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In [3] the author sets the problem to find sufficient and/or necessary conditions
to functions ¢, g for differential equations (q): ¥" = q(t) », (qQ): ¥" = §(t) y to have
the same distribution of zeros of solutions, in other words, the same dispersion. This
paper gives some necessary conditions expressed in an integral form. The reader is
referred to [3] for the list of necessary and sufficient conditions known as yet and
for the list of references.

1. Let (q) denote a differential equation

y'=qt)y, qeCR, R = (=00, x), (@

oscillatory on R which means that every non-trivial solution of (q) has infinitely
many zeros on every interval of the type (— o0, @), <b, ).

For better understanding we now introduce some definitions and results from the
theory of phases and from the theory of dispersions stated in [1].

Let x € R and y be a non-trivial solution of (q) and y(x) = 0. If ¢(x) is the first
zero of y lying to the right of x, then ¢ is called the basic central dispersion of the
Ist kind (briefly dispersion) of (q). By assumption (q) is oscillatory on R and con-
sequently its dispersion ¢ is defined on the whole interval R, and the dispersion ¢
of (q) satisfies:

o(t) > t, e'(t) >0 for teR, @ e C3.

Let (u, v) be a basis of (q). A function « € Cy defined by
u(t)
t

(1)

tga(r) : = for all teR — {t;1e R, p(1) = 0},

69



is called a (first) phase of the basis (v, v) of (q). Suppose the function « is a (first)
phase of (q) if there exists such a basis (u, v) of this differential equation possessing
the function « as its phase. Each phase « of (q) satisfies:

ae CR, a'(t)#0  for teR, (€))]
2 1 a"(t 3 a0V _
q(t) = —{«, t} —«'*(t), where {o,t} = 5 0;7((;)) - -}(1,5';) , (@

lima(t) =osgna’ 0 (0= %1).
t=ox0
Between any phase o and the dispersion ¢ of the same differential equation the
following Abel equation holds

oo @(t) = a(t) + msgna, teR. 3)
2. First let us prove the following

Lemma 1. Let (q), (q) be oscillatory on R and o be a phase of (q). Then (q) and (q)
have the same dispersion if and only if there exists a function g such that the differential
equation (g): y" = g(t) y has the dispersion t + n and

q(1) = q(t) + (1 + goa(t) a'*(t),  teR. @

Proof: Lemma 1 follows directly from the theorems given in [1], pages 147
and 148.

Remark 1. If (g) has the dispersion ¢t + =, then it follows from (3) and (2) that

g is a periodic function on R with period 7.

Theorem 1. Let (q), (q) be oscillatory on R having the same dispersion, q # 4. Then
the improper integrals

0 — 0 —
IV —awtdn V190 - g() 14
are divergent.

Proof: Let « be a phase of (q), sgna’ = 1. By assumption (q) and (q) have the
same dispersion, which by Lemma 1 is true if and only if there exists such a function g
where (g) has the dispersion ¢t + 7 and where the formula (4) holds, and consequently
also

Vig) — g = £(OVI1 + goa(t)],  teR. )
0 S
We shall now show that the improper integral | \/I q(t) — q(t)| dt is divergent.

0 [ S
Completely the divergence of the improper integral j\/l q(t) — q(t) | dr can be

proved analogous.
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Let a be a number. Integrating (5) from /(< @) to a and using the equatity

a(a)

[2(s) T F goao)Tds = § \IT T 6)1ds.

t a(r)
we obtain
O aw
JV14(s) = a(s)1ds = | JTT+ g(s)] ds.
t a(t)
According to Remark 1, the function g is a periodic function with period , lima(t) =

t>—o

0 S —
= —oo and therefore | \/| q(t) — q(¢) | dt converges if and only if g(t) = —1. Then,

of course, with respect to (4) we have g = g, which contradicts our assumption ¢ # q.

o - S
Consequently [ v[4(r) — g(z) | dt is divergent.

Theorem 2. Let (q), (q) be oscillatory on R having the same dispersion, q # q.
Let o be a phase of (q), 0 = sgno’.

Then

O q(t) — q(t < g(1) — q(1
il ,),_/,V,ii.(,), dt = ooo, () —a() 4 _
(1) 0 a'(1)

Proof: Let « be a phase of (q) having the same dispersion as (q), ¢ # ¢. Then by
Lemma 1 there exists a function g such that (g) has the dispersion ¢ + n and the
formula (4) and consequently also the formula

,‘7(,'.)0(%)‘1(’) = (1 + gox() (1), 1eR ©)
hold.

