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H I G H E R MONOTONICITY PROPERTIES 
OF i-th DERIVATIVES OF SOLUTIONS 

OF y" + a(x)y' + b(x)y-0 

ELENA PAVLlKOVA 
(Received May 26,1980) 

Dedicated to Prof. Miroslav Laitoch on his 60th birthday 

1. Introduction and notation 

In [6] J. Vosmansky derived certain higher monotonicity properties of z-th 
derivatives of solutions of 

y" + a(x) / + b(x) y = 0, x e (0, oo) (1) 

in the oscillatoric case. 
In this paper, using the first accompanying equation with regard to the basis a, /?, 

where a, /? are real numbers with the property a2 + ft2 > 0, we extend the above-
mentioned results from [6] to the function 

«/<> + /?(V<+1> + l.a&)yw\ i = 0,1,.. . , 

where y(x) is a solution of equation (1). 
Finally, we introduce certain applications of the derived results for Bessel 

functions. 
In [2] M. Laitoch introduced the first accompanying equation (Q) towards 

the differential equation 
y" + q(x)y = 0 (q) 

with regard to the basis a, /? in the form 

r + Q(x) Y = 0, (Q) 
where 

Q(x\ - a I «ßq' I l Ѓq" 3 ^ ' 2 nЛ 
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under the assumptions that q(x) e C2, q(x) > 0 for each x e (a, oo), a is a real 
number, and a, /? are real numbers with the property a2 + /?2 > 0. 

In [2] it is proved that if y(x) is a solution of (q), then the function 

V«2 + ß2q(x) 

is a solution of the differential equation (Q) and conversely, if Y(x) is any solution 
of (Q), then there exists a solution y(x) of the equation (q) such that 

aJ7 + / ? / =Y(x) . 
Va2 + J32g(x) 

A function f(x) is said to be n-times monotonic (or monotonic of order n) on 
an interval (a, oo) if 

( - l ) 7 ( l ) ( * ) -* 0, i = 0, 1, . . . , „ , xe(a,oo). (3) 

For such a function we write f(x) e Mn(a, oo). If strict inequality holds through
out (3), we write f(x) e M*(a, oo). We say that f(x) is completely monotonic on 
(a, oo) if (3) holds for n = oo. 

A sequence {xk}k=sl9 denoted simply by {xk}, is said to be H-times monotonic if 

(-I)1 Alxk > 0, t = 0, 1, . . . , « , k = 1,2, ... (4) 
Here 

-4 xk == -̂ fc 5 *-- xk ~ Xk + 1 "" f̂c ' • • • 9 A x k = A x k +1 — zl xfe . 

For such a sequence we write {xk} e Mn. If strict inequality holds throughout (4), 
we write {xk} e M*. The sequence {xk} is called completely monotonic if (4) holds 
for n = oo. 

2. New basic results 

1. In this section we consider a second order linear differential equation (1), 
where a(x) e C3(0, oo), b(x) e C2(0, oo) 

The transformation 

u(x) = y(x) eхp y J a(x) dx 

transforms (1) into the differential equation 

fl* + / ( * ) ! ! « 0 , (5) 

where 
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Let f(x) 6 C2, f(x) > 0 on (0, oo). The firs* accompanying equation towards 
differential equation (5) with regard to the basis a, /? has the form 

U" + F(x) U = 0, (7) 

where F(x) is given by formula (2f). 
Thus, some of the results of [1] can be applied to equation (5) to giYQ informa

tion on solutions of differential equation (1). 

Lemma 1. Let a, p be real numbers such that a 2 + (}2 > 0, a/? < 0 and let n > 2 
be an integer. For the function f(x) defined by (6) suppose that 

f(x) > 0, f'(x) > 0, f(x) e M„(0, oo), x G (0, oo). (8) 

Then for the carrier F(x) of the first accompanying equation (7) towards 
differential equation (5) with regard to the basis a, ft we have 

F'(x) > 0, F'(x) G M„_2(0, oo), x G (0, oo) 
and 

0 < F(oo) =/(oo) < oo. 

