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In the technical practice we often meet with differential equations in which

0
indefinite expresions of the type o oceur. See for instance the differential equation

of the 3™ order, whose solution is the function Si (f) as shown below. The in-

definite expressions of the type —g— are programmed in the form

N f(®) + z(0)ae™™

=) g(t) + ae™

1

_ P (O - 1im 7@
JO=0 &®=0 “g=:0 O=lngy

The indefinite expressions of the type o ocour in some differential equations

with variable coefficients or in some nonlinear differential equations. The general
form of differential equations with variable coefficients has in this case the form

ou(n) y®
———— = F(1), 2
L aw O @
the general form of the nonlinear differential equations of the given type is
n )
‘ M:FO) j=0,1,2,..,n 3)
k=0 vy(1) g;,(»"")
where in the equations (2) and (3) some of the expressions u(f), vi(?) and g;(»'”)
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may be constants. From now on we shall assume that in (2) and (3) only one broken

L . . . 0
expression is an indefinite expression of the type v

The differential equation :
"+ 2" +ty =0 ()]

is a type of equation (2), which programmed in the form

" ’

2 ”
Y'Yy =0 ©)

with initial conditions y(o) = 0, y'(0) = 1, y"(0) = 0.
The differential equation
2y

”

— iy -y = -2 (©)
is a type of equation (3), which programmed in the form

e . (7)

with initial conditions y(o) = 0, y'(0) = 1.
In (5) and (7) there occur singularities of the type —g— for t = 0. In machine

solving it is necessary to determine the limit of this expression. We shall show
next a method using the extension to power series which may be applied in solving
this problem.

Assume now the solution of (4) in the form of a power series and determine
the derivatives of solutions up to the highest order, i.e. up to the third derivative:

Yy =ay + a;t + ayt* + ... + at", (8)
"= a; + 2a,t + 3a5t* + da, + ... + na,"! (8a)
¥y = 2a, + 6ast + 12a,t* + 20ast® + ... + n(n — 1) q, "> (8b)
y" = 6as + 24a,t + 60ast> + ... + n(n — 1) (n — 2) g,""3 (8¢c)

Inserting this into equation (4) we obtain

6ast + 24a,t* + 60ast® + ... + n(n — D (n — 2) a,""? +
+ da, + 12a5t + 24a,t* +40ast® + ... + 2n(n — 1) @, "~ + )
+ a,t + 2a,t* + 3ast3 + dayt + ..+ nag" = 0.

The coefficients a; through a, will be obtained by comparing the coefficients in
particular powers of the independet variable z. In view of the fact that for determin-

"

ing lim 2 it suffices to determine »y"(0), it is sufficient for us — as follows from (8c)

t-0
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to determine the coefficient a;. On the ground of the given initial conditions and
relation (8), (8a) and (8b) it holds

a, =0, a; =1, a, =0,
comparing the coefficients in the first power ¢ we get

6a; + 12a3 + a, =0,

i.e.
18a; = —ay,
gp= 8 _ 1
T 18 T 18
By (8c) it holds y"(0) = 6a; = ——;—. From (5) we come to
1 _ 1
hmi= —yl”(o) - y’(O) — 3 — ___1_
w0 & 2 2 37
The value of the expression line lim2— can be determined by substituting
for y” according (8b), i.e. =0
” 2 | n—2
lim 2 — lim 6ast + 12a,t" + ... + n(n — 1) a,t — 6a,.
-0 1 t.o t
Substituting into (5) we get
6a; + 12a; + a; =0,
whence, in case of a; = 1 we determine the walue of a; = —%.
The expression z = yT is programmed in the form
" —at
I OL (9a)
t+ae™™
where z(0) limlt—- = —%. The function y = S5i(¢) is the solution of (4) with
t-0

the given initial conditions. The programme chart for the solution of equation (5)
is shown in Fig. 1.

