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INTRODUCTION

We consider a fourth order linear homogeneous differential equation of the form
(1) + 10[q(1) y' (0] + 3[3¢%() + q" (O] »(1) =0, M

where the function ¢(¢) defined on the interval I = (— o0, + 00) is understood to be
continuous together with its derivatives up to and including the 2nd order, i.e. q(t) €
e C{* and ¢q(t) > 0 for all te(—o0, +00) such that the 2nd order homogeneous
linear differential equation of the form

Yt +qt)yt) =0 (2

is oscillatory in terms of [2], which means that to esch t € (— o0, +c0) there exist
infinitely many zeros of an arbitrary nontrivial solution of differential equation (2)
lying to the right and to the left of the point 7.

The differential equation (1) is called iterated with respect to the differential equa-
tion (2). As is known, if [u(t), v(¢)] is the basis of the differential equation (2), then
[3(1), u*(z) v(t), u(?) v*(t), v*(t)] is the basis of the equation (1). Hence, every non-
trivial solution of the equation (1) is of the form

§0 = ¥ Cut 000, 3)

4
with C;eR, i=1,...,4, Z C? > 0, whereby under the assumption of oscillation
i=1

of differential equation (2) it proves to be oscillatory as well (for brevity, the equation
(1) will be called oscillatory too).
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Since the differential equation (1) is of the fourth order, one notes that every zero
of its nontrivial solutions can be of multiplicity 3 at the highest. Throughout this
article every solution both of (2) and of (1) is understood to be nontrivial only.

Lemma 1: Let ¢, € (— o0, 4+ 00) be an arbitrary firmly chosen point. Then every
oscillatory solution y() of the differential equation (1) which vanishes at the point
to is of the form

1. y(t) = Cyu3(t) + Cou®(t) vo(t) + Csu(t) v*(t), C3 # 0, iff 1, is a simple zero of
the solution y(¢),

2. y(t) = Cu(t) + Cu*(t) v(t), C, # 0, iff ¢, is a double zero of the solution y(t),

3. y(t) = C,u3(t), C; # 0, iff ¢, is a triple zero of the solution y(t),

with [u(t), v(t)] being such a basis of the differential equation (2) that u(z,) = 0
Proof: As said before, every solution of the differential equation (1) is of the form

4
B)withC;eR,i =1....,4,% C? > 0, where [u(t), v(r)] is the basis of the oscillatory
i=1

differential equation (2).

Let ty e (— o0, +00) be an arbitrary zero of the solution y(z) of the differential
equation (1) and let [u(z), v(¢)] be the basis of the oscillatory differential equation (2)
such that

u(ty) = v'(ty) =0, (P)

[so that u'(t,) # 0, v(t,) # 0 and thus the point 7, is a simple zero of the function u(r)].
Then the system of all solutions y(t) of the dif. equation (1) which vanish at the point ¢,
is exactly of the form

3
y(1) = i;Ciu““i(t) o' "), ©)

3
with C,eR, i =1,2,3, Z Cf > 0 being arbitrary constants.
i=1

We distinguish first all the alternatives for the values of constants C;e R, i =
3

=1, 2, 3, in view of the condition Z C? > 0 and in agreement with the multiplicities
i=1
v =1, 2,3 of the point ¢,.

1.1. Let C3#0, i.e. y(t) = u(t) i Cu®7i(t) v 1(2). Since f’(t) =u(t) {3Cu(r) u'(t) +
i=1

+ Co[26/(8) v(t) + u(t) v'(2)] + 2C30(r) v'(£)} + Cau'(r) v*(r) and it holds y(t,) =0
with respect to the assumption (P), but y'(zy) = Cau'(t,) v*(t,) # 0, the point ¢, is
a simple zero of the solution y(t).

12. Let C; =0, C, #0, ie. y(t) = u?(t)[Ciu(t) + C,v(t)]. Since y'(t) =
= u®){3Cut) w'(t) + C[u () v(t) + u(®) v'(®)]}, y'(t) = u(t) 3C[2u'*(r) +
+ u(t) u'(1)] + C[2u"(t) v(r) + 4u'(t) v'(t) + u(r) v"(£)]} + 2C,u'*(t) v(t), so that
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with respect to the assumption (P) we have y(f5) = y'(t,) =0 while y"(t;) =
= 2C,u'*(t,) v(t) # 0, the point ¢, is a double zero of the solution y(t).
13. Let C; =C, =0, C, # 0, i.e. y(t) = C,u’(t). Since

y'(t) =3Cu 1) u(),
y'(t) = 3C,u(t) [2u2(t) + u(®) u'(1)],
y"(t) = 3C,{2u3(r) + u(t) [6u'(t) u'(t) + u(t) u"(t)]},
so that with respect to the assumption (P) we get y(¢,) = y'(¢,) = y"(t,) = 0, but
y"(ty) = 6Cu'3(1,) # 0, the point ¢, is a triple zero of the solution y(z).
Conversely:
2.1. if v = 1, then C; # 0 (because in case of C; = 0 it follows by the condition
3
> C? > 0 and by 1.2. or 1.3. that the point ¢, is of multiplicity 2 or 3).
i=1
2.2.if v = 2, then C, # 0 (because in case of C, = 0 it follows by the condition
3
Z C2 > 0 and by 1.1. or 1.3. that the point ¢, is of multiplicity 1 or 3).
i=1
2.3.if v = 3, then C, # 0 (because in case of C, = 0 it follows by the condition

3
C? > 0 and by 1.1. or 1.2. that the point ¢, is of multiplicity 1 or 2).
=1

1

§ 1. CONJUGATE POINTS

Definition 1.1. Let ¢, € (— o0, + o) be an arbitrary point and let y(¢) be an arbitrary
solution of the differential equation (1) which vanishes in itself (we indicate this by
writing *z,, where v = 1, 2, 3 denotes the multiplicity of the point ¢,).

Then the first conjugate point from the right to the point ‘¢, will be called the
first zero of the solution y(¢) lying to the right of the point ", (we indicate this by
writing #¢,, where u = 1, 2, 3 denotes its multiplicity).

Since every solution of the differential equation (1) is oscillatory (see the remark
in the introduction), it is obvious that there always exists to an arbitrary point
‘to€(—o00, +0), v = 1,2, 3, the first conjugate point *#; from the right to the
point *¢, of a suitable multiplicity u = 1, 2, 3.

Theorem 1.1: Let ##; € (— o0, + o) be the first conjugate point from the right to
the point *#; € (— o0, +0), u, ve {1, 2, 3}.

Then it holds:

I.ifv =1, theneithery =l oru = 2,

I ifv=2,thenp = 1,

IIL. if v = 3, then p = 3.

Proof: Let ¢, € (— o0, +c0) be an arbitrary firmly chosen point; we choose the
basis [u(t), v(t)] of the oscillatory differential equation (2) so that both functions u(t),
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v(t) and their first derivatives u'(z), v'(t) satisfy the conditions (P) at the point #,.
Let y(¢) be such a solution of the differential equation (1) that the point ¢, is its
v-multiple zero (enabling us to write “¢,, where v = 1, 2, 3).

I. Let v = 1; then by Lemma 1, every oscillatory solution of (1) vanishing together
with the function u(t) at the simple point !7,, is exactly of the form

(1) = u(t) [C1u?(t) + Cou(t) v(t) + Cyv*(t)],

withC;e R,i = 1, 2, 3, C; # 0, being arbitrary constants. Let T, stand for the neigh-
bouring (simple) zero of the function u(r) lying to the right after the point ¢, i.e.
T, > tg, so that

¥(to) = u(ty) =0, Ty =u(T,) =0,

which gives u(r) # O for all t € (t,, T;) [due to the continuity of the function u(r),
there is either u(f) > 0 or u(r) < 0 on the interval (o, T;)]. The existence of zeros
relating to the solution y(¢) of the dif. equation (1) on (¢, T;) will be decided by
investigating the zeros of a three-parametric system of all functions having the form

yE(t) = Cu?(t) + Cou(t) v(t) + C30%(t),

being always uniquely determined by the choice of the constants C;e R, i = 1, 2, 3,
C; #0.

