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A transfer function is defined as a proportion of Laplace transforms of input
and output quantities under zero initial conditions. In practice we often meet with
problems where the system under consideration is described by a transfer function,
but besides there are placed some initial conditions and, the influence of these initial
conditions on the behaviour of the system is investigated.

Introduction:

The transfer function

buS™ + by 4+ o+ bys + by Y(s)
H(s) = =" - =2 M
a,s + a,_s + ...+ as+ ay

can be brought into a transform of the differential equation

aps"Y(8) + @y_os" " Y(s) + ... + a;sY(s) + a Y(s) =

= b, S"Z(5) + by 18" Z(S) + ... + bySZ(s) + boZ(s) ©)
where Y(s) and Z(s) stand for the transforms of the output and input functions,

respectively.
The expression in (2) is a Laplace transform of the differential equation

ay™ 4+ a,_ y" P+ 4 ay +agy = bpz™ + by 2™V +
+ .. + b2 + byz, 3
(a; b, = constants), where the modelling of the transform function (1) can be

carried over to the solution of (3). In solutions of the differential equations of the
type (3) there are most frequently used:
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a) the metod of successive integration

b) a decomposition of the equation into a system of nonhomogeneouns differential
equations of the Ist order

c) the metod of reducing the order of the derivative under the introduction of
a new variable.

Our task is to determine some equivalent initial conditions on the basis of the given
initial conditions y(0), y'(0), ..., ¥~ 1%0), z(0), z'(0), ..., z(0™~ 1)),

1. The metod of successive integration

We start from equation (3) modified (n = m) to the form
Y™ =b,z™ + b, 2"V —a,_ "D 4 4 bz —ay + boz —agy. (4
Integrating the equation term by term we get

YO = p D 4 p 2D g YD 4+ bz —ayy + vy, )

where
) t
Y= J(aoy — boz)dt = {(aoy — bot)dt + y,(0), » (6)

Integrating the equation (5) again and putting

t
y2 = [(ayy — byz + y))dt = 5(01}’ — bz + y;,)dt + y,(0) @)
gives

YO = p D 4 2T gy 4 byz —ayy — v, 8)

Continuing in this way, we finally remove all derivatives y till we come to the ex-
pression

= b,z — yu, ®
where

t
yn = I(an—ly - bn—lz + yn-—i)dt + yn(o) (10)
o

Then we construct the expressions (10), (9), ..., (7), (6) in the computing network.
This procedure can equaly well be applied even in case of m < n and the correspond-
ing coefficients b,,., = 0.

Equivalent initial conditions on integrals can be determined from the equations

), ®), ..., 9.
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In figure 1 we show a programming chart for solving the equation
Y® 4 a4+ a,y” + @y + agy = byz® + b3z’ + byz” + bz’ + boz (11)
with initial conditions y(0), ¥'(0), y"(0), y""(0).

Fig. 1

Equivalent initial conditions are given on the basis of (5), (8), ..., (9) by the
relations
¥1(0) = —y""(0) + bs2""(0) + b3z"(0) — a;y"(0) + b,2'(0) —
— a;y'(0) + b,z(0) — a,(0),
¥2(0) = —y"(0) + be2"(0) + b32'(0) — a;y'(0) + b,2(0) — a,¥(0),
130) = —y'(0) + by2'(0) + b3z(0) — a;y(0),
¥4(0) = —¥(0) + b,z(0),

generally
n—k

»(0) = .szobn-ﬂ(ﬂ)‘""“” — a,_y(0) kD, (12)

It becomes apparent from (5), (8), ..., (9) that equivalent initial conditions are always
determinable and thus the problem is solvable.

2. A decomposition of the equation into a system of nonhomogeneons
differential equations of the 1-st order

In [1] equation is solved in the form of a system of equations

Vi = Yk-1 = Un—it1> 2=ksn, (13)
Y=y -z (14)

where the coefficients «; are dependent on the coefficients a;, b; of the transfer

function and they are computed from a system of linear algebraic equations of such
a form giving one and only one solution.
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The initial conditions y,(0) are uniquely given by the relation
k—1
W0) = yO)*™" = ¥ a,_;z(0* 7. (15)
j=0 N

For the programming chart showing this modelling see figure 2.

