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I N LOCALLY M U L T I P L I C A T I V E L Y CONVEX ALGEBRAS 

DINA ŠTĚRBOVÁ 

(Received May 30, 1979) 

In this paper we will show the existence of quasi-square root of 
element in a complete locally multiplicatively convex algebra which 
possesses spectrum contained in the interior of the complex unit disc. 
In the case of spectrum being also positive we state a simple relation 
between square roots and quasi-square roots which enables us to show 
the existence of the unique positive square root of an element with 
positive bounded spectrum. If, moreover, the algebra is endowed by 
an involution and the elements in our consideration are selfadjoint then 
the quasi-square roots (square roots) can be choosen selfadjoint too. 

1. Introduction 

The notion of semi-normed algebra was introduced by R. A r e n s as a natural 
generalisation of Banach algebras. They are called locally multiplicatively convex 
algebras by E. A. M i c h a e l [3]. Several properties of Banach algebras have been 
proved also for semi-normed algebras [3], [7], [8]. The aim of this paper is to study 
the existence of square roots for elements of these algebras. In the theory of Banach 
algebras the existence of square roots [1], [2], [5] plays an important role in problems 
concerning the spectral properties of elements in the non-commutative case. Speaking 
more closely the noil-commutative case does not admitt the use of Gelfand transform 
in general and so the "square root" technique together with some other algebraic 
tools (as e.g. the polynomial identity for spectra) work. Let's mention that algebras 
studied in this paper are not assumed to posses a countable base of uniformity and 
so we cannot use the wellknown M i t t a g — Leffler theorem to construct the square 
root (quasi-square root) from its projections. So we have to find some refined methods 
of proofs, 
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2. Preliminaries 

The reader is assumed to be familiar with the basic concepts concerning topo
logical algebras, namely the Banach algebras, including spectra, Gelfand representa
tion for the commutative case and so on. All of them as well as proofs can be found 
in [1] for Banach algebras and in [3], [5], [9] for the semi-normed algebras. Let's 
recall now some notations and facts which we shall use in this paper. An involution 
defined on algebra A is a mapping x -» x* of A onto itself such that the following 
holds for each pair x, y e A and for each complex X: 

(i) x** = x, 
(ii) (Xx)* = Xx*, 

(hi) (x + y)* = x* -f y*, 
(iv) (xy)* = y*x*. 

A ^-algebra is an algebra endowed by an involution. An element xeA is said to be 
regular, (selfadjoint) respectively if it holds that there exists an inverse to x (x* = x) 
respectively. A topological algebra is said to be semi-normed, or locally multiplica-
tively-convex if its topology can be given by mean of a family {pa}aei of semi-norms 
on A which separates points of A. The class of all locally multiplicatively convex 
algebras will be denoted by LMC. The spectrum of an element x e A will be denoted 
by a(x). If it is necessary to specify the algebra with respect to which the spectrum 
is taken we shall use the notation o(A, x). The spectral radius of an element xeA 
is denoted by | x \a and it is defined as | x |ff = sup (| X | : X e cr(x)}. Let's mention 
that the last number is not necessarily finite if A is semi-normed. The unit element of A 
(if exists) will be denoted by e and will be left in expressions like X — x. If we set 
N. = { x e A : pa(x) = 0} for some a e l w e obtain a closed ideal in A. Let Aa denotes 
the Banach algebra obtained by the completion of the normed algebra (A/Na,pa). 
By na we denote the natural homomorphism mapping from A into Aa. Let's denote 
by n the mapping n : A -> Yl Aa, n(x) = (Iia(x))rei where Yl da is the cartesian pro-

ael ael 

duct of spaces Aa endowed by the product topology and coordinatewise defined ope
rations. This map is a topological isomorphism. If A is complete the image n(A) 
is a closed subalgebra in Yl 4*-

ami 

Let now A be a complete algebra from LMC with a system of semi-norms {pa}aeI 

as mentioned above. Write a < p for each a, /? e I if pa is continuous with respect 
to p^ This relation makes of I a directed set,since we can assume without the loss 
of generality that the maximum of a finite number of members from I is again 
from I. If a < /3 we define a map naP from the algebra (A/Np,pp) into (A/Na,pa) 
by naP(np(x)) = na(x). This map is a continous homomorphism of A/Np onto A/Na 

and thus it can be extended to a homomorhpism of Ap into Aa. This extended mapping 
will be denoted also by naP. It's obvious that for each a, /?, y e I such that a < /? < y 
holds nay = nap, nPy. So we obtained a projective system of Banach spaces (Aa, ael) 
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with respect to the set of continuous homomorphisms (naP, a < /?). This enables us to 
construct the projective limit denoted by lim Aa of this system i.e. the subspace of 

