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1. INTRODUCTION

O. Boruvka described in [4] the set of coefficients of all both side osciliatory
equations on R (=(— 00, o0)) having the form
() V' =rt)y, reC'R),
which have a common oneparametric continuous group of dispersions. If the coeffi-
cients of two different equations relating to this set are n-periodic (on R), then all
its function possess the above property. The paper below presents another character-
ization of the set of equations with n-periodic coefficients having a common one-
parametric continuous group of dispersions. This characterization is connected with
the coincidence of finite intervals of nonstability in a certain equation )" =
= (q(?) + Ap(?)) y with n-periodic coefficients p, g; A e R.

2. DEFINITIONS, NOTATION, BASIC PROPERTIES

Let (r) be an on both side oscillatory equation on R (meaning thereby that any
nontrivial solution of (r) has infinitely many zeros on the right and on the left of
each point ¢,,). Say that a function « is the (first) phase of (r) if there exist its indepen-
dent solutions u, v:

tga(t) = u(t)jo(r)  for reR — {teR;uv(r) = 0}.
Any phase o of (r) has the following three properties:
(i) xe C3*(R),
(ii) o'(t) # 0 for r R,
(iii) «(R) = R.



The phase o of (r) uniquely determines the coefficient r of this equation in the sense
as follows
K(t) = —{o, t} — (1), teR,

where {o, £} := o’'(£)/22'(t) — (3/4) («"(t)/o’(¢))? is the Schwarzian derivative of the
function « at the point ¢.

Say that the function o is a phase function if it possesses the properties (i) —(iii).
Any phase of (r) is a phase function. The set of phase functions forms the group ®
with respect to rule of composition of functions.

Let (q), (Q) be both side oscillatory equations, g e C°(R), Q € C°(R). Any so-
lution X, X'(¢) # 0 for ¢ eR, of the differential equation”

Q9 (X1} + X?.0(X) = q()

is called the general dispersion of (q) and (Q) (in the above order). The general
dispersion X of (q) and (Q) is a phase function and possesses the following character-
istic property: There is one-to-one correspondence of solutions y of (q) and ¥ of (q)
given by

yt) = YXOI X'(1)|''?,  teR. )

Let X be a general dispersion of (q) and (Q) and let X~! denote the inverse
function to the function X (on R). Then X ™! is a general dispersion of (Q) and (q),
consequently, it is a solution of (qQ).

Let ¢ = Q. Then the solutions of (qq) are called the dispersions (of the first kind)
of (q). The dispersions of (q) form a group with respect to the rule of composition,
which is called the group of dispersions of (q); denotion %,. The set &£, of increasing
dispersions of (q) is a subgroup of the group #,. Let a be a phase of (q). Then the
function @(t) 1= a~*(a(?) + n.signa’), teR, is a dispersion of (q); ¢ € &, . The
function ¢ is called the basic central dispersion (of the first kind) of (q).

All the above definitions and properties are stated in [2], [3].

Conformably with [4] let us say that a group U, U = @, is a oneparametric
continuous group if exactly one element from 2 passes through any point (¢, x,) €
e R xR. In other words, to any point (o, X,) there exists one and only one function
X e U such that X(¢,) = x,.

Lemma 1 ([4]).

Let (qy), (q,) be both side oscillatory equations, q, € C°(R), q, € C°(R), q; — g, €
€ C2(R), q,(t) # q(1), teR. Then P, := &L ~ L] is a oneparametric continuous
group (we say that (q;) and (q,) have a common oneparametric continuous group of
dispersions) just if there exist a phase function X and positive numbers k, k,, ky # k,,
such that

g(t) = —{X,t} — k,. X'*(t), teR, i=12.

Let X be a phase function and put [X]:= {q(t); q(t) = —{X, t} — k. X"%(1),
keR*, teR}, where R+ := (0, o). It follows from Lemma 1 that [X] is the set
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of coefficients g of exactly those both side oscillatory equations (q), that () £, is
qelX]
a oneparametric continuous group. It is easy to verify that [X] = [Y] holds for the

phase functions X, Y exactly if X = aY + b, where a # 0, b are constants. The
equality [X] = [Y] is to be taken as an equality of two sets.

