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Let us consider a linear nonhomogeneous differential equation of the 2nd order

(r) y'=q@).y =r@),

where the functions g e C?, g < 0, r e C'© represent the functions of the variable ¢
in an open interval j. We shall suppose the solutions of the corresponding homogene-
sus equation

(9) Yy =q@).y
to be oscillatory towards both end points of the interval j (see [1], p. 4).

Trivial solutions of the differential equation (¢) will be excluded from our considera-
tions. The symbols (r), (¢) denote either the given differential equation or the set
of solutions of the differential equation in question.

The set of all real numbers will be denoted by R.

Concurrently with O. Boriivka we make use of the following concepts: conjugate
numbers with respect to the differential equation (g) (see [1], p. 14 and onwards),
the basic and the s-th central dispersions corresponding to the differential equation
(q) (see [1], p. 106 and onwards).

Conjugate numbers: Let t € j be arbitrary and let u, v € (¢) be arbitrary solutions
such that u(t) = 0, v'(t) = 0. We call a number x €j(x # t) as being conjugate with
the number ¢ with respect to the differential equation (¢) and more precisely of the
Ist kind, 2nd kind, 3rd kind, 4th kind according as u(x) = 0, v'(x) = 0, u'(x) = 0,
v(x) = 0.

We observe that the number x(# t) is a conjugate number with ¢ of the Ist, 2nd,
3rd or 4th kind according as it is a zero of the function u, v', v, v respectively. If the
number x is the n-th zero (n = 1, 2, ...) of this function lying on the left or right of 7,
then we call it the n-th left or right conjugate number with ¢.
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Dispersions: Let ¢, , x, o be the fundamental dispersions of the first, second,
third and fourth kinds corresponding to the differential equation (¢). For n =0, +1,
+2,... let ¢, and ¥, be the n-th central dispersions of the first and second kinds
respectively. Forn = +1, +2, ... let y, and w, be the n-th central dispersions of the
third and fourth kinds, respectively. Thereby @, = o, ¥, =¥, ¥, = x, 0, = w;
Po= Yo =1.

From the definition of the conjugate numbers we get the following

Lemma 1. Let t € j and let u, v € (q) be particular solutions with u(ty) = 0, v'(t,) =
= 0. Then for n =0, +1, +2, ... we have

u[‘P,.(to)] = 0 and u(t) 75 O for tEj, t 7& ‘Pn(’o),
o[, (te)] =0 and V() #0  for tej, t # Pty

and forn = +1, +2, ... we have

u'xa(te)] =0 and Wie) #0  for tej, t # y(to),
v[w,(te)] =0 and  v(t) #0  for tej, t # w,ty).

The properties of solutions of the differential equation (r): From the theory of linear
differential equations ([3], p. 216) we know the following

Lemma 2. If v is an arbitrary particular solution of the differential equation (r),
then its general solution y represents the sum of this particular solution and of the
general solution u of (q), that isy = u + v.

Let us recall the following information of

Lemma 3: If v,, v, €(r) are particular solutions, then the function v, — vy is
a particular solution of the differential equation (g).

The properties of conjugate numbers of the Ist and 2nd kinds make it possible
to express the following theorems:

Theorem 1. Let ty €, vy € R be arbitrary numbers. Let v,, v, € (r) be arbitrary
particular solutions. If v(t,) = v5(ty) = vy, then we have v [@,(to)] = v2[@.(ty)]
and vy(t) # v,(t) for tej, t # @,(to) holding for every n =0, +1, 2, ...

Proof. Let us set u = v, — v, for tej. Then ue(g). At the point ¢, we have
u(ty) = vy(ty) — v,(ty) = 0. According to Lemma 1 we have u[¢,(#,)] =0 and
u(t) # 0 for te€j, t # ¢,(t;) bolding for every u =0, +1, +2,.... Consequently
0 = ul@,(to)] = v2[@u(t0)] — v1[Pa(to)] and O # u(r) = v,(t) — v,(t) for tej, t #
# @,(to) and from this we obtain the statement of the theorem.

Convention: By the common points of the two different solutions (of the first
derivatives of solutions) of the differential equation (r) or (¢) we mean the common
points of the graphs of those solutions (of the graphs of the first derivatives of those
solutions).
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Corollary 1. Let t, €j, vy € R be arbitrary numbers. All solutions v € (r) for which
v(ty) = vy possess precisely the points [@,(to), v[@.(to)]] in common, where n =
=0, +1, +2,....

Theorem 2. Let tyej, voe R be arbitrary numbers. Let v, v, € (r) be arbitrary
particular solutions. If vi(ty) = v53(ty) = vy, then we have vi[Y,(to)] = v3[Wa(20)]
and vi(t) # vy(t) for tej, t # Y, (to) holding for every n =0, +1, +2, ....