The above method may be used in programming nonlinear differential equations
where the singularity of the mentioned type occurs, as it was the case in soloing
equation (6), programmed in the form of (7). Let us assume the solution again
in the form

y=ao+ ait + ayt* + ... + a,t", (10)

i.e.
Y = a; + 2a,t + 3a;t* + ... + nat"! (10a)
y' = 2a, + 6ast + ... + na,(n — 1) "2, (10b)
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From the given initial condition y(0) = 0, »'(0) = 1 now follows ¢, = 0, a; = 1.
2
By equation (7) it suffices for determining the limit of the expression lim _y? to
t-0 t
determine the value »"(0), i.e. to determine the coefficient a, . Inserting the relations

(10), (10a) and (10b) into equation (6) gives

2a,t% + 6ast® + ... + n(n — 1) a,t" — a;t> — 2a,t3 — ... — na "t —
—ak — d¥? — dit* — ... — @t — 2aga,t — 2a4a,t? — (11)
— 2apa5t® — ... — 2a,a,t° — ... — 2a,_,a,t*""t = =212,

Fig. 1

where a, = 0, a; = 1. Comparing the coefficients in the second power ¢ we get

2a, —a, —a; = =2,
ie.
2a, — 2 = =2,
a; =0, y(0)=0.
Inserting to equation (7) gives

2
lim 2 =2+ y0) - y'(©0) = 1. (12)
t-0
yZ
The value of the expression lim = may be determined easier by substituting
t-0 ¢

for y” by equation (10), i.e.
v ab+altt + ait* + ... + 2a0a,t + 2a0a,t* + ... + alt*"

lim=— = 3 =af=1.
t-0 t t

By the given initial condition we get @, = 1. The function y = ¢ is the solution
of equation (6). The programme chart for the solution of equation (7) is in Fig. 2.
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In programming nonlinear differential equations there occur some difficulties
in determining the coefficients a,, for the equation by whose solutions these co-
efficients are determined, i a nonlinear equation, the equation has a necessary
number of roots and solution of the given differential equation need not be one-to-

one, as it is the case of the differential equation

y?—y=0 (13)
et
-005
40
.
Fig. 2
with the initial condition y(0) = 0, programmed in the form
y -2 . 14)
ty’
If we assume a solution in the form
y=ay,+ ajt +at* + ... + a,t",
then
. ¥ = a, + 2a,t + 3ast* + ... + na,"" Y,
y'?=al + 4d3* + 9a5t* + ... + da,ay + 6ajazt? + ... + nPdlt*n T2,
Substituting the above relations into equation (13) we get
a’t + 4a2tP 4+ 9a%t* + ... + dajatt + ... 4+ ay — ayt —att — ... —at" = 0.

If we compare the coefficients we get ¢, = 0 (as also follows from the initial
condition) and it holds
al—a =0, ie. a =0;l.
By (14) we have
lim~Y = y'(0) =a, = 0; 1.
-0 ty
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In case of a; = 0 is the solution of equation (13) y = 0, white y = ¢ in case of
a;, = 1.

The programme chart for solving equation (13) in the form of (14) is in the
Fig. 3.

Fig. 3

In programming nonlinear differential equations with singularities of above
. . . . 0. .
type it need not be apparent in some cases that a singularity of the type o) is in
question, as it is the case say at the differential equation

y:i—ty —2y=0 15)

Fig. 4

with the initial condition y(0) = 0, programmed in the form

y—2o (16)

y
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Let as now assume a solution of the form

Y =ay + ajt + azt’ + ... + at",
then
Y = a; + 2a5t + 3a3t* + ... + na"" Y,

Y2 = a? + 4ait® + 9ait* + ... + daja,t + 6ajazt® + ... + n?alt*""?,
where a, = 0.
Inserting the above relations into equation (15) gives
ai + 4a3t* + 9a3t* + ... — ajt — 2a,t® — 3ast® — ... — 2a,t —
— 2a,t> — ... — 2a," = 0.
If we compare the coefficients, we see that
ai =0, ie. a; =0, ¥'(0) = 0,
.2y . . . . 0

so that the expression — is an indefinite expression of the type R

y

2 3 L]
limiy— = lim 2a,t° + 2a5t° + ... + 2a,t,

=0.
-0 Y 10 2a,t + 3azt* + ... + na "t

The programme chart for the solution of (16) is given in Fig. 4.

If in (2) and (3) more indefinite expressions of the type % occur, then the relations
for the limits of the indefinite expressions are to be determined first, with comparing

the coefficients afterwards. For instance, in programming the differential equation
2y + 1ty —y =32 an

with the initial conditions y(0) = 0, y'(0) = 0 we proceed as follows:
The equation is programmed in the form

e

Y- ~tyz— = 3. _ 18)

The solution will be assumed to be in the form of a series, i.e.