It is obvious above all that no zero—in so far as such exist—of an arbitrary
function from the system of functions y*(¢) cannot be at the same time the zero of the
function u(t) [as follows from the assumption saying that both functions u(z), v(t)
form the basis of the dif. equation (2) and from the Sturm-theorem on the mutual
separation of all zeros of two oscillatory linear independent solutions of the dif.
equation (2)].

Restricting the values of the argument ¢ to the open interval (z,, T;) enables us to
write in place of the equation of zeros of y*(z)

C,u2(t) + Cou(t) v(t) + C30*(t) =0

an equivalent equation

(1) PP u(t) _
C3[u(t)] + C, ) +C;=0.

Putting
v(t)

——= = cotg a(t),

u(t)

where the function o(f) denotes the first phase of the basis [u(t), v(t)] of the oscillatory
dif. equation (2) [2], enables us to write the above equation in the form

C, cotg? a(t) + C, cotga(t) + C; = 0. (*)

There need not be done any distinction among the following three possible cases:
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1. If C2 — 4C,C, > 0, then
—-C, — V2 - 4C,C,
2C,

cotga(t) =
or

~C, +/C3 —4C,C,
2C, ’

cotga(t) =

wherefrom we get the following expression for the values of the 1s7 phase a(t) of the
basis [u(1), v(t)] of the differential equation (2) at the points ¢’ or ¢, with t', t" €
€(ty, Ty) and t' # t":

—C, -V - 4c,C, ) .

() = arccotg( Te
3

at a suitable n =0, +1, +2, ... or

—C, ++C% —4C,C,4 ) K

o (t) = arccotg( Ta
3

at a suitable k = 0, +1, +2, ... If we assume C; > 0 in the equation (*) and denote

-C, —VJCI —4C,Cy ~ _ —C,+3CI-4C,Cy

Ci= 2C, ’ C. = 2C, ’

so that C; < C,, then there may occur the following possibilities:
a) C, <C,<0; then we take both arccotg C, e(lzz—, n) and arccotg C, e(%, n)
with the inequalities
U

5 < arccotg C, < arccotg G, < 7

and thus for all (suitable) k =n =0, +1, +2,...:

<n + —‘1,?)71 <oty <o(t)<(n+ Dn

For both simple zeros t',t" € (t,, T;) of the functions relative to the system y*(¢)
we get
o<t <t'<t*<T,

[where t* € (to, T,) is denoted a zero of the function v(#)], so that 't; = ¢' holds for
the first conjugate point from the right to the point z,, in which the solution y(¢)
of the dif. equation (1) vanishes.

b) C, < C, = 0o that C; = 0, C, > 0 and the system of functions y*(f) may
be written in the form

y¥() = o(t) [Cou(t) + Cao()].
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Then we take arccotg 61 e(—;[— , n) , arccotg ffz = % with

= arccotg C, < arccotg G, < =

S1E

and thus for all (suitable) k =n =0, +1, +2,...:

(n + %—)n =o,(t") < ot)y<(n+ D=

For both simple zeros ¢, t" € (to, Ty), t" # t”, of the functions from the system y*(t)
we become
to <t <t”"<Ty,

where t” or ¢’ is the zero of the function v(t) or C,u(t) + Csv(¢). Thus it holds ¢, = ¢’
for the first conjugate point from the right to the point ‘¢, at which the solution y(t)
of the dif. equation (1) vanishes.

¢) €, <0 < C,; then we take arccotg C, e(O, %) while arccotg C, e<% , n)
and there holds the inequalities

0 < arccotg €, < % < arccotg G, < =

and consequently for all (suitable) k =n =0, +1, £2,...;

nm < a,(t") < (n + %) n<o(t)<(n+ Dn
We become

to <t <t*<t"<T,

for both simple zeros ¢', t" € (t,, T;), t' # t”, of the functions from the system y*(z)
[where t* € (to, T;) is denoted a zero of the function v(r)]. It holds ‘¢, = ¢’ for the
first conjugate point from the right to the point *#,, at which the solution y(r) of the
dif. equation (1) vanishes.

In particular, if C; <0 <C, and C, + C, =0 (so that C, = 0 and thus due
to the assumption C; > 0 there must be C, < 0), the system of functions y*(t)
written in the form

y¥() = Cuud(t) + C302(t) = B
= [ =CLu(t) — JCyu(t)] [V=C1#(t) + /C3u(1)]

has in the interval (¢o, T;) both simple zeros ¢', t” being different to each other and
symmetric by the point t* € (15, T;) wherein v(¢*) = 0, i.e. between their numerical

, 1, .
values t', t", t* € R holds the relation t* — t' =1¢" — t* or t* = 70 + 7).
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d)0 = C, < C,, so that C; = 0, C, < 0 and the system of functions y*(f) may
be written in the form
(1) = v()[Cou(t) + Cyo(1)].

We take then arccotg C, = ~72z— , atccotg C, e(O, g—) with

0 < arccotg C, < arccotg (le = %

and thus for all (suitable) k =n =0, +1, +2,...:
" ) 1
nn < o, (1) < a,(t') = n+—2— .

We become for both simple zeros ¢', t" € (t,, Ty), t’ # t”, of the functions from the
system y*(t)

e <t <t'"<Ty,
where ¢’ or t” is the zero of the function v(¢) or C,u(t) + C,v(t). Hence it holds
1t, = t’ for the first conjugate point from the right to the point '#, at which the
solution y(t) of the dif. equation (1) vanishes.

e) 0<C, < C,; then we take both arccotg C, e(O, %) and arccotg C, € <0, %) s

hereby hold the inequalities
0 < arccotg (~32 < arccotg C; < g

and thus for all (suitable) k =n =0, +1, +£2, ...

nr < o,(t") < o, (t) < (n + %) .

We become
o <t*<t' <t’'<T;

for both simple zeros ¢', t" € (ty, T;), t' # t", of the functions from the system y*(¢)
[where t* e (t5, T;) denotes a zero of the function v(¢)], so that it holds ‘¢, = ¢’
for the first conjugate point from the right to the point *¢, at which the solution y(f)
of the dif. equation (1) vanishes.

Remark. In case of C; < 0 in the equation (*), the order of the values of the
functions a,(t'), #,(t") [for suitable k = n =0, +1, +2, ...] will be reversed in the

interval <(n + —;-) n, (n+ 1) rc) , <(n + %) n, (n+ 1) n) , (nm, (n + 1) n),

1
(mt, (n + 7) 7t> s (mr, (n + %_-) n) respectively. Accordingly (with a suitable
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value of number n) the order of the corresponding simple and from each other
different zeros ¢’,t"” of the functions from the system y*(¢) on the open interval
(ty, T,), will be reversed as well.

2. If C2 — 4C,C; = 0, then due to the assumption C; # 0, the equation (*) may
be written as

G,
Cotg a(t) = —‘EE—; .

Herefrom we get the same expression for the common values of two coincident
phases «(?) in the form

a,(t) = arccotg(— 2% ) + nn
3

with suitable n = 0, +1, +2, ..., where we take

C, n .
arccotg(—— 2C3>e(0, 7) if sgn C; % sgn C,,

C2 T .
arccotg (— 3C, ) e(T, n) if sgn C; = sgn C,,

C, /4 .
arccotg(—— 2C3> =5 if C,=0.