Assume that r is a continuous and a n-periodic function. Let AeR and u, v be
solutions of the equation " = (r(t) + 1) y satisfying the initial conditions u(0) =
=v'(0) = 0, '(0) = v(0) = 1. Let us put 4(2) := v(n) + '(r). We know from the
Floquet theory ([6] —[8], [10]) that there exist sequences {4;}{2¢, {A;}i2;,

Ao > A=A > 2> > ..

such that 4(A) = 2 exactly for A = 4, 1 =0,1,2,...) and 4(1) = —2 exactly for
A=2 (i=1,2,3,...). The intervals [Au—1, A2n)s [A2n—1, 45.] (B =1,2,3,..)
are called the finite intervals of nonstability of the equation (r + A). The above
mentioned intervals degenerate to one point, i.e. A} = 45, 4, = 4,, 43 = 44, ...
exactly if r(t) = a constant. That is, the equation (r + A) is for any 4 < 4, stable
on R (all solutions of the equation (r + A) are bounded on R) exactly if r(¢) =
= a constant (cf. [1], [6], [10]). The equation (r + X) is stable exactly if there exists
a phase « of this equation such that

ot + 7)) = a(t) + a, teR,

where a # 0 is a constant (cf. [3]).

It should be noted here that the equation (r) with a n-periodic coefficient r is
either both side oscillatory or disconjugate (i.e. any nontrivial solution of (r) has
one zero on R at most).

3. MAIN RESULTS

Theerem 1.

Let p, q be n-periodic functions, p e C*(R), ge C°(R), p(t) > 0 for teR. Let the
equation
(q + Ap) Y =(q@) + ip(t))y, LeR,

be both side oscillatory for A < Ay > 0 and disconjugate for A = A,. The equation
(q + Ap) is then stable on R for any A < A, exactly if there exists a phase function X
such that

[X] = {g+ ip; A < A}
Remark 1.

It is implied from Theorem 1 that for 1 < A, both side oscillatory equations
(q + Ap) have a common oneparametric continuous group of dispersions exactly
if the equation (q + Ap) is stable for any 4 < 4,.

To prove Theorem 1 we use the following lemmas:
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Lemma 2.

Let X be a phase function. Then there exists exactly one function q € [ X] such that X
is a phase of (q).

Proof. Let X be a phase function. Putting q(¢) := —{X,t} — X'%(¢t), teR, we
have g e [X] and X is a phase of (q) (see § 2).

Lemma 3,

Let X be a phase function. Then two different n-periodic functions lie in the set [X]
if and only if all functions in [ X] are m-periodic.

Proof. The proofin one direction is obvious. Let now g, g, be n-periodic function
in[X], g, # ¢,. Itfollows from the definition of the set [ X] the existence of numbers
ki,kyeR*, ki #k,:q{t) = —{X,t} — k;. X'*(t). Since q,(t) — g,(¢)is a n-periodic
function and ¢,(t) — ¢,(t) = (k; — k) X'*(1), then X'(¢¥) is a n-periodic
function. Hence, also the function —{X, t} — k. X"?(¢) is n-periodic for any k e R*,

From the proof of Lemma 3 follows:

Corollary 1.
Let X be a phase function. Then [X] contains two different m-periodic functions
exactly if X' is a n-periodic function.

Lemma 4.

Let X be a phase function and X' a m-periodic function. Let g e [X]. Then (q) is
stable on R.

Proof. Let the assumptions of Lemma 4 be fulfilled. According to Corollary 1
is g a m-pericdic function. From the assumptions now follows the existence of numbers
a#0 and keR* such that X(t + n) = X(¢) + a, q(t) = —{X,t} — k. X*(¢).
Puttingo(t) := k2. X(t), t e R, then « is a phase of (q) and it follows from «(t + 7) =
=k Xt + m) = kY. X(t) + ak'’? = a(t) + ak''? that (q) is stable on R.

Corollary 2.

