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1977 — ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS
FACULTAS RERUM NATURALIUM — TOM 53

ON ZERO POINTS OF SOLUTIONS OF THE n-TH
ORDER NON-LINEAR DELAY DIFFERENTIAL EQUATION

JAN FUTAK
(Received on January 16th, L976)

Consider a non-linear n-th order differential equation of the form:

[P T+ Y R0 4T 0T a0 VT = 80, )

where n > 3 is an integer and m is a positive integer.
Next suppose that throughout the paper the following assumptions are fulfilled:

Py lis Qi 1 € C[J = <to, B, R], 1o <b = o0,p(t)>0,1el,
inf[t — h()] =2 d >0, i=1,2....mk=01,..,n—1,
teJ

FueC[R,<0,0)], i=1,2..,mk=01,..,n—1

Denote I = (¢,, b).

A fundamental initial problem is understood to be the following one (see [5],
p. 14):

Let @(1) = {®y(1), P,(¢), ..., D, (1)} be a vector-function defined and continuous
on the initial set

E,=UE., where Ei = (inf hyt), to).
i=1 teJ
(E,io is a closed interval when A,(¢) attains its inf.)
The problem is to find a solution y(¢) of (1) on the interval J that fulfils initial con-
ditions:
Lo+ = Pulto) =y, YO[h)] = dJk[/zi(f)], hi(t) < ty, )

i=1,2,...,mk=0,1,...,n— 1.
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Under above-mentioned assumptions one can use the method of steps for finding
a solution of the initial problem (1), (2). Thus the existence and uniqueness of this
solution is guaranteed.

Results obtained in this paper for solutions (1), (2) represent a certain generalization
of those from [ 1], [2] and [3]. Ifin (I) we putg(t) = Oand Fi;(z) = 1,i = 1,2, ..., m,
k =0,1,...,n — 1, we obtain several assertions from [4].

Now introduce essential inequalities for next considerations.

If a, b are arbitrary real numbers then, the inequalities:

+2ab < a® + b? 3
and
+2ab < |a| (1 + b?) 4)
are true.
Similarly, if @ > 0 and x, b are arbitrary real numbers then one can prove:

bZ
ax® 4 bx = AT (5)

Lemma. Let y(t) be a solution of the initial problem (1), (2) and let 1 = {0, 1, ...,n — 1}.
Then y(t) fulfils the following integral identity:

t
p(1) Y1) (1) = plio) v5 ™0 ¥ + | p(s) ¥ (s) v O (s) ds +
to
n—11

t
+ [a(s)ys)ds = X [ r(s) y©(s) y© (s)ds —
10 k=0 to
n—1 m t
_"‘ZO 2 YOLhi(s)] ¥ (5) 4ia(s) Fki(y(k)[hi(s)]) ds. (6)
c=0 i=1 tg
Proof. Identity (6) can be obtained by multiplying (1) with y((¢) and integrating
from t, to ¢t for te J.

Theorem 1. Let for any te J
r(t) £0, g4(t) £ 0, k=0,1,...,n—1Li=12,..,m
and

a) g(t) =0, b) g(t) =0 hold.

If y(t) is a solution of the initial problem (1), (2) that fulfils

a) ¥y 2 0,)57" >0, k=0,1,...,n =2, &)= 0 for teE,,, k=01, ..,
,n =1, (7

by ¥ 0,30 <0, k=0,1,...,n—2, &) <0 forteE, ,k=01,..,

oh =1,

to?

then y®(t), k = 0,1, ..., n — | have no zero points on 1.
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Proof. The proof will be done in the case (7) a). The case (7) b) can be proved
in a similar way.

Suppose that y*~1)(¢) has zeros on J. Denote ¢, € I the first zero point of A ())
for t increasing. With regard to conditions (7) a) it means that y®~(¢) > 0 for ¢ ¢
€ {tg, ;). Thus y¥(t) > 0, k = 0,1, ..., n — 2, for te {ty, t,).

From the differential equation (1) with regard to the assumptions of the theorem
we obtain:

[p@) " ()] =20, for te 1, 1)).

By integrating the last inequality from ¢, to ¢, t € (¢, t;) we obtain
p@) Y= V(t) = plte) yg V) > 0,

and hence p(t,) y" '(t;) > 0 which is a contradiction because y"~(z,) = 0.
Therefore y"~'X(r) > 0 for 1€ J and also y*(1) > 0, k =0, 1,...,n — 2, for any
t € I must be true.

Theorem 2. Let for an 1€ {0, 1, ..., n — 2} and for any te J r;,((t) e C1(J),
riy1(t) — 2r(t) = 0 hold and let further r,(t) <0, k=0,1, ...,/ - 1,1+ 1, ...,
n—1g)£0,k=0,1,...,n—1,i=1,2,...,m a)gt) =0, b) g(t) £0.