Let a be a number. Suppose first ¢ = 1. Integrating (6) from a to #(= a) and using

the equality
a(t)

[(1+ goa)a)ds = [ (14 2() s
we obtain

F96) = 96) 4 T 4 g5y ds.

a a'(s) (a)
By Remark 1 g is a periodic function with period = and by Theorem 7.1 from [2]
page 590 (}:’ (1 +g)dr=0 wherebyof(l + g(t))dt = 0 if and only if g(t) = 1.
a(1) = 4(1)

Respecting lima(f) = oo we have | (v) . dt convergent if and only if
1= 00 a o (!

J (1 + g(r))dr = 0. Then, naturally, g(f) = —1 and we obtain from (4) ¢ < ¢
0
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contradicting our assumption ¢ # ¢. Consequently [ (I + g(r))dt = k > 0 and
(4]
©q(t) — q(1
a0 =) 4, _
o (1)

Likewise it can be shown that

[a=a y _ o

- ZX’(I)
Not let ¢ = —1. From the theory of phases then follows that —u is a phase of (q)
as well. Since sgn (—x)' = —sgn o’ = 1, itis possible in a manner completely analog-

ous to that of the first part of the proof—only that we consider —a instead
i (a0 =a) 4, _ jq(t) q(1)
0 —oc(t) ~-»  —a{1)
= —w, j q(l) q(1) dt =
0 a(t) “w al(1)

the Theorem.

of a— to come to dt = o« and thus to

—oo. This completes the proof of

Corollary. Let (q) have the dispersion t + n, ¢ # — 1. Then the improper integrals

0

0 I
T +q@Tde,  [JIT+q(0]de
s 3
are divergent and for every phase ¢ of (—1): y" = —y

0 o)
i ljﬁ(_t) dt = ! = 1+ 4( q(t) dt = sgn¢'oo.
0

sgn &' oo,
&(1)

~ Proof: The above Corollary follows directly from Theorem 2 where now —1
and ¢ instead of g and g is considered.

Remark 2. There can be investigated equations of the type (q) as well, where
ge Cl, I = {a, o) are oscillatory on I which means that every non-trivial solution
of this differential equation has infinitely many zeros on interval I. It can be shown,

too, if (q), (), ¢ # g have the same dispersion then j\/l g(t) — q(tj | dr diverges

j ‘1(1) (I(I) di =
a o (t)

and if « is a phase of (q), ¢ = sgn 2/, then = gw.
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Shrnuti

INTEGRALNI VLASTNOSTI KOEFICIENTU LINEARNICH
DIFERENCIALNICH ROVNIC 2. RADU SE STEJNYM ROZLOZENIM
KORENU RESENI

Svatoslav Stan€k

V préci jsou uvedeny dvé nutné podminky, aby diferencialni rovnice (q): y" = q(t)y a (q): y" =
= g(t) y mély stejné rozloZeni korenu feseni, jinymi slovy, aby mély stejnou dispersi. Jedna podminka
je vyjadrena pfimo pomoci funkci ¢ a g, druhd podminka pouziva jesté navic prvni fazi diferencialni
rovnice (g). Podminky jsou vyjadfeny v integralnim tvaru.

Pesome

MHTETPAJIBHBIE CBOVICTBA KOD®OUILMEHTOB JUHEMHBIX
ANDOOPEPEHUMAJIBHBIX YPABHEHUIM BTOPOI'O IOPSJIKA
C TEM XE PO3JIOXKEHUEM KOPHEM PEIIEHUN

CeartociaB CraHek

B pabore npuBeeHbI 1Ba HEOOXOAMMBIX YCIIOBHSI IIPY BBIMOJIHCHHM KOTOPBIX NuddepeHunarbHbie
ypasuenns (q) : Y = q(t)y v (q) : y" = G(t)y MMEIOT OOMHAKOBOE PO3JIONEHUE KOPHEH pElLICHMIt,
JPYIMMH CIIOBAMH, MMEIOT TY K¢ Aucriepcrto. [TepBoe yCiioBue BBIPAXKAETCS MPSMO MPH MOMOLLIM
(GyHKUME ¢ M G, BTOPOE YCJIOBHE MCILOJIL3YET KPOME TOTrO HepByro ¢a3y muddepeHnmansHoro ypas-
Henus (). YCIOBHS 1IPEJICTABIIEHbL B HHTErPAJIbHON dopMe.
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