Y[ Aa formed by all those "sequences" (x a) a 6 l that for each a j e l , a < ^ holds 
a«X 
nap(xp) = xa. IVs wellknown [3], [9] that n(A) = l imA a and so we have that each 

<_ 
complete algebra from LMC is topologicaly isomorphic to the projective limit of Ba-
nach algebras. We can identify A and the projective limit lim Aa. This yields that an ele-
ment x e A is regular iff for each a e I its projection 7ia(x) is regular in Aa and we easily 
see for each x e A the equality c/(x, A) = (J cr(7ra(x), Aa). For the spectral radius holds 

« 6 l 

I x \a = sup | 7ia(x) 1̂  where the last term is taken in Aa. We got that the spectrum 
a(x, A) is a nonempty, in general unbounded set of the complex plane. The mentioned 
topological isomorphism yields also that a sequence (xa)a6 r e f][ Aa belongs to A iff 

aeX 
for each pair a, /? e I such that a < p holds nap(xp) = xa. 

3. Quasi-square roots and square roots 

3.1. Definition: Let A be an arbitrary algebra. For each pair of its members x, y 
we define their quasi-product x , y by formula 

x. y = x + y — xy, 

where xy means the usual algebra product in A. 

3.2. Definition: Given xeA a quasi-square root of x is an element ye A with 
y . y = 2y — y2 = x. A square root of x is an element z e A with zz = x. 

Let A be a topological algebra. Given a e A we denote by B(a) the least closed 
subalgebra of A containing a. B(a) exists [ l ] and it is formed by the closure of the set 
of all polynomials Pn(a). Obviously each pair of elements x,y e B(a) is a commuting 
pair. The subalgebra B(a) is contained in the maximal commutative subalgebra C(a) 
of A containing the element a. 

Recall now the original quasi-square root theorem for Banach algebras which is 
due to J W. F o r d [1], [2]. 

3.3. Theorem: Let A be a Banach algebra and let be a e A with | a \a < 1. Then 
there exists the unique quasi-square root x of a in A with | x |ff < 1. Moreover is 
x e B(a). 

Proof: See for [1] p. 44. 
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We shall make a substantial use of this result. In the rest of this paper denotes A 
a complete algebra from LMC endowed by topology which is given by a directed set 
of pseudonorms {pa, a e.£}. For each ae A and for each a e l w e denote by aa the 
projection na(a). 

3.4. Proposition: Let a e A and a e I are such that | aa \a < 1. Then there exists 
the unique quasisquare root xe Aa of aa so that | x \a < 1. Further holds (ex — aa) = 
= (ea — x)2, Re a(ea - x) > 0 and x e B(aa). 

Proof: The existence of unique x e B(aa) is a consequence of 3.3. and for the rest 
we can easily see: 

(ea - aa) = (e - a)a = ea - 2x + x2 = (ea - x)2. 

By the condition | x [a < 1 and by the polynomial identity for spectrum we get 

Re a(ea - x) = Re a(ea) - Re <r(x) = 1 - Re a(x) > 0. 
Q.E.D. 

3.5. Proposition: Let be a e A and a e I such that a(aa) i_ 0 and | aa \a < 1. Then 
for the quasi-square root x e Aa of aa holds a(ea — x) > 0. 

Proof: It is immediately seen by 3.4. that Re a(ea — x) > 0. Further holds 
(ea — aa) = (ea - x)2. From the fact that a(aa) ^ 0 follows a(ea — aa) = a((e - a)a) > 0 
and so a((ea — x)2) > 0. By the polynomial identity for spectrum we get 

a((ea-x)2) = (a(e-x))2>0. 

Now, we conclude by the elementary properties of complex numbers that 

a(ea — x) > 0. 
Q.E.D. 

Propositions 3.4. and 3.5. base a simple relation in the case of positiveness of spectrum 
between the square roots and the quasi-square roots as showes the next proposition. 