Y =ao + ajt + at* + ... + a,t",
Y = a; + 2axt + 3ast> + ... + na,""?, (19)
Y = 2a, + 6ast + 12a,t* + ... + n(n — 1) a,"" %

If follows from the initial conditions that ¢, = a, = 0, so that

lim-2- = a,, lim2— = 2a,. (20)

2
-0 t+0
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The coefficient a, will be determined by inserting the relations (19) into (17) and
by comparing the coefficients, i.e.

2a,2 + 6a3t> + ... + n(n — 1) af" + ... + 2a,t* +
+ 3a3t® + ... + nat — aytt — azt® — . — at" =38
2a, + 2a, —a, =3
a, = 1.
Substitution into relations (20) gives

lim—=> =1, lm2-=2.
t-0 t t—0

The programme chart for the solution of (17) in the form of (18) is given in Fig. 5

Fig. 5

u = 0,05e~ 19t This procedure can equally well be applied to programming non-
linear differential equations, such as

2y + Y3 — 4ty = 3ty’? _ 1))
with the initial conditions y(0) = y'(0) = 0.

The equation is programmed in the form

y 4y
< - F =3. (22)

y/r +
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Then, by expending the solution in a series, we get

Y =a, + ait + apt* + ... + a,t",
¥ = a; + 2axt + 3ast®> + ... + na""?,
y" = 2a, + 6ast + ... + n(n — 1) a,t""?,
where g, = a; = 0,
y'? = 4ait? + 9a3t* + ... + 12a,a383 + ... + nPaitt" T2,
'3 = 8a3t® + 27a3° + ... + 3.4ayt*  3ast* + ... + nair" T3,
. ! .4 1
lim2— =2a,, lim—2 = -,
-0 -0y’ a
Inserting the above relations into (21) and comparing the coefficients at > yields

8a3t> + ... 4+ 8a3t> + ... + (—4a3t®) = 12431°,

i.e.
16a3 — 12a2 — 4a, = 0,
ie.
1
a,=0; 1; —-7

The value a, = 0 is insuitable for machine solving from the given value 7, because

4 . - ’ .4 .
lim—l — o0, in case of a, =1 is th =2, llm—‘y— =1 and the function
t—0 y' R t=+0 y

2. . 1 .y 1 .4y
y = t? is the solution. In case of ¢, = —— we have lim—=—= ——, lim - =

4 1-0 1 27 oy

= —4 and the function —%tz is the solution.
The programme chart for the solution of (21) in the form of (22) for the case

a, = —% is shown in Fig. 6.

0

It is well to point out that in modelling the indefinite expressions of the type o
on electronic analog computers with a diode multiplier there arises a possibly
occurence of a greater error in the modelled quotient in case of small values of the
numerator and the denominator. Optimal values m were determined in [1] and [2],

at which the dividing circuit works relatively even with small values of the numerator
and the denominator as

m = 2x;; (23)
the most nufavourable values m are given by

m=xj+x_i+!, (24)
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where x; stand for the coordinates of the break points of linear functions approxi-
mating the quadratic dependences at the diode function transformators of the
multiplier. )

Let the expression z = SO arise in the initial net for the solution of the given

g(®)

differential equation, where

J(@) = at’, g() = b’ fort - 0,

so that
f@® at’
ol o 25
gt bt @)
-005
A 10
v x ~
Fig. 6
Modelling instead of the function z(¢) = -‘g—(\g its suintable multiple, i.e.
qf(® . gqet’
—= = s 26
g - (26)
then by a suitable choice of the coefficient g it possible to model the quotient ilf(_g;l
g

with a good accuracy even for very small values ¢. The coefficient g is to be chosen

to fulfil the relation
qc = m, 2D

i.e. the expression gc = m is to be equal to the small value m by (23). For instance,
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in programming the differential equation
12y —y =20 —1¢ (28)

with the initial condition y(0) = 0, whose solution is the function y = 2, we
proceed as follows:

y y

Equation (28) is programmed in the form )’ — —=-+ 2t -1, lim—- = 1.
t t-0 t
The expression z = —yT is modelled in the form
t
gz = =40 +u) (c=1). (29)

T P+

For the computer MEDA 41 TC the optimal values m = 0,237, 0,447, 0,670,
0,881 (we choose m < 1) by (23) are satisfactory and the values m = 0,342, 0,559,
0,775, 0,987 by (24) are not satisfactory. Respecting ¢ = 1, it holds by (25) g = m.
Let us choose ¢ = 0,881 and g = 0,987. This values were for given computer
MEDA TC experimentell precised on the values ¢ = 0,850 and g = 0,956, u =

- ?‘:

Fig. 7

= 0,050e 0. The negative signs in the numerator and the denominator are con-
nected with the requirement for the stability of the counting net in modelling the
requirement for the stability of the counting net in modelling the quotient.