Thereby it holds for all values ¢’ of the function invers to the function a,(¢') that
(with a suitable value of the number n) t' € (¢,, T;) and represent the double zeros
of the function system y*(z).

In particular, in case of C, = 0 (consequently also C; = 0), the function system
y*(t) is of the form y*(t) = C;v*(t) and therefore the double zero ¢’ of the system
y*(t)—and in this way simultaneously even the solution y(¢) of the dif. equation (1) —
on the interval (¢,, T;) coincides with the single zero of the function v(¢) lying on
this open interval.

Hence it holds 2¢, = ¢’ for the first conjugate point from the right to the point ¢,
wherein the solution y(z) of the dif. equation (1) vanishes.

3. In case of C2 — 4C,C; < 0 the equation (*) has no solution, which means
that the system of functions y*(f) has no zeros. The only zeros of the solution y(¢)
of the dif. equation (1) in this case are exactly all (simple) zeros of the function u(z).

It holds therefore 'z, = T, for the first conjugate point from the right to the
point 'z, wherein the solution y(t) of the dif. equation (1) vanishes.

IL. Let v = 2; then by Lemma 1, every oscillatory solution of the dif. equation (1)
vanishing together with the function u*(¢) at the double point %¢,, is exactly of the
form

y(t) = u?(1) [Cyu(r) + Cau(1)]

with C;e R, i = 1,2, C, # 0, being arbitrary constants. If we denote by T, the
neighbouring zero of the function u(z) (evidently, the zeros of the functions u(r)
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and #*(¢) coincide; they differ from each other in multiplicity only —while all zeros
of the function u(¢) are simple, those of the function u2(¢) are double), lying to the
right after the point ¢,, i.e. 7|, > ¢,, then repeatedly

y(to) = ulte) =0,  y(Ty) =u(T,) =0

with u(t) # 0 [either u(t) > 0 or u(t) < 0] holding for all ¢ e (ty, T,), while on
(to, Ty) there always lies exactly one (simple) zero of every function from the two-
parametric system

yH() = Cyult) + Cyo(),

which is always uniquely determined by the choice of the constants C; e R, i = 1, 2,
hereby C, # 0, as every such function together with the function u(¢) form a pair
of a linear independent solutions (i.e. a basis) of the dif. equation (2), all zeros of
which —according to the Sturm theorem—separate each other. In particular, if
C, =0, the solution y(t) = C,u*(t) v(t), C, # 0, has on the open interval (¢y, T,)
exactly one (simple) zero ¢’ relating to the function v(¢), i.e. holds v(¢") = 0.

Therefore it holds 't;, = ¢’ for the first conjugate point ¢, wherein the solution y(¢)
of the dif. equation (1) vanishes together with the function u?(¢).

INL. Let v = 3; then by Lemma 1 every oscillatory solution of the dif. equation (1)
vanishing together with the function #3(¢) at the triple point 3¢, is exactly of the form

) = Clus(t)

with C, e R — {0} being an arbitrary constant. If we denote by T the neighbouring
zero of the function u(r) lying to the right after the point ¢,, i.e. T; > t,, then
repeatedly

¥(to) = u(to) =0, »(Ty) = u(T,) = 0.

Then it holds both u(t) # 0 and (1) # 0 for all ¢ € (¢4, T;) so that there lies no zero
of the solution y(z) on the interval (¢,, T;) becausc all zeros of the solution y(t)
coincide with the zeros of the function u(¢) and with respect to the form of the solu-
tion y(¢) all the zeros are triple.

Thus it holds 3¢, = T for the first conjugate point from the right to the point 3¢,
wherein the solution y(¢) of the dif. equation (1) vanishes together with the func-
tion 23(¢).

In this way the Theorem 1.1 is completely proved.

Definition 1.1. can be extended in a natural manner to

Definition 1.2: Let ¢, € (— 00, + c0) be an arbitrary firmly chosen point and let y(t)
be an arbitrary solution of the differential equation (1) vanishing at the point ¢,
(we write “t, whereby the point 7, is of multiplicity v = 1, 2, 3).

Then under the n-th (n = 1, 2, ...) conjugate point from the right [from the left]
to the point *t, (v = 1, 2, 3) it will be understood the n-th zero of the solution y(r)

93



lying to the right [to the left] of the point “#, written as ##,[*7_ ], where p = 1, 2, 3
denotes the multiplicity of this point, respectively.

In analogy with the remark to definition 1.1 it becomes evident with respect to the
oscillation of every solution of the dif. equation (1) that, to an arbitrary point “t, €
€ (—oo, +®), v=1,2,3, there always exists a |k |-th conjugate point ‘1, €
€ (— o0, +0), where k = +1, +2, ..., from the right (for k > 0) or from the left
(for £ < 0).

Remark on the conjunction of points:

Let te (— o0, +00) be an arbitrary firmly chosen point; then

1. any point t* € (— 00, + 00) conjugate to the point ¢ is conjugate to itself (i.e. the
property of the conjunction is reflexive),

2. if the point t* € (— 00, + 00) is a conjugate point to the point ¢, then the point ¢
is also a conjugate point to the point ¢* (i.e. the property of the conjunction is sym-
metric); one speaks therefore of mutually conjugate points,

3. if the point t* e (—co, +00) is a conjugate point to the point ¢, and t** €
€ (— o0, +00) is a conjugate point to the point ¢*, then the point #** is a conjugate
point to the point ¢ (i.e. the property of conjunction is transitive).

Using the just in definition 1.2 installed notion of the n-th conjugate point, we
may express especially by the help of the 2-nd conjugate point some evident state-
ments (as a consequence of the preceding Theorem 1.1) in

Theorem 1.2: Let 7, € (— o0, +00) be a zero of an arbitrary solution y(t) of the
differential equation (1) of multiplicity v = 1, 2, 3,1.e. y(*t;) = 0. Then the set of
all first conjugate points “¢, (u = 1, 2, 3) from the right to the point ‘', in case of

. v = 3 is one-point and exactly 3¢,,

.v = 2 is an open interval (*t,, %t,), i.e. 't, € (*ty, °t,),

.v =1and u = 2 is an open interval (‘ty, 't,), i.e. 2t; € (*to, 't,),

.v = land p = 1iseither one-point and exactly !¢, or an open interval (*y, 't,),
ie. 't e (Mg, 'ty).

N R S

The results of Theorems 1.1 and 1.2 are summarized and with respect to definition1.2
generalized in the following

Theorem 1.3: Let “fpe(—o0, +0), v =1,2,3, be an arbitrary firmly chosen
point and let y(z) be such a solution of the differential equation (1) that the point
"1y 1s its v-multiple zero.