If y(t) is a solution of the initial problem (1), (2), which satisfies

a)yP=0,yP=20k=0,1,..,I—1LI+1,..,0=2)0"D>00() =0,
k=0,1,...,n—1,1€E,,

D)W =0,yP <0, k=0,1,....,0 =1L, I+1,...,0—2, 30D <0 @) <0,
k=0,1,...,n—-1,tek,,
then y®¥(t), k = 0, 1, ..., n — | have no zero points on I.

Proof. Similarly as in Theorem 1 we shall prove that the function "~ 1(z) has
no zero point on J. Let ¢, € I be the first point with 3"~ 1)(¢,) = 0. Then in the case
a) y*~ () > 0 is true for z€ (¢4, 1,).

If we arrange in the identity (6) the third expression on the right and carry on the
indicated integration, we get:

n— 1 n—
PO "0y + 5 (O DO = pt) y§ V58 +
1 t . AR
+ 5 rea(to) VO + § p(s) i D)y P(s)ds + j[“z‘ riea(s) — r,(s):lx
it to to

x [yO(s)1* ds — Zo §(s) y9() y(s) ds —kz Z § P Lhs)] y0(s) x

kel
kL1
t
% qi(s) F(y ' [hi(s)]) ds + [ g(s) y"(s) ds. (8)
to

With regard to the assumptions of the theorem from (8) we get for 1 = ¢, a contra-
diction, because the left-side is non-positive and the right one is positive. Therefore
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it must hold that y*~Y(¢) > 0 for te J. Then y®(t) >0, k =0,1,...,n — 2 for
te 1, too.
Similarly one can prove the assertion of the theorem in the case b).

Theorem 3. Let for any t e J the following inequalities hold:
ai(t) £ 0, k=0,1,...,.n—-1i=12,...,m
a) g(t) 2 0, b) g(r) = 0,
Farea(t) < }rz,(s) ds<0,1=0,1,.., L(—; - 1),

to
where E(k) means the entire part of k,

ra—1(t) £0,  ifnisan odd integer.
Suppose that

(S AP+ 3, ¥ adF +8%0 =0

cannot be true on any subinterval of J.
If y(t) is a solution of the initial problem (1), (2) for which (7) hold, then the functions
YN k=0,1, ..., n— 1, have no zero points on I.

Proof. Let ¢, €I be the first point where y* ')(#;) = 0. Then in the case
a) y"~1(t) > 0 for te (t,, t,) is valid. After integrating equation (1) from ¢, to ¢
for t € I and arranging we obtain:

1. For n — even

p(t)y" (1) + Z y‘”’(t)f ra(s)ds = p(to) yo =" —

in—-11
- IZ, ;[r21+1(s) - j"u(“) du] y(21+1)(s) ds —
T 5 OO a9 FOOTHE) & + [ ) ds ©)
2. For n — odd
p(t) Y1) v Z y‘z"(t)j rais)ds = p(to) ¥~ —
+(n=3) t

=% () - Jr2,<u)du]y“'+“(a>da—3‘ Fa () 1) ds —
LS T OS] auls) Fuly IR ds + 5 () ds. (10)

k=0 i=1 1o

With respect to the assumptions of the theorem we obtain in (9) and (10) for ¢t = ¢,
a contradiction. Therefore y~ (t) > Oforre J. Then y*(t) > 0,k = 0,1,...,n — 2
for t e I, too.

64



Analogically we can prove the case b). Thus the theorem is proved.
b

In the next three theorems we shall assume that || g(¢) | dr < co.
to

Theorem 4. Let for any t € J there the inequalities

r{t) <0, (@) £ 0, k=0,1,...,n—-1,i=1,2,...,m,
hold.
If y(t) is a solution of the initial problem (1), (2) which fulfils the conditions

. b
@) y? 20, k=0, 1, ..., n =2, p(ty) y§ ™V = [1g(t) | dt > 0, ®(r) = 0 for
to
tekE,,

b
by ¥ 20, k=0,1,....n—=2, plto)) 5" + [|gt)|dt <0, ®(t) <0 for
to
teE,,k=0,1,....,n— 1,

k=0,1,...,n—1,

then y®(t), k = 0,1, ...,n — 1, have no zero points on I.

Proof. From equation (1) we get:

00T 2 =X R0 =S S IO FuG 0D ~ 1801

After integrating the last inequality from ¢, to ¢ for eI with regard to the
assumptions of the theorem in the case a) we get:

t
p(0) y"71(1) 2 p(10) ¥6 7 = [ 1g(s) [ ds > 0.
to
Further we proved as in Theorem 1.

