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OF DECOMPOSITIONS OF PARTIAL ALGEBRAS
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In this paper, there is shown, that the least common covering of two admissible
decompositions of a partial algebra need not be admissible.

1. PRELIMINARIES AND NOTATIONS

By a partial algebra we will mean, as usually, a system & = (G, f,>,.r, Where
G is a non-empty set—the support of ¥ and f, are partial operations on G. For
our purpose we will assume that the arities of all f, are positive integers. For any
y € I we denote by p, the arity of f, and by Dom f, the domain of f,. Itis Domf,
< G" of course.

Let D denote the set of all decompositions on G. It is well known, that the set D
ordered by the condition 4 £ B iff 4 is a refinement of B (<« B is a covering of A)
forms a complete lattice. The supremum (the least upper bound) of two decomposi-
tions on G is their least common covering, the infimum (the greatest lower bound)
of them is their greatest common refinement. The least common covering (the greatest
common refinement) of two decompositions 4, B on G will be denoted by [4, B]
((4, B)). Further, we denote by G, the greatest decomposition on G consisting of
a single element, namely G. Analogously we denote by G, the least decomposition
on G consisting of all one-point sets {x}, x € G. Gy is the maximum and G, is
the minimum of the lattice (D, [.,.], (.,.)) of all decompositions on G.

2. LATTICE OF DECOMPOSITIONS OF ¢

The decompositions on G are in a 1 —1 correspondence with an equivalence rela-
tion on G. If a decomposition G on G corresponds to the congruence on ¢, then G
will be called the admissible decomposition of partial algebra ¢ or breafly a decomposi-

tion of ¥.
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Theorem.

Let = <G, f,>,.r be a partial algebra and let (D, [.,.], (.,.)) be the lattice of all
decompositions on G. Then the set of all admissible decompositions of & forms
a complete lower subsemilattice of (D, (.,.)).

Proof: Let us consider a non-empty system {G,;};.r of decompositions of .
Their greatest common refinement inf {G,} consists of all non-empty intersections

()&, & €G,. Let us choose an arbitrary partial operation f, and the classes
iel

Xy, X3, ..., Xp, of inf {G,} such that the intersections X; N Dom f,, ..., ¥, n Domf,
are non-empty. Further, let for any i = 1,2, ..., p,, x;, x; be two elements of X; N

n Domf,. It holds X; = (") g;,; for a suitable system {g; ;},c1» &i,1 € G;. Since G,
Ael

is an admissible decomposition of ¢ and since x;, x; belong to the same class of G,,

then fi(xy, ..., X, ), FACTIN X, ) belong to the same class of G;, too. Let us denote

it by y,;. Therefore, f(x;, ..., x,) and f(x{, ..., x,) belong to () ¥, which is
iel

a class of inf {G,}. Consequently, inf {G,} corresponds with some congruence on ¥,
i.e. it is a decomposition of ¥. Thus, we have proved our theorem.

Let us denote by A the set of all admissible decompositions of &. Then (A, (.,.))
is a complete (lower) semilattice with the maximum G . Then we may transform
(A, (.,.) in a lattice (D, <.,.>, (.,.)) in the obvious way: The supremum <4, B) of two
admissible decompositions of % is defined as the infimum of all admissible decom-
positions being the common covering of 4 and B. The following example shows,
that <{.,.> need not be the restriction of [.,.] on A x A, hence the lattice (A, {.,.>,
(.,.)) need not be a sublattice of (D, [.,.], (.,.)).

3. EXAMPLE

Let G = {a, b, c,d} and let f be a partial binary operation on G with Dom f =
= {(a, a), (a, ¢)}, f(a, a) = a and f(a, c) = d. The decompositions

G, = {{a, b}, {c}, {d}}

G, = {{a}, {b,c},{d}} onG

are obviously admissible decompositions of (G,f). The least common covering of
G, and G, is the decomposition {{a, b, c}, {d}}. According to the definition of f
we see, that this decomposition is a not admissible decomposition of <G,f), con-
sequently it is not the supremum of G,, G, in the lattice of all admissible decomposi-
tions of <G, f).

and
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SOUHRN

PRiISPEVEK K TEORII ROZKLADU
PARCIALNICH ALGEBER

JAROSLAV SVRCEK

V piedlozené praci je ukazano, Ze nejmensi spoleény zakryt dvou pfipustnych
rozkladt dané parcialni algebry neni obecn& pfipustnym rozkladem téZe parcidlni
algebry.

Dale je zde dokazéano, Ze systém vSech pfipustnych rozkladii parcidlni algebry
neni podsvazem ve svazu vSech rozklad dané parcialni algebry.

PE3IOME

3AMEYAHUE K TEOPUU PA3JIOXEHUU
YACTUUYHBIX AJTEBP

APOCJIAB IIBPYEK

B npennaraemoii pabore mokazaHHO, YTO caMoe Majioe obluee HakphiTHE IOBYX
JOMyCTHMBIX pa3JIOKeHUH YaCTH4HOM anre6phl B OGIIHOCTH HET AOIYCTUMBIM pas-
JIOKEHUEM.

3[ech TOKa3aHHO, YTO CHUCTEMA BCEX JOIYyCTMMBIX Da3JIOKEHMH YaCTUYHOH
anreOppl He sIBJISETCA MOAPEILETKON PelIETKH BCeX pa3jokeHHH JaHHOH YaCTHYROM
anre6psl.
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