Then it holds:

1. Every | k |** conjugate point “f, to the point 3¢y, where k = +1, +2, ..., i8
uniquely given with u = 3; it holds the inequality

e < Myy
at the same time.
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2. Bvery 2| k | conjugate point 1, to the point %ty, where k = +1, +2, ...,
is uniquely given with u = 2 and the set of all | 2k + 1 | conjugate points ¢, 4+,
to the point 2ty, where k = +1, +2, ..., forms an open interval (*t,,, %t5+2)
with p = 1. There hold at the same time the inequalities

2 1 2
b < fogs1 < T4

3. a) If the first conjugate point #, to the point 'z, is given uniquely, then an
arbitrary | k | conjugate point *f, with k = +1, +2,... is also given uniquely
whereby ¢ = 1. There holds at the same time the inequality

1 1
I < hvr

3. b) If the set of all first conjugate points #¢, to the point '#, forms an open interval
whereby u = 2, then any 2| k | conjugate point °,, to the point ¢, where k =
= +1, +2, ..., is given uniquely, whereby ¢ = 1, and the set of all |2k + 1|*
conjugate points °t,,,,, where k = +1, +2, ..., to the point ¢z, forms an open
interval (1,4, 'f5,+,), whereby & = 2. There hold at the same time the inequalities

1 2 1
Lk < g1 < a4z

3. ¢) If the set of all first conjugate points “t, to the point *#, forms an open interval
whereby p = 1, then any 3 | k | conjugate point °t5,, where k = +1, +2, ..., to
the point 't is given uniquely, whereby ¢ = 1, the set of all | 3k + 1|* conjugate

points °f3,,,, where k = +1, +2,..., to the point 'z, forms an open interval
(*t34» Y13 42), Whereby e = 1, the set of all | 3k + 2|* conjugate points °t3, 4,
where k = +1, +2, ..., to the point #, forms an open interval (*f3, 4, “fax+3)s

whereby ¢ = 1 and there hold the inequalities

1 1 1 1
Ly < lagsr < lage2 < 3

at the same time.

§ 2. STRONGLY AND WEAKLY CONJUGATE POINTS

Definition 2.1. Let the points ‘7, “f, € (— o0, +0), wWhere v, pe{l, 2,3}, k =
= +1, +2, ..., be conjugate points of the solution yy(t) of the differential equa-
tion (1).

We say, that the point "7, is a strongly conjugate point to the point #, exactly
if all solutions y(t) of the dif. equation (1) vanishing v-times at the point “#,, vanish
at the point #7,..

Any conjugate point to the point ¢y, which is not strongly conjugate to the
point “t,, will be called a weakly conjugate point to the point “¢,.

With the above definition we see that it holds:

the point 14 € (— 0, + ), where k = +1, +2, ..., is the weakly conjugate point
to the point ", € (— 00, +0), where v e {1, 2, 3}, exactly if there exist at least two
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solutions —among all solutions y(¢) of the dif. equation (1) vanishing v-times at the
point “t,—such that one of them vanishes at the point 7} while the other does not.
The following theorem proves that the multiplicities v, p of the points “#,
€ (—o0, +00) and *t, € (— o0, + o0)—the latter is strongly conjugate to the former —
always coincide for any of the values v, p = 1,2,3 and for all k = +1, +2, ...

Theorem 2.1: Let “fy, "f, € (— o0, +00), where v, pe{l,2,3}, k = +1, +2, ...,
be two conjugate points of the solution yo(¢) of the differential equation (1). Then
the point “#, is a strongly conjugate point to the point “t, exactly if

l.eitheruy =v =3k =41, £2, ...

2Qoorpu=v=2and k =2m,m = +1, +2, ...

3.orpu=v=1and

a) k =3m, m = +1, +2, ..., if there exist simple weakly conjugate points to
the points “z,, “1, ,

b) k =2m, m = +1, +£2, ..., if there exist double weakly conjugate points to
the points *,, “z, ,

¢)k=m, m= 41,42, .., if there exist no weakly conjugate points to the
points "y, "1, .

Proof: Let t, € (— o0, + c0) be an arbitrary firmly chosen point and let [u(¢), v(¢)]
be a basis of the oscillatory dif. equation (2) such that both functions u(z), v(¢) together
with their first derivatives u'(¢), v'(¢) satisfy the conditions (P) at the point #,. Let y(¢)
be such a solution of the dif. equation (1) which vanishes at the point 7, v-times,
v = 1,2, 3, enabling us to write “t,.

Then it immediately follows from the statement of Theorem 1.3, by using Lemma 1,
and with respect to the definition on strongly conjugate points that

1. if v = 3, then any zero of the solution y(t) of the dif. equation (1) from the
system

y(t) = C’(1), C;#0,

is at the same time a triple zero of the function u3(t), so that every | k|*, k =
= +1, +2, ..., conjugate point “f, to the point 3¢, is simultaneously the |k |*
strongly conjugate point to 3t,, where u = 3,
2.if v = 2, then all double zeros of the solution y(¢) of the dif. equation (1) from
the system
»(t) = (1) [Cou(t) + Cyo(1)],

C,eR,i =1,2,C, # 0, are at the same time the double zeros of the function u?(z).
Here between any two neighbouring double zeros of the solution y(¢) there lies always
exactly one simple zero of the two-parametric function subsystem

y¥(t) = Cuu(t) + Cyu(1),
so that every | k | conjugate point “f, (where k = 2m, m = +1, +2,...) to the

point 2¢, is simultaneously a strongly conjugate point to it, whereby u = 2,
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3.if v = 1, then for the point #,, at which every solution y(¢) of the dif. equation (1)
from the system
() = u(t) [CuP(t) + Cuu(t) v(t) + C3v2(t)],

C,eR,i=1,2,3, C; # 0, together with the function u(¢) vanishes, it holds: every
| k |™ conjugate point *1, —where k =3mork =2mork =m,m= +1, +2,...—
to the point !¢, is simultaneously a strongly conjugate point to it, whereby u = 1,
exactly if between any two neighbouring (simple) zeros of the function u(t) there
exist two simple zeros different from each other [or one double zero, or there exists
no zero] of the three-parametric function subsystem

YER(E) = Cy’(1) + Cou(t) v(t) + Cyv?(0).
Remark 2.1 —on the strong conjunction of points:

Let t, € (— o0, +0) be an arbitrary firmly chosen point. Then

1. every point 7* € (— o0, + o0) strongly conjugate to the point f, is strongly con-
jugate to itself (i.e. the property of the strong conjunction is reflexive),

2. if the point t* € (— o0, + 00) is a strongly conjugate point to the point ¢4, then
the point 7, is a strongly conjugate point to the point ¢* (i.e. the property of the strong
conjunction is symmetric); we speak therefore about mutually strongly conjugate
points,

3. if the point t* € (— oo, + o0) is a strongly conjugate point to the point ¢, and
the point t** € (— 00, + 00) is a strongly conjugate point to the point #* (with respect
to retaining the same multiplicity of the point ¢* as in case of the pair ¢, and ¢¥),
then the point £** is a strongly conjugate point to the point t, (i.c. the property of the
strong conjunction is transitive).

Remark 2.2—on the weak conjunction of points:

Let t, € (— o0, +00) be an arbitrary firmly chosen point and let ¢* € (— o0, + o0)
be a weakly conjugate point to the point #,. Then

1. the point ¢, is a weakly conjugate point to the point * (i.e. the property of the
weak conjunction of the two conjugate points is symmetric),

2. if the point t** € (— o0, +00) is a strongly conjugate point to the point ¥,
then the point ¢* is a weakly conjugate point to the point ¢,.,

3. the property of transitivity of the weak conjunction for the two pairs of points
to, t* and t*, t** (mutually weakly conjugate) does not hold in general (i.e. from the
weak conjunction of the points 7o, t* and ¢*, r** does not follow in general that the
points ¢, and 7** are weakly conjugate).

From the above Theorem, the following statements are immediate:

1. There exist no weakly conjugate points to the point 3¢, € (— o0, + ), i.e. every
conjugate point to its is strongly conjugate.

2. There always exist weakly conjugate points to the point 2t € (— o0, + ),
each of which is exactly of multiplicity u = 1.
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3. The weakly conjugate points to the point !t, e (— o0, + 00) either do not exist
or they exist and this either all with multiplicity exactly u = 1 or all with multiplicity
exactly p = 2.