The programming chart for the solution of the equation (26) is given in Fig. 7.
It can be seen from tab. 1 for ¢ = 0,850 and from tab. 2 for g = 0,956 that in the
case of g = 0,956 the solution is completely depriciated due to large inaccuracy
in modelling the quotient of small values. Since the solution is not konvergent
(y = t?), the accuracy of the solution for ¢ = 0,850 is very good. More accurate
modelling of the quotient at the beginning of the solution substantially improves
the result in the whole interval in that the solution is looked for.
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Tab. 1

t Puan y ) y+ru P+ u zZa z &(2)
0,000 0,000 0000 0,000 0050 0050 1,000 1,002 0,002
0,030 0,001 0,001 0,000 0,038 0,038 1,000 0,097 —0,003
0,050 0,003 0,004 0,001 0,033 0,033 1,000 0,997 —0,003
0,100 0,010 0,012 0,002 0,027 0,027 1,000 1,003 0,003
0,200 0,040 0,042 0,002 0,048 0,047 1,021 1,011 —0,010
0,300 0,090 0,091 0,001 0,092 0,090 1,022 1,021 —0,001
0,600 0,360 0,369 0,009 0,369 0,360 1,025 1,029 0,004
1,000 1,000 1,022 0,022 1,021 1,007 1,013 1,014 0,001
g = 0,850
Tab. 2
! Yiab y 80») y+u t2+u Ziab z &(z)
0,000 0,000 0,000 0,000 0,050 0,050 1,000 0,058 —0,042
0,030 0,001 —0,001 —0,002 0,037 0,038 0,973 0,927 —0,046
0,050 0,003 —0,003 —0,006 0,028 0,033 0,848 0,801 —0,047
0,100 0,010 —0,005 —0,015 0,014 0,024 0,583 0,521 —0,062
0,200 0,040 —0,017 —0,057 —0,010 0,047 —0,212 —0,2001 —0,011
0,300 0,090 —0,070 —0,160 —0,069 0,092 —0,750 —0,746 0,004
0,600 0,360 —0,308 —0,668 —0,308 0,361 —0,853 —0,842 0,011
1,000 1,000 —0,450 —1,450 —0,450 1,004 —0,448 —0,441 0,007
g = 0,956
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Souhrn

PROGRAMOVANI DIFERENCIALNICH ROVNIC
SE SINGULARITAMI TYPU % POUZITIM
ROZVOJE V MOCNINNOU RADU

KAREL BENES

. e . e 1 e o o .. .o
Prace se zabyva urenim limit neurditych vyraz typu ) pfi strojovém feSeni

diferencialnich rovnic. ReSeni dané rovnice a jeho derivace se predpokladaji

ve tvaru mocninné fady. Limity vyrazd se uruji srovnanim koeficientt u pfislus-
nych mocnin ¢.

Pesrome

INPOTPAMMUPOBAHUE AUOPPEPEHIIMAJIBHBIX
YPABHEHUU C CUHTUJIAPUTAMU TUIIA %
PA3BUTUEM B CTENIEHHBIN PAN

KAPEJI BEHEII

B craTtbe omucan Crocod ompeneNieHus NPEAesIOB HEOpeneIeHHBIX BbIPaXCHHN
THIA -5 TIPY MALMHHOM pelIeHNH mubdepeHIEaNbHbIX ypaBHeHHH. Perienue

JAHHOI'O ypaBHCHUA W IIPOU3BOIHBIE YPABHEHHUA NMPEANOJIOTAOTCA B (bopMe CTCIICH~

Horo psna. Ilpemessl BbIpakeHWit ompenenstoiCs ypaBHeHHeM koehdunueHToB
Yy COOTBETCTBYIOIIMX CTeneHei T.
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