Let X be a phase function and let two different m-periodic functions exist in [ X].
Then the equation (q) is stable on R for any g e [X].

Procf. It follows from Corollary 1 that the function X’ is m-periodic and by
Lemma 4 the cquation (q) are stable on R for any g e [X].

Lemwma S,

Let p, q be continuous m-periodic functions, p(t) > O for teR. Then there exists
a number ) such that the equation (q + Ap) is both side oscillatory for 1 < g,
and disconjugate for A = Aq.

Proof. Lzt the assumptions of Lemma 5 be fulfilled. It is evident that the equation
(q + %p) is not for all 4 either both side oscillatory or disconjugate. We know
([5]) that for a fixed ¢ is the basic central dispersion @(t, 2) of (q + Ap) a continuous
function of 2 whcncver it is defined. Herefrom and from the Sturm comparison



theorem then follows the existence of the number A, having the properties given
in Lemma 5.

Lemma 6.
Let p, q be n-periodic function, p e C*(R), ge C°(R), p(t) > O for teR. Let A, > 0
be a number with the property stated in Lemma 5. Then the equation (q + Ap) is stable

t
for all ). < Ay if and only if A% [ p'/*(v) dt is a phase of (q).
0

Proof. Let the assumptions of Lemma 6 be fulfilled. We prove first that (@ + Ap)
may be transformed onto an equation of the type

Q+p V' =(0 + 1wy, neR,
where Qis a continuous n-periodic function (cf. [9]). Putting s : = n/jp”z(r) di(> 0),
0

X(@):= sjp”z('c) dr, teR, then Xe C3(R), X'(t1) > 0, X(t + n) = sjp“z(r) dr =
Ot+n

=X(t) + s [ p"'*(r)dr = X(1) + nfor reR and X(R) = R. Let X! be the inverse
t
function to X onR. Obviously X ' e C3R), X Y(t) > 0Oand X~ !(¢t + m) = X" '(1) +

+ n for teR. Putting Q1) := —{X~%, 1} + X 1(t). ¢(X"1(t)), t€R, then Qe
€ C°(R) is a n-periodic function and it holds

2 —{X,t} + X*(1). O(X(1)) = q(t),  t€R,
whence
—{X,t} + X?(1) . (QX() + As™?) = q(t) + Ap(2).

It follows from the theory of dispersions that there is one-to-one correspondence of
solutions y of (q + Ap) and Y of (Q + As™2) given by (1).

According to the assumption, the equation (q + Ap) is both side oscillatory
for A < A, and disconjugate for A = A,. Consequently also (Q + As™2) is both
side oscillatory for A < 4, and disconjugate for A = A,. We know from the Floquet
theory that (Q + As™?) is nonstable for 1 = 2,. Hence (q + Ap) is also nonstable
for these A. Let (q + Ap) be stable for any A < A, and thus (Q + As™?) is also stable
for this A. This is possible exactly if the finite intervals of nonstability of (Q + As™2)
coincide which occurs exactly if O(t) = a constant (:= k). Since (k + As~?) is stable
exactly if k + As™2 < 0, there is necessarily k = — 2572 Then —{X,t} — 157 2.

. X'%(t) = q(1) follows from (2), which implies that 25/2s™1 . X(¢) = A!/? fp”z(r) dr
is a phase of (q). ’

Let X(t) := A}/* jp“z(r) dr, t €R, be a phase of (q). Then X(r + n) = X(¢) + a,

where a := A3/? [p”z(r) dr and therefore (q) is stable. Let peR* and put Y, (1) :=

1= . X(1), tcR. Then Y, is a phase of (1), where r,(t) = —{Y,,t} — Y,(t) =

!

= (Xt} — 1. X)) = =Xt} - XM+ (U = ADHX* O =gO)+ (1 = p?) .

97



() = q(t) + Ap(t); 2= (1 = i?) Ly Since Yt + 1) = p. (X(t) + a) = Y, (1) +
+ pa, the equation (r)) is stable. Consequently (q + Ap) is stable for A < A,, which
we were to prove.