From Theorem 1.3 it follows simultaneously that none of the weakly conjugate
points to the point *z, € (— 0, +0), v = 1, 2, is given uniquely and even: all weakly
conjugate points to the point "ty € (— o0, +00), v = 1,2, constitute throughout
open intervals with end points, which are always represented by two mutually
neighbouring strongly conjugate points (or by their subintervals wherein one of
their end points is always that one of the given pair of the mutually neighbouring
strongly conjugate points).

The basic information on the coexistence of the strongly and weakly conjugate
points of an arbitrary solution y(¢) of the differential equation (1) states the following

Theorem 2.2: Let *t*, “t** € (— o0, +00), where v = 1, 2, 3, be any two neighbour-
ing strongly conjugate points of the solution y(¢) of the differential equation (1).
Then, there may lie at most two weakly conjugate points of the solution y(¢) between
them, i.e. either none or exactly one, or exactly two; and that:

1. if v = 3, then there lies no weakly conjugate point of the solution y(¢), between
3,*’ 3,‘**;

2.if v = 2, then there lies one point between 2t*, 2t** being simple, weakly
conjugate of the solution y(z),

3.if v = 1, then there lies no weakly conjugate point between t*, 't**, or there
lies exactly one point being double, weakly conjugate, or there lie exactly two points
different from each other being simple, weakly conjugate of the solution y(¢).

Proof: For the proof of statement 1. or 2. or 3. see the part I1I. or II. or 1. the proof
of the fundamental Theorem 1.1 with respect to the definition 2.1 of the strongly
(weakly) conjugate points respectively.

A more detailed account on the distribution of the weakly conjugate points of any
solution y(¢) of the differential equation (1) vanishing either at the simple or double
points *t € (— o0, +00), v = 1, 2, is given by the theorem below, which immediately
follows from Thecrem 1.3.

Theorem 2.3: Let £k =0, +1, +2, ...

1. Let y(¢) be a solution of the dif. equation (1) vanishing at the double strongly
conjugate points. Then, for any simple, weakly conjugate point at which this solution
vanishes, we have

"ok € Claws *tocr2)s
where 2t,,, 215, 4, are two mutually neighbouring strongly conjugate points of this
solution.

2. Let y(t) be a solution of the dif. equation (1) vanishing at one of the simple
strongly conjugate points. Then
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a) for any double weakly conjugate point, at which this solution vanishes, we have

2 1 1
ta+1 € Clays "t s2)s

where 't,,, '#,,1, are two mutually neighbouring strongly conjugate points of this
solution,
b) for any simple weakly conjugate point, at which this solution vanishes, we
have either
1 1 1 1 1
tar1 € Clags faxe2) © (o, fakes)
or

1 1 1 ‘1 1
tacs2 € Clag a1 f343) © (lag, 'takss)s

where !5, 11343 are two mutually neighbouring strongly conjugat points of this
solution.

§3. CONJUGATE POINTS WITH INDEX

In the definition below we give a certain generalization of the concept of the first
conjugate point introduced by T. L. Sherman in [1].

Definition 3.1. Let ¢, € (— o0, +00) be an arbitrary firmly chosen point and let
n=12,..,u=1273.

Then the n™ conjugate point with index p from the right [or from the left] to
the point 7, will be called and denoted by *r, [or *¢_ ] the smallest [or the greatest]
of all numbers t > £, [or t < 1], such that there exists a (nontrivial) solution of the
differential equation (1) with

y(to) = y(Wt) =0 [or y(ty) = p(“r_,) = 0],

whereby on the interval {t,, ¥z, [or (¥1_,, t,)] there lic exactly 3n + u zeros of
the solution y(¢) including their multiplicities.

Remark. For n = 1 and ¢ = 1 we have the definition of the first conjugate point
in [1].

The existence of the | k |, k = +1, 2, ..., conjugate point Mz, e (— o0, + )
with index p, p = 1, 2, 3, to the point #, € (— 00, +00) from the right (for & > 0)
or from the left (for & < 0) follows from the statement of Theorem 3.2 (see later).

Remark 3.1 — on the conjunction of points with index pe {1, 2, 3}:

Let ty € (— o0, + c0) be an arbitrary firmly chosen point. Then

1. every point * € (— 00, + 00) conjugate with index p to the point ¢, is conjugate
to itself with the same index p (i.e. the property of the conjunction with index u
is reflexive)

2. if the point ¢* is a | k |™ conjugate point, k = +1, +2, ..., with index u to the
point ¢y, then the point #, is a | —k |™ conjugate point with the same index u from

99



the left (for & > 0) or from the right (for k£ < 0) to the point ¢* (i.e. the property of
the conjunction with index yu is symmetric); one speaks therefore of mutually conjugate
points with index

3. if the point t*isa | k |" k = +1, £2, ..., conjugate point with index u to the
point 7, and the point t**e(—oco0, +00) an |m|", m = +1, +2,..., m # —k,
conjugate point with the same index u to the point ¢*, then the point t**isa | k + m |™
conjugate point with ihe same index p to the point 7, (i.e. the property of the conjunc-
tion wi‘h index p is transitive).

Theorem 3.1: Let “tye(—o0, +00), v =1,2,3, be an arbitrary firmly chosen
point being a zero of multiplicity v of the solution y(¢) of the differential equation (1)
and let the point Mt e(—o0, +0), p=1,2,3, k= +1,+2,..., be a |k|"
conjugate point with index u from the right (for £ > 0) from the left (for & < 0) to
the point *#,.

Then, for all k = +1, +2, ... we have u = v.

Proof: Let "ty e (—oo, +o0) be an arbitrary firmly chosen point at which the
sclution p(¢) of the differential equation (1) together with the function u(¢) are vanish-
ing with the multiplicity ve {l,2, 3}; for the multiplicity u of the | k |"* conjugate
point Wy e(—~co, +00), k = +1, +2,..., to the point ', let us consider the
value ¢ = 3, u = 2 and p = 1 respectively.

1. Let u = 3; it can be seen from Lemma I, from the 111" part of the proof to
Theorem 1.1 and further [in view of the discrimination between the strongly and
weakly conjugate points relative to an arbitrary bundle of the solutions y(r) of (1)]
from the 1st part of the proof to Theorem 2.1 that there exists one and only one bundle
of y(t) of the differential equation (1), whose (even all) zeros are triple and namely
the oneparametric bundle exactly of the form

(1) = Cyu’(1), (Sy)

where C; e R — {0} is an arbitrary parameter.

Thus, it is neczssary for u = 3 to search for the | n|™ n = +1, +2, ..., conjugate
point )t e (— 00, + o) to the point 3, just among the mutually strongly conjugate
zeros 3t,, k = +1, +2, ..., of such a bundle (S,). On the purpose that for n =
=1, 2, 3, ... there consecutively exists (by Definition 3.1) the smallest of intervals
Oy, B> or (t_, 3,>, on which (consecutively) lie exactly 6, 9, 12, ..., i.e.
generally 3(n + 1) zeros of y(¢) of the differential equation (1) from (S,), such a point
must be exactly the k"™, k = +1, +2, ..., conjugate point to the point *¢,. Hence

Oy, =3

ko
where n = k = +1, +2,...

2. Let u = 2; it can be seen from Lemma I. from the 11" part of the proof to
Theorem 1.1 and further from the 2" part of the proof to Theorem 2.1 that the bundle
of all solutions y(f) of the differential equation (1), vanishing under the given condi-
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tions at the point ?¢, is (up to an arbitrary nonzero multiplicative constant C € R)
a twoparametric bundle having exactly the form

p(©) = u?(0) [Cru(t) + Co(@)], (S,)

where C;eR, i = 1,2, C, # 0, are arbitrary parameters.