3.6. Proposition: Let be a e A and a el. Then the following holds: 
(i) Provided a(aa) > 0 and | aa \a < 1 there exists the unique square root y e Aa 

of aa for which holds \y\a< 1 and a(y) > 0. Moreover is y e B(aa). 
(ii) Provided the existence of a positive K so that | (aa) \a < K and a(aa) > 0 there 

exists the unique square root y e Aa of aa such that | y \a < K1/2 and a(y) > 0. 
Moreover is, again, y e B(aa). 

(iii) The square root y from (i) is the unique one which posses a positive spectrum 
and for which holds | y \a £ (| aa | , ) 1 / 2 . 

Proof: To prove (i) we apply 3.4. and 3.5. on the element (ea — aa), for which 
holds that a(ea - aa) > 0 and \ea~- aa\a < 1. There exists the unique quasi-square 
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root x e B(aa) for (ea - aa) in Aa so that \x\v < 1. We obtain 

tf« = (e« ~ (ea - aa)) = (ea - x)2 = ea - 2x + x2 = ea - x . x. 

Now we set y = (ea — x) and the last element is obviously a square root of aa. By 
the polynomial identity for spectra we obtain o(y2) = (O~(y))2 and so we get that 
| y \a < 1. It remains to prove that y is the unique square root of aa in Aa with positive 
spectrum and satisfying the condition \y \a < 1. Let's assume the converse and let 
O e Aa be such that 

1 > o(ea - O) > 0. 
and 

(ea - o) . (ea - O) = ea - o2 = ea - aa. 

The last equality implies that (ea - O) is a quasi-square root of (ea - aa) and so by 3.4* 
we get (ea - O) = (ea - y) and thus O = y. 

Q.E.D. 
To prove (ii) it's enough to apply (i) on the element a/K. 

Q.E.D. 
To prove the remaining part (iii) let be s > 0. Let's take K = | aa \a + s. Then by 
(ii) there exists the unique square root y e Aa of aa such that o(y) > 0 and | y \a < 
< K112 = (| aa \a + e)112. Applying the standard technique we get thaty is the unique 
square root of aa, ye B(aa) such, that for each integer n holds 

| .yL = ( | 0 * L + l/n)U2. 

The last inequality implies \ y \a <i (\ aa \a)
1/2. 

Q.E.D 

3.7. Proposition: Let be aeA. Let's suppose the square root xe A of a exists. 
Then the following holds: 

(i) If | a \a < 1 then | x \a < 1 too. 
(ii) If for some a el holds \aa\a < 1 then | xa \a < 1 holds too. 

Proof: We prove only the first statement the second having an analogous proof. 
From the equality x2 = a follows that o(x2) = (<r(x))2 = o(a) and this implies for the 
spectral radius 

| a \a = sup {| X | : X e o(a)} = sup {| £ \2 : £ e o(x)} < 1. 

The required result follows be the elementary properties of multiplication of complex 
numbers. 

Q.E.D. 

3.8. Corollary: Let be a e A and a el. Let's suppose that o(aa) > 0 and | aa \a < 1. 
Then there exists the unique square root x e Aa of aa with positive spectrum and, 
moreover, is x e B(aa). 
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Proof: Immediately follows from 3.7. and 3.6. 
Q.E.D. 

Now we are able to state first of the main results. 

3.9. Theorem: Let be a e A and \ a \a < 1. Then there exists the unique quasi-square 
root q e A of a such that | q \9 < 1. If, moreover, the algebra A is a *-algebra and a 
•s selfadjoint then q is selfadjoint too. 

Proof: Because the index set I is of arbitrary cardinality and we don't make 
additional requirements on existence of countable cofinal subset in I we cannot use 
the Mittag —Leffler theorem to prove that the required set of quasi-square roots 
being nonempty. 

Obviously there exists a positive rj so that for each cce E holds | aa \9 < r\ < 1. 
By 3.3. and 3.4. there exists for each ae E the unique quasi-square root qa e Aa 

of aa so that | qa \a < V qa e B(aa). By the definition of B(aa) there exists a sequence 
{K(a)a}n=i fr°m B(a*)> s u ch that for each integer n is | Pn(aa) \a < 1 and 

qa = l im P*n(aa). 
n-+ oo 

Now we set q = (qa)aev and we have to prove that q is the required quasi-square 
root of a. At first we have to show that q belongs to A. Because of the fact that A = 
= lim Aa we must prove that for each pair a, /? e E satisfying a < ft holds nap(qp) = qa. 