Proof , (see paper [4], Lemma 2). 
Let us denote, for fixed A > — 1, 

Xk + i Г ; " ] 

R4 = £W(x)exp|Aja(x)dx| 
ccy + ß íy' + Y<x)y) (9) 

dx, k = 1, 2, . . . , 
Va2 + P2f(x) 

where y(x) is an arbitrary solution of (1) and {xfc} is a sequence of consecutive 

zeros of the function az(x) + /? (z'(x) + — a(x) z(x)), where z(x) is any solu

tion of (1) which may or may not be linearly independent of y(x). The function W(x) 

is any sufficiently monotonic function. 

Theorem 1. Let a, /? be real numbers such that a2 + fi2 > 0, a/? ^ 0, and n^.2 
be an integer. For the function f(x) defined by (6) suppose that 

fix) > 0, fix) > 0, f\x) G M„(0, oo), x G (0, oo). 
Let 

W(x) > 0, W(x) G Mn_2(0, oo), x G (0, oo). (10) 

Then for Rk defined by (9) there holds 

{Rk}eMt2. (11) 

Proof . Let j (x) , z(x) be solutions of the differential equation (1). Then the 
functions 

u(x) = y(x) exp y f a(x) áx , 
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v(x) = z(x) eхp — J a(x) áx , 

are solutions of the differential equation (5). 
It follows from [2] that the functions 

Y(x)= m + pU' 

Z(x) 

Va2 + ß2J(x) ' 

OÍV + ßv' 

Va2 + p2j(x) 

are solutions of the differential equation (7). 

Lemma 1 implies that F'(x) > 0 on (0, oo), F'(x) e Mn_2(0, oo) and 0 < F(oo) < 
< oo. So, the conditions of ([3], Theorem 3.1) are fulfilled. Using this theorem 
we have 

{Nk}eM*„2, 

where Nk is defined by 
S k + l 

Nk= | W(x)\Y(x)\xdx, X> -\, fc = l ,2 , . . . , 
Sk 

where Y(x) is the solution of equation (7), {sk} denotes the sequence of con
secutive zeros of the solution Z(x) of (7). 

Since Z(x) Va2 + p2f(x) = av(x) + Pv'(x) we have {sk} = {tj, where {tk} 
denotes the sequence of consecutive zeros of the function av(x) + Pv'(x). 

But, av(x) + pv'(x) = exp — J a(x) dx I az(x) + Pz'(x) + — a(x) z(x) ] , so 

that {tk} = {xk}, where {xk} denotes the sequence of consecutive zeros of the 

functions az(x) + P I z'(x) + —- a(x) z(x) 1. 

Hence it follows that 

Nк = J W(x) 
řk 

aw + ßu áx = Rk, 
Va2 + p2f(x) 

so that (11) holds, and the theorem is proved. 

Corollary 1. Under the hypotheses of Theorem 1 we have 

j T W ) e x p [ y Ja(x)dxj I ay + p(y' + ±a(x)y\ I'dx! _MB*_2, 

/orAe(-l,0>,fc_. 1,2,.... 
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Proof of this corollary follows directly from Theorem 1, because (11) remains 
valid when W(x) is replaced by 

W(x)(a2 + p2f(x)Yl\ 2 e ( - l , 0 > , 

since the last function belongs to M„_2(0, oo). 

Corollary 2, Let the conditions of Theorem 1 be satisfied. Let a(x) > 0, a(x) e 
e M^^O, oo), x G (0, oo). Then for Rk defined by 

Xk + l oty + ß (y +үa(x)y) 
åx, X>0, fc=l, 2, ..., 

Va2 + J52j(x) 

where {xk} and y(x) have the same meaning as in (9), there holds 

{Rk}eM*n-2. 

Proof. Let us choose the function W(x) in the form W(x) = exp I — — J" a(x) dx . 

It is easy to see that under the assumptions of Corollary 2 W(x) satisfies (10) for 
X > 0. Hence from Theorem 1 we obtain {Rk} e M*_2, and the corollary is proved. 

Remark 1. If in the above considerations we choose a = 1, /? = 0, then we get 
the results from [6] concerning the monotonicity of the sequence of consecutive 
zeros of any arbitrary solution y(x) of equation (1). 

If we choose a = 0, /? = 1, then we obtain the results from [6] for the monoton

icity of the sequence of consecutive zeros of the function y'(x) + —a(x)y(x). 