Proof. Let us put u = v, — v, for tej. Then u e (g). At the point f, we have
u'(ty) = v5(ty) — vi(ty) = 0. According to Lemma 1 we have «'[¢,(t;)] = 0 and
u'(t) # 0 for tej, ¢+ ,(t,) holding for every n =0, +1, +2, .... Consequently
we have 0 = u'[Y,(1))] = v5[Y,(t)] — v,[Ya(to)] and 0 5 u'(1) = vj(t) — vi(¢) for
every t€j, t # y,(t;) and from this we obtain the statement of the theorem.

Corollary 2. Let t, e j, vy € R be arbitrary numbers. All solutions y € (r) whose first
derivatives satisfy the condition v'(t,) = v(, have the property by which their derivatives v’
possess precisely the points [@,\to), V' [Y,(t)]] in common, where n = 0, £1, +2, ...

For convenience, we introduce the following definitions:

Let 74 €; vy, vo € R represent arbitrary numbers and ve(r) is a particular solution
for which v(ty) = v, or v'(1y) = vq. Let @,(t) and (1) stand for the n-th central
dispersions of the Ist and 2nd kindsr espzctively, corresponding to the differential
equation (¢), where n = 0, +1, +2, ...

Definition 1. The sets of all points [@,(t,), v[@,(t5)]] and [¥,(t0), v'[¥.(t5)]] for
n=0,+1, +2,... will be called respectively the systems of knots of the Ist and
2nd kinds, corresponding to the differential equation (r) and to the initial conditions
(to; vo) and (t4; vy) and will be symbolized by #(¢,; vy) and 7 (t4; vy), respectively.

It should be noted that the sets of knots F(t,; vo) and I (¢y; vy) are uniquely
determined by any point from the sets of points [¢,(to), v [@.(fo)]] and [¥,.(to),
v'[¥.(to)]], discussed by definition 1.

Let P (to; vo) and T (ty; vy) be the systems of knots of the Ist and 2nd kinds
appropriate to the differential equation (r) and to the initial conditions (49; v,) and
(1o; vg), respectively. Let ¢y, 1, € j; vy, v5, V], V5 € R be such numbers that the points
[t 0], [12, v2] €FL(1g; vo), and [, 1], [t V5] € T (1g; vp)-

Definition 2. The points [¢,,v,], [15,v,] and [z(,v}], [#2, 03] will be called
respectively the neighbouring knots of the Ist and 2nd kinds corresponding to
the differential equation (r) and to the initial conditions (#; vo) and (¢y; vg) if the
numbers ¢, and 7, are the neighbouring numbers of the 1st and 2nd kinds correspon-
ding to the differential equation (¢), respectively.

Let ty €J; vy, g € R be arbitrary numbers.

Definition 3. By a bundle of solutions of the 1st or 2nd kind appropriate to the
differential equation (r) and to the initial condition (#y; vo) or (f5; vy) we mean all
solutions v € (r) satisfying the condition v(¢,) = v, or whose first derivatives satisfy
the condition v'(¢y) = vg.
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Let us remark that the bundle of solutions of the Ist or 2nd kind appropriate to
the differential equation (r) and to the initial condition (¢y; vy) or (74; vg) is uniquely
determined by any knot from the system of knots of the Ist kind &(¢,; v,) or of the
2nd kind I (ty; vg).

Theorem 3. Let S (t,; vy) be a system of knots of the Ist kind appropriate to the
differential equation (r) and to the initial condition (ty; vy). Let t;,t, €], 11 < t5;
vy, Uy € R be such numbers, where the points [t,,v,], [t,, v,] are two neighbouring
knots of the st kind from the system ¥ (ty, o). Let v € (r) be such a solution for which
v(to) = (vo).

If 5 e(r) is a solution not passing through these knots, then there exists precisely
one number 1 in the interval (¢, 1,) such that [z, v(x)] = [z, ¥(7)].

Proof. It follows from our assumption that v(z;) # 9(¢;), i = 1, 2. Consequently
the function u = v(t) — ¥(¢) is a solution of the differential equation (g), for which
u(t;)) # 0, i = 1,2. According to the Sturm theorem ([3], p. 276) the solution u
bas precisely one zero in the interval (#;, ¢;), which we will mark by 7. Thus 0 =
= u(t) = v(t) — ¥(r) and from this we get v(r) = v(r). Hence the point [1, v(7)] =
= [1,%(1)] is the only common point of the solution v,7e(r) for t; <t < t,.

Corollary 3. The solutions v, U € (r) discussed in Theorem 3 belong to the same bundle
of solutions of the 1st kind appropriate to the differential equation (r) and to the initial
condition (t;v,), where v, = v(t) = ¥(1).