All its zeros are on one hand double (mutually strongly conjugate) at which it is
vanishing together with the function u?(f) and on the other hand simple, at which
it is vanishing together with the system of functions C,u(¢) + C,v(¢), and which are
to these double zeros altogether weakly conjugate. Between arbitrary two neigh-
bouring double zeros *t,y, 2ty 42, k =0, +1, +2, ..., from (S,) there always lies
exactly one simple zero 't,,.,, k =0, +1, +2, ..., of an arbitrary solution y(t)
relative to (1), which we get from such a bundle (S,) in a firm choice of both
constants C;eR, i = 1,2, C, # 0.

Thus, it is necessary for u = 2 to search for the | n |, n = +1, +2, ..., conjugate
point ¥t € (— o0, + ) to the point ¢, just among its double (strongly conjugate)
zeros %ty , k= +1, +2, ...

On the purpose that for n = 1, 2, 3, ... there consecutively exists (by Definition 3.1)
the smallest of intervals {(*tzy, ®t,> or (¥r__, %t,> on which (consecutively) lie
exactly 5, 8, 11, ..., i.e. generally 3n + 2 zeros of y(¢) relative to (1) from the bundle
(S,), such a point must be exactly k = 2n™, n = +1, +2, ..., conjugate point to *t,;
hence

@y =2
where k = 2n = +2, +4,...

Remark. The double zeros are contained in the twoparametrical bundle (S,) of
solutions y(¢) relative to (1) and besides also in the threeparametrical bundle (S;)
written onwards as 3b), which is simply vanishing at all zeros of the function u(t)
[thus also at !t,]; between arbitrary two neighbouring simple zeros f,, 'f2y12
(k=0, +1, +2,...), being the strongly conjugate points of this bundle, there
always lies exactly one double zero %t5, ., (k =0, +1, +2,...) of an arbitrary
solution y(?) relative to (1) which we get from such a bundle (S;) in a firm choice
of constants C;eR, i = 1,2, 3, (naturally satisfying the given conditions C; # 0
and CZ — 4C,C; = 0).

However, in this case there consecutively lie on every interval {'ty, 2¢,,_,> or
Ct_gners Moy, where n = 1,2, ... . forn = 1,2,3, ... exactly 3,6,9, ..., i.e. generally
3n zeros of an arbitrary solution y(f) relative to (1) from the bundle (S;), which
is the number of points (in comparison with the corresponding number of zeros
given on the previously found intervals of the minimal length) always by 2 smaller
than requested in Definition 3.1 for the | k |" conjugate point @t , k = +1, +2,...,
to the point '#,.

If the intervals (1tq, 2tyn1> OF {Pt_._1, ‘toy were considered, where n =
= 1, 2, ..., then there would consecutively liefor » = 1,2, 3, ... onthem 6,9, 12, ...,
i.e. generally 3(n + 1) zeros of an arbitrary solution y(f) relative to (1) from the
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bundle (S;), which is the number of points always by 1 greater than is required
in Definition 3.1.

3. Let u = 1; it can be seen from Lemma I, from the I* part of the proof to
Theorem 1.1 and further from the 3" part of the proof to Theorem 2.1 that the bundle
of all solutions y(¢) relative to (1) vanishing under the given conditions at the point ¢,
is (up to an arbitrary nonzero multiplicative constant C € R) a threeparametrical
bundle having exactly the form

y(&) = u(®) [Ciu?(t) + Cou(t) v(t) + Csv*(1)],

where C;eR, i = 1,2,3, Cy # 0, are arbitrary parameters.

a) If C2 — 4C,C; > 0, then all zeros of every solution y(¢) from the bundle (S)
are simple. Hereby it holds for k = 0, +1, +2,...: all simple zeros 't;, from (S;)
coinciding with all zeros of the function u(¢) are mutually strongly conjugate, while
all the others, i.e. the points '#3,,, 'f3¢4,, are simple zeros relative to the system
of functions C,u(t) + Cou(f) v(t) + Cyv*(t) and they are to the foregoing zeros
altogether weakly conjugate. Among the arbitrary two neighbouring strongly conjug-
ate points t3,, 't3 43, K =0, +1, £2, ..., from the bundle (S;) there always lies
exactly one zero, both #3,,, and 't3,,, (for every k = 0, +1, +2, ...) belonging
to an arbitrary solution y(¢) relative to (1) which we get from the bundle (S;) in
a firm choice of constants C;eR, i =1,2,3, C; # 0.

Let us remark that allowing for the multiplicities, then precisely this case simulta-
neously represents all solutions y(¢) relative to (1) satisfying the introductory condi-
tions, possessing on every interval (T, T,,,> [where T, T ., € (—00, +0),
T, < Tyrq,8s =0, 1, £2,..., are two arbitrary neighbouring zeros of the function
u(1)] the greatest possible number of zeros — exactly 4 — different from each other,
i.e. it represents the bundle of solutions y(¢) relative to (1) with the densest de-
composition of zeros.

On the purpose that forn = 1, 2, 3, ... there consecutively exists (by Definition 3.1)
the smallest of intervals {'ty, V1,> or (V¢_,, 't,> on which (consecutively) lie
exactly 4,7, 10, ..., i.e. generally 3n + 1 zeros of the solution y(¢) relative to (1)
from the bundle (S;), the point Pz, n = +1, +2, ..., must be in this case exactly
k=3n" n= +1, +2, ..., conjugate point to the point '¢,, i.e. it holds

(l)tn = ltk’

where k = 3n = +3, +6, ...

b) If C2 — 4C,C; = 0, then all zeros from (S;) are on the one hand simple
(mutually strongly conjugate) at which the bundle (S;) vanishes together with the
function u(f) and on the other hand double, at which the bundle (S;) vanishes
together with the system of functions Cu*(t) + C,u(f) v(t) + C3v*(t), which are
to these simple zeros altogether weakly conjugate. Between the arbitrary two
neighbouring simple zeros 't,,, ‘3042, k =0, +1, £2,..., from the bundle (S;)
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there always lies exactly one double zero 2t5, 4+ (k = 0, £1, +2,...) of an arbitrary
solution yo(?) relative to (1), which we get from the bundle (S;) in a firm choice
of constants C;eR, i=1,2,3, C3 # 0.

Thus, at this bundle for 4 = 1 itis necessary to look forthe | n |",n = +1, +2, ...,
conjugate point V¢, e (— o0, + ) to the point 'z, among its simple (strongly
conjugate) zeros 't,,, k = +1, +2, ..., only.

On the purpose that for n = 1, 2, 3, ... there consecutively exists (by Definition 3.1)
the smallest interval ('¢,, Mz,> or (Vr_,, 't,> on which (consecutively) lie exactly
4,7,10, ..., i.e. generally 3n + 1 zeros of the solution y(¢) relative to (1) from the
bundle (S;), the point V¢, n = +1, +2, ..., must be in this case precisely the k =
=2n"™ n = +1, +2,..., conjugate point to the point '7,, i.e. it holds

W =1y,
where k = 2n = +2, +4, ...

c) If C2 — 4C,C; < 0, then all zeros from (S;) are but simple (mutually strongly
conjugate) at which the bundle (S;) vanishes at the same time together with the
function u(¢); in this case there doesnot exist any weakly conjugate points from (S;)
to them since the system of functions C,u?(f) + C,u(t) v(t) + Csv*(f) for every
(admissible) choice of constants C;e K, i = 1,2,3, C; # 0, doesnot possess any
zeros on the interval (— oo, + o).

However, in such a case, the numbers 3n + 1, n =1, 2,..., of zeros of an
arbitrary solution y(¢) relative to (1) from the bundle (S;) as required by Definition 3.1,
are lying only on the intervals {!t,, ', or ('t_,, 't,>, where n = 3k, k = 1,2, ...,
which in comparison with the corresponding intervals introduced in 3a) and 3b)
are not minimal.

