁLNEJ ROVNICE VYŠŠIEHO RÁDU S ONESKORENÝM ARGUMENTOM

Rudolf Oláh

Článok obsahuje dve vety, ktoré dávajú postačujúce podmienky pre oscilatoričnosí ohraničených riešení diferenciálnej rovnice n-tého rádu

$$
\left.\left(p_{n-1} \ldots p_{2}\left(p_{1} y^{\prime}\right)^{\prime} \ldots\right)^{\prime}\right)^{\prime}+(-1)^{n+1} q y(g)=0 .
$$

Резюме

ЗАМЕТКА О СВОЙСТВАХ КОЛЕБЛЕМОСТИ ОГРАНИЧЕННЫХ РЕШЕНИЙ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ—ВЫСШЕГО ПОРЯДКА С ЗАПАЗДЫВАЮЩИМ АРГУМЕНТОМ

Рудолф Олах

Работа содержает две теоремы девающие достаточные условия колеблемости ограниченных решений дифференциального уравнения n-го порядка

$$
\left.\left(p_{n-1} \ldots p_{2}\left(p_{1} y^{\prime}\right)^{\prime} \ldots\right)^{\prime}\right)^{\prime}+(-1)^{n+1} q y(g)=0 .
$$