Let be a < /?. By the definition there exists a positive K so that for each x e A is 
pa(x) g Kpp(x). This easily implies N^ c Na and 

a(aa) a a(ap). (1) 

As 7ra/j is a homomorphism for each integer n holds 

n«P(Pfafi)) = *f(<0 c= Bfe) cz Aa, 

(Pf (â )}®= j being a Cauchy, sequence in Ap so is {Pn
p{aa)} n= linAa. The last fact together 

with that of B(aa) being closed implies the existence of an element qa e Aa such that 
qa = \\mP^(aa) e B(aa). By the continuity of the quasi-product follows immediately 

n~+oo 

lim (Pfa,,). Pi(a?)) = a, 
»->oO 

and again by the continuity of %afi we get 

\im(Pi(aa).Pi(aa)) = aa. 
»->oo 

Now by (1) we easily see that for each integer n holds the inequality 

I Pi(ax) L < 1 • 

So we got qI,q^e B(ax), both commuting quasi-square roots of ax, satisfying the 
condition of spectral radius being less one. (The last fact follows by using the Gelfand 
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representation theory for B(aa)). By 3.4. we conclude that qa = qa. Now, again using 
the continuity of 7tap we get 

K«MP) ** n*filim p»(ap)) ** l i m n*t(p»(a$)) = l i m pS(««) = qa • 
»-+oo II-+QO n-+ao 

So we see that q e A and a simple application of Gelfand's representation on the 
algebra C(a) showes that \q\a < 1. (The converse assumption leads to the existence 
of a suitable sequence of continuous multiplicative functional on C(a), denoted by 
{f»}«°= i s u c r i that | fn(q) | -» 1, but on the other hand at the same time must hold 
for each integer n 

I 2 |/,(?) | - |/.for) |2 | = | 2 \fn(q) | - |f,(^2) | | ^ 

^ |2frt(q)-f.(q)2! = | f ( a ) i < . / < 1. 

So we get a contradiction that 1 < rj < 1. 
To prove the rest of the theorem let's suppose that A is a ^-algebra and a is a self-

adjoint element of A. We get immediately 

From the fact that in each ^-algebra holds | q \a = | q* \a and by 3.4. follows that 
q — q*. 

Q.E.D. 
3.10. Theorem: The following holds for a e A such that a(a) > 0: 
(i) Let be | a \a < 1. Then there exists the unique square root s e A of a such that 

a(s) > 0. The square root s commutes with a. If, moreover, a is selfadjoint, so is s. 
(ii) Let K positive be given so that | a \a < K. Then there exists the unique square 

root s e A of a such that it's spectrum is positive and \ s \a < K1/2, s commuting with a. 
If, again, a is selfadjoint, so is s. 

Proof: It's obviously enough to prove (i) because (ii) follows from (i) if applied 
on a/K. To prove (i) we apply 3.9. on the element (e — a). Thus we get the unique 
quasi-square root q e A of (e — a) and by 3.4. we easily see that the required square 
root is the element s = (e — a). 

Q.E.D. 
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Souhrn 
\ 

O ODMOCNINÁCH A QUASI-ODMOCNINÁCH 
V LOKÁLNĚ MULTIPLIKATIVNĚ KONVEXNÍCH 

TOPOLOGICKÝCH ALGEBRÁCH 

DINA ŠTĚRBOVÁ 

V práci se dokazuje existence quasi-odmocniny prvku se spektrem obsaženým ve vnitřku jednot
kové koule komplexních čísel. V případě, že spektrum prvku je kladné, je ukázán jednoduchý vztah 
mezi odmocninou a quasi-odmocninou, který umožňuje najít jedinou odmocninu s kladným spektrem 
pro každý prvek lokálně multiplikativně konvexní úplné algebry, jenž má kladné a omezené spektrum. 

Резюме 

О К В А Д Р А Т Н Ы Х К О Р Н Я Х И К В А З И - К О Р Н Я Х 
В П О Л У Н О Р М И Р О В А Н Н Ы Х КОЛЬЦАХ 

ДИНА ШТЕРБОВА 

В настоящей статье показывается существование квадратных квази-корней для элементов 
полунормированных колец, спектры которых лежат во внутренности единичного круга. Когда 
эти спектры положительны, можно найти простую связь между корнями и квази-корнями, 
с помощью которой можно легко показать существование и единственность квадратных 
корней тех элементов, спектры которых положительны и ограничены. 
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