Remark. It should be mentioned here that besides the three possible types of (S3)
introduced in 3a), b) and c), also the twoparametrical bundle (S,) of solutions y(¢)
relative to (1) may possess the simple zeros with properties described in more detail
in (2).

But on every interval of the form (%ty, 't5,_1> or (*t_,.41, 2ty there always
lie (consecutively) for n = 1,2, 3, ... exactly 3,6,9, ..., i.e. generally 3n of zeros
of an arbitrary solution y(f) relative to (1) from the bundle (S,) which represent the
number of points — in comparison with the corresponding number of zeros stated
on the intervals of a minimal length as shown in 3a) and 3b) — always by 1 less then
required in Definition 3.1 for the | k |"™ conjugate point V¢, k =2n —1, n =
=0, +1, +2,..., to the point t,.

If we considered the intervals of the form (¢, 'f2,+1> or {{t_,._1, 2ty>, Where
n=1,2,..., then there would (consecutively) lie for » = 1,2, 3, ... on them 6,9,
12, ..., i.e. generally 3(n + 1) zeros of an arbitrary solution y(¢) relative to (1) from
the bundle (S,), which is the number of points always by 2 greater than required
by Definition 3.1.

The theorem is completely proved.
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Corollary:

It is immediate from the foregoing Theorem 3.1 that if the point ®f, € (— oo, + ),
p=1,23k=+1,+2,..., isa | k|™ conjugate point with index 1 from the right
(for k > 0) or from the left (for k < 0) to the point 'ty e (=0, +0), v =1, 2, 3,
then this point ¢, is a strongly conjugate point to the point “t,.

The situation will be made precise by the following

Theorem 3.2: Let *t, € (— o0, +00) be an arbitrary firmly chosen point which is
a zero of the solution y(f) of the differential equation (1) with multiplicity v, v =
=1,2,3.

Then:

1. the | k|" conjugate point Mt e(—o0, +00), k = +1, +2,..., with index
v = 2,3 from the right (for £ > 0) or from the left (for k < 0) is a | k |" strongly
conjugate point *#, from the right (for k > 0) or from the left (for k& < 0) to the point
“to, v = 2, 3, i.e. it holds

"t = Mt

2) the | k |"™ conjugate point Mz, k = +1, +2, ..., with index v = 1 from the
right (for k > 0) or from the left (for k < 0) is a | k |* strongly conjugate point '#,
from the right (for k > 0) or from the left (for k < 0) to the point ¢y, i.e. it holds

o= Wp

exactly if there exist (besides the simple strongly conjugate points) also weakly
conjugate points (either simple or double) to the point *#,.
With respect to definition 3.1 the foregoing Theorem 3.2 is equivalent to

Theorem 3.3: Let “7,e(—o00, +00), v =1,2,3, be an arbitrary firmly chosen
point and let y(¢) be a solution of the differential equation (1) such that the point “t,
is its zero of multiplicity v. Then the point ™z, [or ¢_], where n = 1,2, ..., is the
n'™ conjugate point with index v from the right [or from the left] to the point “z,
exactly if on the interval (*t,, *1,) [or (t_,, "t,>] — where *t, [or “¢_,] is the n"
strongly conjugate point from the right [or from the left] to the point *t, — there lie
exactly 3n zeros of the solution y(¢) including multiplicities, whereby

Yt = Mt [or ", = Mt_]
§4. THE FUNCTIONS OF THE DISTRIBUTION OF ZEROS

In investigating the distribution of zeros of solutions of the oscillatory differential
equation (2) we used the function ¢(z) called the basic central dispersion of the first
kind, introduced in [2]. This function assigns a first conjugate point lying to the
right of the point 7 to every ¢ € (— 00, + 00). In [2] there is likewise defined the | k |
basic central dispersion of the 1st kind as a function @, (t), k =0, +1, +2, ...,
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assigning the | k | conjugate point to any point ¢ € (— o0, 4+ c0). This function has
the following properties:

1. the interval I = (— oo, + 00) is the range of definition and the range of function
values of @ (t) for k =0, +1, +2,...; @o(t) = ¢

2. lim@(t) = —o0, lim @ (t) = +oo for k =0, +1, +2, ...

t——o0 t=+o0
3. [ou(t) — t]sgnk >0fork = +1, +2, ...
4. o ()eCifork =0, +1, +2, ...
5.¢'(t) >0 for all te (—o0, +0) and for k =0, +1, +2, ...
6. all functions ¢,(1), k =0, +1, +2, ..., constitute on the interval I a group
with respect to the rule of composition and it holds

(/)k(t) = ()Dk(t)v

whereby repeatedly @q(t) = ¢°(t) = tfork = 0.1fk > 0, then ¢*(z) stands for the k*"
iteration of the function ¢(¢);

if k = —1, then ¢ ~*(¢) stands for the function inverse to ¢(t) which exists due to
property 5. and likewise maps the interval I = (— o0, +00) onto itself.

In keeping with [2] let us introduce the function describing the distribution of the
strongly conjugate points by the following

Definition 4.1. Let k = 0, +1, +2, ... Denote by #,(z) the function assigning the
| k |™ strongly conjugate point to the point ¢ € (— o0, + o0), lying to the right (when
k > 0) or to the left (when k < 0) of the point t. We put hereby no(t) = t.

With respect to the function introduced in this way, definition 2.1 may be set up as
follows: the points ¢, t* € (— 00, + ), t # t*, are strongly conjugate numbers of the
solution y(z) of the differential equation (1) exactly if there exists a number k =
= +1, +2, ..., such that

t* = ().

Theorem 4.1: It holds #.(t) = ¢ (t) for all re(—o0, +0c0) and for k =
=0,+1, 42, ...

Proof: Let “ty e (—o0, +00) be an arbitrary firmly chosen point (v = 1,2, 3)
and let y(¢) be such a solution of the differential equation (1) vanishing v-times at it;
then there exists such a basis [u(z), v(t)] of the differential equation (2) that “¢, is
a zero of the solution u(z) of the dif. equation (2) cf. the condition (P) in the proof
of Lemma 1.

Reversely:

If the point #, € (— 00, + 00) is a zero of the solution #(¢) of the differential equation
(2) with the basis [u(t), v(r)], then there exists a solution y(¢) of the differential
equation (1) such that the point #, is its zero of multiplicity v = 1, 2, 3 [enabling us to
write “1,].

Let “f,e(—o0, +o0), v=1,2,3, k=0, +1,+2,..., be the | k|™ strongly
conjugate point to the point ¢y € (— o0, + 00) at which the solution y(t) of the dif.

105



equation (1) vanishes v-times. Then it follows from the proof of Theorem 1.1 that
the points #,, t, are at the same time simple zeros of the solution u(¢) of the dif.
equation (2). Here the point ¢, is the | k |" zero of the solution u(¢) lying to the right
(if £ > 0) or to the left (if & < 0) of the point #,, which proves the statement of the
theorem in keeping with the introduction to § 4.