By an analogous method to that used above we can prove the Theorem below
if we apply the statement of the Sturm’s theorem to the associated equation of the
differential equation (g) ([1], page 6).

Theorem 4. Let T (ty; vy) be a system of knots of the 2nd kind appropriate to the
differential equation (r) and to the initial condition (ty;vy). Let t;,t, €, t; < tp;
v}, 03 € R be such numbers that the points [ty,v], [t;, V3] are the two neighbouring
knots of the 2nd kind from the system T (t,; vy). Let v e (r) be such a solution for which
v'(ty) = vg.

If v e(r) is a solution whose first derivative ' is not passing through these knots,
then there exists precisely one number t in the interval (1, t,), such that [z, v'(r)] =

= [+, 7'(0)].

Corollary 4. The solutions v, v € (r) discussed by Theorem 4 belong to the same
bundle of solutions of the 2nd kind corresponding to the differential equation (r) and
to the initial condition (t; vl), where v, = v'(t) = 0'(7).

With respect to our assumption that the right side of the differential equation (gq)
is re C'© only, the preceding considerations are valid even under the assumption
that r(¢) = 0 inj without changing the statements of the theorems. Theorems 3 and 4
give thus

l1.incase of r(1)=0inj
the generalization of the Sturm’s theorem on separating zeros of solutions or of
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zeros of the first derivatives of solutions of a 2nd order linear homogeneous differential
equation (q), and

2.incase of r(t)=0inj; vy, =0o0rvy =0
the Sturm’s theorem on separating zeros or of zeros of the first derivatives of the
solutions of a 2nd order linear homogenous differential equation (g).

We now apply the Theorem on bilinear relations between the solutions of the
differential equation (g) ([1], p. 24) which enables us on taking account of Lemma 3,
to express the following theorem for three particular solutions of the differential
equation (r).

Theorem 5. For three particular solutions v, , v,, vs of the differential equation (r)
with v, — vy # k. (v, — v3) in the interval j, where k # 0 is a constant, the following
equalities hold at two different points t, x € j:

@ [v4() = v3()] - [2(x) — v3(x)] = [va(t) - v3(0)] - [01(x) — v3(x)],
(D) [v}(r) — v3(0)] . [v3(x) = 03(0)] = [v3(1) — V5] - [V2(x) = v3(D)],
(D) [v,(6) — v3(0)] . [v3(x) — v5(x)] = [02(2) — va()] - [V} (%) — v4(x)],
(V) [v}(t) — v3(D] . [02(x) — v3(x)] = [v5() — v5(D)] . [:(x) = v3(0)]

if and only if
in (1) t, x are 1-conjugate numbers with respect to (q),
in (11) t, x are 2-conjugate numbers with respect to (¢),
in (I11) x is a 3-conjugate number with t with respect to (q),
in (IV) x is a 4-conjugate number with t with respect to (q)-

Proof.
(I) Let the bilinear relation (I) hold between two distinct numbers ¢, x € j. Then
the linear equations with the unknowns ¢, ¢,:

ci[v,(1) — v3(2)] + exfva(t) — v3(2)] =0,
ei[vi(x) = v3(0)] + c2[va(x) — v3X)] =0

are satisfied for appropriate constants c¢;,c,,c? + c5 # 0 since — as it follows
from (I) — the determinant of this system vanishes. The numbers ¢ and x represent
zeros of solutions y = ¢;(v; — v3) + ¢,(v, — v3) of the differential equation (q).

If, conversely, ¢ and x are conjugate numbers of the Ist kind with respect to (q),
then ¢ # x and there is a solution y = ¢,(v; — v3) + ¢,(v, — v;) of the differential
equation (q) vanishing at ¢ and x, where ¢Z + ¢% # 0. This is:

ci[vi(®) — vs(1)] + eafva(r) — v3(2)] =0,
c1[vi(x) = v3()] + c2[v,(x) — v3(0)] = 0.

From this follows with respect to the condition ¢? + ¢2 # 0, the bilinear rela-
tion (I).
We proceed analogously in proving relations (II), (I11) and (Iv).
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SOUHRN

MODIFIKACE STURMOVY VETY O ODDELOVANI
NULOVYCH BODU RESENI LINEARNI
DIFERENCIALNI ROVNICE 2. RADU

MIROSLAV LAITOCH

Uvazujme linedrni diferencialni rovnici 2. fadu s pravou stranou

(r) y'=qt).y =r(),

kde funkce ge C?, g < 0, r e C'? jsou funkce proménné ¢ v otevieném intervalu .
O prislusné rovnici zkracené

(9) yi=q(t).y

predpokladame, Ze jeji feSeni k obé€ma krajnim bodim intervalu j osciluji.