Fig. 2

3. The metod of reducing the order of the derivative under the introduction

of a new variable

Equation (3) is programmed in the form of a system of equations

(16)

Y au? =z,
i=0
Y bu® = y.
r=0

The programming chart for solving the system (16), where n = m, is given in figure 3.

The initial conditions u(0), u’(0), ...,u™ " )(0) will be determined from the initial values
¥0), ¥'(0), ..., y"71X0), z(0), z'(0), ..., z™™'X(0) on the basis of (16) from a system of

a,y ad,




linear algebraic equations:

§

) =% bu(®®,

|

S

y'(0) =Z W (0) D,

y(o)(n—l) — Z bku(o)(k-l-n——l)’

£l

z(0) Z au(0)?, (17

j=0

Z au(0)V+h,

j=0

=

z'(0)

E

20"V =Y auVtmY.
Jj=0
For computing the initial conditions u(0), u'(0), ..., u(0"~ 1)), the system (17) will be
modified to a system of n-linear equations for the unknowns u(0), #'(0), ..., u(0®~1).
So, for instance, for n = 3 the system has the following form:

u*(0) (b, — byay) + u'(0) (by — biay) + u(0) (b, — biay) = y(0) — b3z(0)
u*(0) (bya3 — bsa, — bya, + by) + 1'(0) (bya,a, — byay — byay + by) +
+ uw(0) (b3aray — byay) = y'(0) — b32'(0) + (bza, + by) z(0),

u"(0) [by(—a; + 2a,a, — ap) + by(a3 — a;) — by, + by + (18)
+ u'(0) [bs(—a3a, + aza, + a?) + by(aza, — ap) — bya,] +
+ u(0) [by(—alay + a,a0) + byazay — bya,] =
= —bs(2"(0) — a,2'(0) + a32(0) — a,2(0)) — b,(z'(0) + a,2(0)) —b,2(0).

In modelling tansfer functions with nonzero initial conditions there may arise
difficulties caused by the unsolvability of the system of n-linear algebraic equations
for the initial values u(0), u’(0), ..., u(0). If A = h' = n (h and &’ stand for the ranks
of the matrix and of the expanded matrix respectively) then the system has one and
only one solution. If # = A" < n, then the system has an infinite number of solutions.
If h % K, the system has no solution, the initial values of the new function and their
derivatives are undeterminable, and the modelling by reducing the order of the
derivative under the introduction of a new variable becomes impossible.

A very interesting case occurs in 41 = i’ < n, where with infinitely many n-tuples
of initial conditions u(0), k = 0, 1, ..., n — 1 the system of equations (16) has still
the same solution y. For instance, in solving equation (3) having the form

Y+ Yy =5y =5y ==z"— z, (19)
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with initial conditions y(0) = 1, »'(0) = 5, »"(0) = 10, z = sin (z + 20°30), i.e.
z(0) = 3, z’(0) = 8 the above equation is carried over to a system of equations

U+ u — 5u — Su= z, (19a)
u —u=y.
The system of equations for determining the initial conditions u¢)(0) has the form
u"(0) — u©) =1,
—u"(0) + 4u'(0) + Su(0) = 2, (20)
5u”(0) — 5u(0) = 5.

The matrix A of the system and the matrix A’ of the expanded system have the form

10 -1 10 —-11
A=|-14 5], A=|-14 52].

50 -5 50 -55

h=2 h =2

On account of the fact that A = A’ < n, the system has an infinite number of solutions.

If we choose the value of an unknown, say

3-4¢
.

u(0) = o, then u"(0) =1+ o, u'(0) = 1)

Choosing now a concrete value for ¢, say ¢ = 0, we obtain
u(0) = 0, u'(0) = 0,75, u'(0) =1,
if we choose ¢ = 1 we get
u0) =1, u'(0) = —0,25, u"(0) = 2.