Proof of Theorem 1. Let the assumptions of Theorem 1 be fulfilled and (q + Ap)

t
be stable for any A < 1. By Lemma 6 is then the function X(¢) := 4§/* | p'/?(z) ds,
0

teR, a phase of (q) and we get from the second part of the proof to Lemma 6 that
[X] = {g + 4p; & < Ao}

Let [X] = {g + Ap; 4 < A¢}. According to Corollary 1, X’ is then a n-periodic
function which means by Corollary 2 that (q + Ap) are stable for A < 4.
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SOUHRN

O NEKTERYCH VLASTNOSTECH RESENT{
LINEARNICH DIFERENCIALNICH ROVNIC
2. RADU S PERIODICKYMI KOEFICIENTY, KTERE
MAJI SPOLECNOU JEDNOPARAMETRICKOU
SPOJITOU GRUPU DISPERSI

SVATOSLAV STANEK

Necht r € C°(R) a necht rovnice (r): 3" = r(t) y je oscilatorickd na R. Rekneme,
ze funkce X, X e C3(R), X'(¢) # 0 pro ¢ €R, je disperse rovnice (), kdyzZ je feSenim
rovnice

—X"2X" + (3/4) (X"|X')* + X' p(X) = r(t).
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Podgrupa 2 grupy 2, dispersi rovnice (r) se nazyva jednoparametricka spojitd grupa
dispersi, jestliZze ka¥dym bodem (9, Xo) e R XR prochdzi pravé jedna funkce z U.
V préci je dokdzéna véta: Nechf p, ¢ jsou n-periodické funkcee, p € C*(R), g € C°(R),
p(t) > 0 pro t e R. Necht rovnice

(q + Ap) Y= (q(0) + Ap(t) y
je oscilatorickd pro A < 1, > 0 a diskonjugovand pro A = 1,. Pak pro kazdé 1 < 4,

je rovnice (q + Ap) stabilni na R pravé kdyZz pro kazdé A < i, maji rovnice
(q + Ap) stejnou jednoparametrickou spojitou grupu dispersi.

PE3IOME

OB HEKOTOPKIX CBOVICTBAX PEIIEHUN
JIVUHENHBIX NUGOEPEHLUAIBHBIX
VPABHEHMM 2-0T0 MOPIIKA
C TEPUOANYECKUMU KOBPOULUEHTAMU
KOTOPBIE UMEIOT COBMECTHVIO
OJHOITAPAMETPUYECKYVIO HEITPEPRIBHVIO
IPYINY AVUCHEPCU

CBATOCJIAB CTAHEK

ITycts ¥ € C°(R) u ypasuenue (r) : y” = r(t) y — ocmmumnpyrouee na R. Oyurnus
X, XeC*R), X'(t) + 0 st te R, HaspBaeTCa AuCTepCueil ypaprenus (r), eCim
SIBJISIETCS PEeLUCHIEM YPaBHEHHAS

—X"2X" + 3[4 (X"[X)? + X . r(X) = r(®)

IMoarpynma U rpynnsl £, nucnepcuil ypasHeHus (r) Ha3bIBaeTCs OJHONAPaMETpH-
weckasi HEIpephIBHAS TPyNma, ecium Kaxmoi Toukoil (fy, Xo) € R + R mpoxomur
ToJbpKO onHa ¢ynknus us A. B pabore npusomurcs reopema: Ilycts p, ¢ — nepuonu-
yeckue Qynkmum, p € CX(R), g€ C°(R), p(f) > 0, t e R. Tlycts

(q + 4p) ¥ =@ + Ap(®) y

SIBJIAETCS OCUMITHPYIOIMM ypaBHeHHEM misd A < Ay > 0 u ypasuenueM 6e3 co-
NPSUKEHHBIX Toyek it A = Ag. Torma ypasuenue (q + Ap) ycroitumso mig A < 4g
TOT/Ia U TOJILKO TOrAa, Korna ypasHenus (q + Ap) MMEIOT s A < Ay COBMECTHYO
OHONIAPAMETPHUYECKYIO HENTEPHIBHYIO IPYIINY AUCHEPCHH.
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