It follows from the just proved coincidence of both functions n and ¢ that the
function 5 introduced in the above definition 4.1 has the same properties as has the
function ¢, stated for all k =0, +1, +2, ... at the beginning of § 4.
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SOUHRN

O ROZLOZENI NULOVYCH BODU
RESENi ITEROVANE LINEARNI DIFERENCIALNI]
ROVNICE 4. RADU

VLADIMIR VLCEK

V praci je studovano rozloZeni nulovych bodi obecného feSeni oby&ejné homogenni
iterované linearni diferencialni rovnice &tvrtého ¥adu (1) vybraného tak, aby se anulo-
valo v libovolném bodé 7, € (— o0, + 00) spolu s funkci u(¢) [dvojice linearng nezivis-
Iych funkei u(t), v(t) tvo¥i bazi viech feseni oby&ejné homogenni linearni diferencialni
rovnice 2. fadu v Jacobiho tvaru (2), spliiujici v bodé ¢, podminku u(ty) = v'(¢y) =
= 0]. Vzhledem k nasobnostem v = 1, 2, 3 nulového bodu ¢, netrivialniho feSeni y(¢)
jsou vySetfovany nulové body tfi- resp. dvou- resp. jednoparametrického systému
feseni diferencialni rovnice (1), jehoZ tvar je uveden (postupng) v tvrzeni 1 resp. 2
resp. 3 Lemmy 1. V zakladni Vété 1.1 je dok4zana nasobnost u tzv. 1. konjugovaného
bodu (zprava resp. zleva) k bodu #, s ohledem na jeho nasobnost v (pofadé v = 1, 2, 3).
Véta 1.3 shrnuje a zobeciiuje vysledky dosaZené v zakladni vété na libovolny | k |-ty,
k = +1, £2, ..., konjugovany bod zprava (pfi k > 0) resp. zleva (pfi k < 0)
k bodu ¢,.

Dale jsou Definici 2.1 rozliSeny tzv. siln€ a slabé konjugované body a ukazano, Ze
nasobnosti v, pe {1, 2, 3} navzijem silng konjugovanych bodii vZdy splyvaji. Za-
kladni informaci o koexistenci (a nasobnostech) silné a slab& konjugovanych boda
libovolného feseni y(z) dif. rovnice (1) podava Véta 2.2; podrobny pfehled o rozloZeni
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slab& konjugovanych bodd libovolného FeSeni y(¢) dif. rovnice (1), jeZ se anuluje bud
v jednoduchych nebo dvojndsobnych bodech ‘¢, € (— o0, + ), v = 1, 2, poskytuje
pak Véta 2.3.

V §3. o tzv. konjugovanych bodech indexu p (= 1,2, 3) je poddno zobecnéni
definice prvrniho konjugovaného bodu zavedeného T. L. Shermanem v [1] a studo-
véna existence a rozloZeni konjugovanych bodi s indexem p jakoZto specidlniho typu
silné konjugovanych bodu.

V zavéreCném § 4. této prace je definovana funkce n popisujici rozloZeni silné
konjugovanych bodi libovolného feseni y(¢) dif. rovnice (1) a dokazana koincidence
této funkce # s funkci ¢ (tzv. zakladni centralni disperzi) definovanou akad. Bortv-
kouv [2].

PE3IOME

O PA3JIOXEHUWU HYJEBBIX TOUEK PEIUEHUN
UTEPHPOBAHHOTO JUHENHOTO
ANOOEPEHLUMAJIBHOTIO YPABHEHUA
4-TO MTOPAOKA

BJIAAVNMUP BIYEK

B pa6oTe u3yyaeTcs passOKEHUE HYJIEBbIX TOYEX OOLIEro peieHUst OGBIKHOBEH-
HOTO OJHOPOIHOrO MTEPUPOBAHHOTO JIMHEHHOro IuddepeHIHaNbHOro ypaBHEHUS
yeTBepTOro mnopsiaka (1) BEIOpAHHOTO TaK, YTOOBI OHO aHHYJMPOBAJIOCH B JIIOGOMH
TOUKe fy € (—o00, +00) BMecTe ¢ (Qynkumeil u(f) [mapa muHeHO He3aBUCHMBIX
byuxnuit u(t), v(t) cocrasisier 6azuc Bcex peieHuil OOLIKHOBEHHOTO OJHOPOIHOTO
JuHeiHoro muddepenunaasHoro ypapaeHus BToporo nopsinka B dopme SKOBU
(2) u ynoieTBOpsIET B TOUKe #, yciosuio u(t,) = 1'{ty) = 0].

OtHocuTennbHO KpaTHOcTed v = 1, 2, 3 HyJeBOM TOYKM f, HETPHUBHAJILHOTO pe-
mIeHus y(t) pa3bIiCKaHbl HyJIeBble TOYKU TPEX- WIIH ABYX- HIIH OIHO-IIAPAMETPHIECKON
crcTeMBl periienuit aud. ypasuenus (1), Hajamume KOTOPOro HasHaveHo (Mo ovepenn)
B yTBepXaeHun 1 wim 2 wm 3 semmbr 1. B riaBnoit Teopeme 1.1 moxaseiBaercs
KpaTHOCTb [ TaK Ha3bIBAEMOIl NEPBON CONMPSIKEHHOM TOYKM (CpaBa WM CleBa)
K TOYKE f(, B COTJIACHIO C €T0 KpaTHOCThbIO Vv [mo ouepenu v = 1, 2, 3]. Teopema 1.3
IpyNIUpPYET pe3yabTaThl JOCTUTHYThIE B IJIaBHOW TeopeMe 1 BOOOLIAeT uX Ha JItobyro
| k|-yro, k = +1, +2, ..., conpsxkennyro Touky cmpasa (npu k& > 0) wiu ciesa
(mpu k < 0) x TOUKE #,.

Hanee B oupenenennn 2.1 pa3iuyaroTcsi TaK Ha3bIBaeMble CUIBHO CONPSIKEHHBIE
OT €260 CONPSKEHHBIX TOYEK W NMOKA3AHO, YTO XPAaTHOCTH v, k€ {1, 2, 3} B3auMuo
CUJIBHO COTIPSDKEHHBIX TOYeK coBceM coBmazaroT. OCHOBHYIO MH(pOpPMAIHIO O CO-
BMECTHOM CYILIECTBOBAHUH (M KPATHOCTHSIX) CHJIBHO M CJA00 COMPSIKEHHBIX TOYEK
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nro6oro peutenust y(f) aud. yparuenus (1) maet Teopema 2.2; nogpo6Hoe o603penue
00 pasnoxeHuu ciaGo COMPSDKEHHBIX TOUYEK J0Ooro pemenust y(t) nud. ypaBHeHUS
(1), xoTOopOE McYe3aeT WU B MPOCTHIX WM B ABYXKPATHBIX TOYKax “fy € (— 00, + 00),
v = 1, 2, npeqyaraercs B Teopeme 2.3.

B § 3. o Tak Ha3bIBaeMBIX CONPSDKEHHBIX TOoukax mHAekca u (= 1, 2, 3) maetcs
060611ieHHe oIpenesieHNs] NepBOil CONMpsDKeHHOo# Touku BBemeHHo T. JI. HIEP-
MEHOM (T. L. SHERMAN) B [1] u u3yyaeTcsi CyllIeCTBOBAaHHE U PA3IOKEHUE
COTIPSDKEHHBIX TOYEK C MHICKCOM p KaK CIELUaJIbHOTO TUNA CUIILHO CONpPSIKEHHbIX
TOYeK.

B 3axmrountensHoM § 4. 3toii pabGoThl ompepeneHa ¢yHKIHs 00O3Ha4YeHHaAs
7 M ONHUCHIBAIOILASI Pa3JIOKEHHE CHIIBHO CONPSDKEHHBIX TOYEK JIIOOOro peleHus
y(t) nud. ypasHenus (1) 1 mokasaHo coBnazeHnue 3Toi GpyHKuu # ¢ GyHxuueit ¢ [Tax
Ha3plBaeMO# LEeHTpaJbHOH Hucmepcueil] BBemeHHoilt akan. BOPYBKOM (BO-
RUVKA) s [2].
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