Theorem 5. Let for an 1€ {0, 1, ...,n — 2} and any te J ryy (t)e C}(J), r{ . (t) —
—2r() — | g(t)| = 0 hold and further let r(t) < 0,k =0, 1, ..., [ — 1,1+ 1, ....
ey n =1L, q(t) 20, k=0,1, ...,n—=1,i=12, ..., m

Furthermore suppose that

[ri (0= 200 = [ + [ 3, n0F + [T T a0’ =0,

k*l1
k*l+1

cannot hold any subinterval of J.
If y(t) is a solution of the initial problem (1), (2) for which (7) is fulfilled and

o 1 12
p(1o) Y5286 + 5 () 8T = 5 [ 1el1dr 2 0,
tﬂ

then y®(1), k = 0, 1, ..., n — 1 have no zero points on I.



Proof. If we apply to (8) the inequality (4), we obtain:
n- ne 1
p() YV (1) + 5 'l+ (O DPOF 2 p(to) ¥~y + 5 risa(to) 6’17 —

= 3 18+ 1o 6 0 + [ i) = r) - 1601

n—11

x[yOs)])* ds =L In0) y©(s) yO(s)ds —
- Z 5 ,f YOTh()] 4ils) Fia(yPThi(s)]) ds.

k=0 i=11g

The next part of the proof is similar to that of Theorem 2. In a similar way as
Theorem 3 one can prove the following theorem:

Theorem 6. Let for t € J the assumptions of Theorem 3 be valid with the exception
that g(t) = 0 and g(t) < 0, respectively, is replaced by

a) p(to) yo' =" = Hg(t)ldt >0,
respectively
b
b) plte) yo ™" + Jlg(y1de £ 0.

to

If y(t) is a solution of the initial problem (1), (2) for which (7) holds, then y™*(t),
k=0,1,...,n — 1 have no zero points on I.

Remark. Similar assertions as in Theorems 4, 5 and 6 can be obtained by using

b b
(3), only the assumption || g(r) | dr < oo must be replaced by | g%(1) dt < oo.
to fo

Theorem 7. Let for anle {0, 1, ..., n — 2} and for te J r, (1) e C'(J), ri4 (1) —
—2r(t) >0and r(t) £0, k=0,1, ..., =1, I+ 1, ...,n—1,¢q,t) =0, k =
=0,1,....,n—1,i=1,2,...,m, hold.

If y(t) is a solution of the initial problem (1), (2) for which (7) is true and

I ' . g*(1) v
1) ye Y0 () DT - [ dt > 0,
p(to) 3 11(to) [ :J; 20 ,(1) _4’ ()
then y*(t), k =0, 1, ..., n — 1 have no zero points on I.
Proof. Applying (5) to (8) and rearranging, we obtain the expression:

p(1) y~ ”(t)y‘“(f)+~-~u+;(t) D01 =z p(t) v~ Vy +

1 1y : o g(s) i ("_l)s‘ a4 1)/, o
R B s ds+£p<s)y () y" (s) ds
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n—11 n—1

=S TAOIV6 6 ds =% S {016 2u) P ds.

From the last inequality with regard to the assumptions of the theorem tle asser-
tions of this theorem follow.

Theorem 8. Let for an 1€ {0, 1, ..., n — 1} and any t € J the inequalities

ri(t) < 0, r() £ 0, k=0,1,..,1—-1,1+1,...,n—1,

qi:(t) £ 0, k=0,1,...,n—-1i=12,....m
and

g
10 4rl(t)
If y(t) is a solution of the initial problem (1), (2) for which determined by (7) and

dt > — o0, hold.

Ko+ § 0 gz
Yo O i ¢

then y¥(t), k = 0, 1, ..., n — 1, have no zero points on I.
The proof will be carried out similarly as in Theorem 7 by using the inequality (5):
in the identity (6).

Author’s address: Jan Futak, Department of Mathematics, Vysoka $kola dopravna, Zilina.
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Shrnuti

O NULOVYCH BODOCH RIESENI NELINEARNEJ DIFERENCIALNE]J
ROVNICE #-TEHO RADU S ONESKORENYM ARGUMENTOM

Jan Futak
V praci su uvedené postacujice podmienky k tomu, aby rieSenie y(z) zaciato¢nej ulohy (1), (2)
a funkcie y(")(t), k =1,2,..., n— 1 nemali na intervale / nulovy bod. Vysledky st ziskané pomocou
istych integralnych identit.
Peziome

O HYJIEBBIX TOUKAX PEIIEHUW HEJUHEWUHOTIO
JUOPEPEHIIMAJIBHOTO YPABHEHUA n-OTO IMOPAOKA
C 3AITIA3bIBAIOIIUM APITYMEHTOM

Sn dyrtax

B cTaThe npuBeaeHbl JOCTATOYHbIE YCIOBUA IUIA TOrO, YTOObI peuieHue y(f) HA4YaJbHOM 3aJavyu
(1), (2) 1 dynxkmm y*¥@), k=1,2, ... , n— | HEe MPUHMMAIM HYJEBOU TOYKM B npomexytke I.
Pe3ynbTaThl BbIBEJCHBI NPU MOMOILM MHTErPAIBHBIX TOXIECTB.

68



		webmaster@dml.cz
	2012-05-03T18:03:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