Znaime ¢ resp. ¥, y, o zakladni centralni disperzi 1. resp. 2., 3., 4. druhu pfi-
siuSnou k diferencialni rovnici (¢). Pro n =0, +1, +2, ... znalime ¢,, resp. ¥,
n-tou centralni disperzi 1., resp. 2. druhu a pron = +1,42, ... znacime y,, resp. o,
n-tou centralni disperzi 3., resp. 4. druhu. Pfitomje @, = @, ¥y = ¥, ¥, = 3, ®; = 0.

Bud R mnoZina vSech realnych &isel.

Necht ¢, €, vg, vy € R jsou libovolna &isla a v e (r) je partikularni feSeni, pro néz
V'(ty) = vy, resp. v'(ty) = v,. Nechf ¢,, resp. ¥, znali n-tou centralni dispersi
1. resp. 2. druhu pfisluSnou k diferencialni rovnici (¢), kde n =0, +1, +2, ...

Mnozinu viech bodi [@.(to), v[@.(to)]], resp. [@a(to), v[@a(t0)]] pro n =
=0, +1, +£2, ... nazyvame systémem uzld 1., resp. 2. druhu pfislusnym k diferen-
cialni rovnici (r) a k pocateéni podmince (¢y; vg), resp. (ty; vo) a znadime S (ty; vy),
resp. I (tg; vg).

Pomoci pojmu uzlii zobeciiuje se Sturmova véta o oddélovani nulovych bodil
feSeni, resp. derivace feSeni zkracené rovnice (g).
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PE3IOME

MOAUPUKALOWNA TEOPEMBI ITYPMA
O HVJIEBBIX TOUKAX PEIIEHU A
JUHEWNHOIO AU®PEPEHLMAJTLHOIO
YPABHEHUA 2-IO ITOPA KA

MUPOCJIAB JIAUTOX

PaccMaTtpuBaeTcst JinHeiiHoro muddepeHiuaisHoe ypaBHeHHe 2-TO TOpsAAKa He-
OJTHOpOJHOE
(r) Y =q@) .y =r(),

rae dyukuuu g€ C?, g < 0, re C© sBiasrorcs QyHKUMAMHU NEPEMEHHOTO f Ha OT-
KpBITOM uHTepBasie j. O COOTBETCTBYIOIIEM OJHOPOIHOM YpPaBHEHUH

)] yo=q@).y

MpeanosiaraeM, 4TO ero pellieHHs OCUMIUPYIOT K 0DOWMM KOHLAM HHTEpBaJa j.

@, Y, x, ® 0003HAYalOT COOTBETCTBEHHO OCHOBHYIO ILIEHTPAJILHYIO IUCIIEPCHUIO
1., 2., 3., 4. pona, cooTBeTcTByOUIyI0 TuddepeHraLHOMY ypaBHEHUIO (q).

Onan =0, +1, +2 ... o6o3HauaeM @,, Y, COOTBETCTBEHHO A-TYIO LEHTPAJILHYIO
nucniepeuto 1., 2. pona v mis n = +1, £2, ... obo3Ha4YaeM y,, W, COOTBETCTBEHHO
n-TyIO0 HEHTpaJibHyIo quciepcuto 3., 4. pona. Janee ¢, = @, ¥, = Y, x1 = 1, 0 = @
U R-MHOXeCTBO BCeX BEILECTBEHHBIX YHCEJ.

IycTs 1y €, vy, vy € R €CThb MPOU3BOJIBbHBIE YKUCAA U U € (r) YaCTHOE DEIICHHE,
IUIL KOTOPOro v(ty) = vy, V'(ty) = vy

Ilycts ¢,, Y, COOTBETCTBEHHO O3HAYAIOT A-TYIO UEHTPAJIBHYIO TUCIEpcHio 1.,
2. pona cooTBeTcTBYOUMe AnphepeHIHanbHOMY ypaBHeHuto (q), rae n = 0, +1,
+2, ...

MtuoxecTBo Touex [@,(fo), (@.(to))], [¥alto)), v(¥u(1o))] mns n =0, £1, £2, ...
Ha3bIBaeM COOTBETCTBEHHO CUCTEMOH y3710B 1., 2. pona, cooTBeTcTByIOMIAas audde-
PeHLMAIbHOMY YpaBHEHHIO () H COOTBETCTBYIOIUX HAYaILHOMY YCIIOBHIO (4 ; V),
(to; vo) M 0603HaYaeM COOTBETCTBEHHO & (fg; o), T (to; Vg)-

IMpu momoly noHATHs y3J0B 0606uaeTcs teopeMa Illtypma o B3auMHOM pa3s-
JeJIEHUH HYJIEBBIX TOYEK DPELIEHHs MM NMPOM3BOJHON PEUIEHHsT OOHOPOZHOro mud-
¢epenumansnoro ypasuenus (q).
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