The programming chart for solving equations from (19) in case of ¢ = 0 is shown
in figure 4.
The solution of (192) with initial conditions (21) is the function

v = ((p 3 l)e_, LGS s 11519 s
8 48./5 438./5

7
+ %—52— [cos (¢ + 20°30") — sin (¢ + 20°30')],

and the solution of (19) is the function
_ M5 H194 s 45— 194 s
48./5 48./5

- §637— [cos (t + 20°30") — sin (¢ + 20°30")].
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The solution y is independent of ¢ which in this way is able to assume arbitrary
values.
Conversely, in modelling the transfer function

. 4s* + 4s + 2
H(s) = —————,
© 25 —s—1

by means of the solution of the differential equation
" —y —y=4z"+ 4z + 2z 22)

with the above given initial conditions y(0) =1, y'(0) =35, y»"(0) =10, z =
= sin (¢ + 20°30’), that is z(0) = 3, z’(0) = 8, the system (16) has the form

" —u —u=z 23)
4u" + 4u' + 2u = y.

z=sin(t+20°30)" -075 B

Fig. 4

The system of linear algebraic equations for determining the values u(0), «’(0), u"(0)
is of the form
4u"(0) + 4u'(0) + 2u(0) = 1,
4u"(0) + 4u'(0) + 2u(0) = -7, 24)
4u"(0) + 4u'(0) + 2u(0) = —34.
The matrice A of the system and the matrix A’ of the expanded system have the follow-
ing forms

442 442 1
A=[442], A=[442 -7]|.
442 442 —34
h=1 W =3

Due to h # k', the system (24) has no solution and the equation (22) cannot be solved
by the method of reducing the order of the derivative under introducing new variables.

The above discussion leads us to conclude that both the method of successive
integration and the method using the decomposition into a system of nonhomogeneons
equations of the ord:r are always useable, while the method of reducing the order
of the derivative under the introduction of a new variable is generally not always
useable.
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Souhrn

MODELOVANI PRENOSOVYCH FUNKCI
S NENULOVYMI POCATECNIMI PODMINKAMI

KAREL BENES

V préci je popsano uréeni ekvivalentnich pocateénich podminek pfi modelovani pfenosovych
funkci s nenulovymi po¢ate€nimi podminkami. Je ukdzano, Ze metoda postupné integrace a metoda
rozkladu rovnice na soustavu nehomogennich rovnic 1. fadu jsou vZdy pouzitelné. Dale je ukazino,
Ze metoda sniZovani fadu derivace se zavedenim nové proménné neni obecné€ vidy pouzitelnd (nedo-
vedeme-li ur€it poc¢ate¢ni hodnoty v diferencidlni rovnici pro novou proménnou), na druhé strané
muiZe existovat n-tice pocatecnich hodnot nekoneéné mnoho, resp. téZ jen jedna n-tice. V téchto
pfipadech lze pro modelovéani pfenosové funkce pouzit vy$e uvedené metody.

Peziome

MO/JAEJUPOBAHUE HEPEJATOYHBIX @YHKIUR
C HEHYJOBBIMU HAYAJBHBIMU YCJOBUAMU

KAPEJI BEHEWI

B cTaTh€ OOHMCAHO ONpEAEIEHME HAYAJIbLHBIX YCIIOBMU NPM MOIECIHUPOBAHUIO MEPEAATOYHBIX
($yHKIMY C HEHYJIOBRMHM yclioBusiMM. [10Ka3aHO, 9TO METOA TOCTENCHHOM MHTErPalMH H METOX
pa3loXeHus YPaBHEHUS HA CHCTEMY HETOMOTEHHEIX YPaBHEHHMi 1. mopsnka Bcerna MOXHO IpuMe-
HHTD. Janee NoKa3aHo, YTO METON NOHMXEHHU IIOPAAKA TPOU3BOIHOM C IPUMEHEHUEM HOBOH Iepe-
MEHHO# HeJb34 B 06IEM BCET A HCIIOJIB30BATh (KOT 42 MbI HE3HAEM ONpPeNeTUTh HaTaIbHbIE YCIIOBAN
B nu(pEepeHIMATLHOM YPaBHEHUM /I HOBOM MEPEeMEHHOM), ¥ MOXET CymecTBOBaTb H-IPYIN Ha-
YaabHBIX YCIOBHA GECKOHEYHEe MHOTO, WM TOXE TOJIBKO OfHA rpynna. B 3THX CIyyasx MOXHO IIst
MOJEIHMPOBAHHES NEPENATOYHOM (GYHKUMM NCIIOIb30BATE METO/ MOHIKEHNS MOPINKA MTPOU3BONHON
C MPUMEHEHHEM HOBOM TEPEMEHHON.
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