2. Consider the differential equation (1). Let a0(x) = a(x), b0(x) = b(x) ?- 0 
be continuous and sufficiently differentiable functions on (0, oo). Let a^x), b,(x) 
be defined recurrently for i = 1, 2, ... by formulas 

h' 
at(x) = ai-x-~-, 

bt(x) = bt-t + a;.! - "i-i-^-. (12,) 

Suppose that bt(x) # 0 for x e (0, oo) and all needed i. 
In ([6], Lemma 2.1) it is proved that if y(x), z(x) are non-trivial linearly independ

ent solutions of 
y" + a0(x)y' + b0(x)y = 0, (130) 

then y(l)(x), z(i)(x) are non-trivial linearly independent solutions of 

y" + at(x)y' + bi(x)y = 0. (14f) 
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Let a((x), bt(x) be defined by (12f). The transformation 

u(x) = y(x) exp \— J at(x) dx\, (15,) 

transforms (14f) into the differential equation 

u" +fi(x)u = 0, (16,) 
where ft(x) is defined by 

/«(*) = bt(x) - y a.(x) - 1 a?x, . = 0 ,1 , . . . [6]. (17,.) 

Let/(x) e C2, f(x) > 0 for x > 0 and an arbitrary but fixed integer. The first 
accompanying equation towards the differential equation (16f) with regard to the 
basis a, P has the form 

U" + F((x) U = 0, 

where Ft(x) is given by formula (2/.). 
In this section we shall study sequences {K*°}, where K£0 is defined for fixed 

X > - 1 by 

*Í'І\ г -i 
R<'> = J (x)exp|Ajaí(x)dxJ 

*yw + p(/t+1> + jaMyA 
dx, (18) 

Va2 + ,32f(x) 

where y(x) is an arbitrary solution of (1) and {xi0} is a sequence of consecutive 

zeros of the function az(i)(x) -f PI z(i+1)(x) + — a{(x) z(i)(x) I, where z(x) is any 

solution of (1) which may or may not be linearly independent of y(x). The function 
at(x) is defined recurrently by (12f). The function W(x) is any sufficiently monotonic 
function. 

Theorem 2. Let n = 2, i > 1 be arbitrary but fixed integers and let a,/? be real 
numbers such that a2 -f- P2 > 0, ap < 0. Let the coefficients a(x) = a0(x), b(x) = 
= b0(x) of (I) BE (130) be such that aj(x) (j = 0, 1, ..., i), bj(x) * 0 (j = 0, 1, ..., 
. . . , / — 1) defined by (12;) are differ entiable. For the function fix) defined by (17,) 
suppose that 

f(x) > 0, / / (*) > 0, / / (*) 6 Mn(0, 00), x 6 (0, (X)). 
Let 

W(x) > 0, W(x) e M„_2(0, oo), x 6 (0,-oo). 

Then for R[l) defined by (IS) there holds 

{Rf}eMU. (19) 

Proof. Let y(x), z(x) be solutions of the differential equation (1). It follows 
from [6] that the functions j>(i)(x) == y*(*), z(f)(x) = zt(x) are solutions of the 
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differential equation (14f). This implies that if {x*0} denotes the sequence of con

secutive zeros of the function az(i)(x) + /?(z(i+1)(x) + -z-a^x) z(i)(x) J, then this 

sequence represents the sequence of cosecutive zeros of the function azt(x) + 

+ p(z'i(x)+±-ai(x)zi(x)\ 

Theorem 2 follows now from Theorem 1 if we replace equation (1) by (14f). 

2 

Corollary 3. Under the hypotheses of Theorem 2 we have 

| Tw(x) exp f A J alx) dx\ I ay(i) + jS (y«+ X) + 1 at(x) yA Tdxl e M*_ 

f0r>U(-l,0>. 
Proof of this corollary follows directly from Theorem 2. Assertion (19) 

remains valid when W(x) is replaced by 

W(x) (a2 + /?2f(x))A/2, Ae( -1 ,0> . 

Corollary 4. Let the conditions of Theorem 2 be satisfied. Let at(x) > 0, at(x) e 
e M„-!(0, oo). Then for j?(i) defined by 

*(i) 

*T> = í 
«УЏÌ+ß(y(t+1) + үa&)yA 

dx, Я > 0 , fc = l,2,.. 
V<x2 + /^.(x) 

where {x^} and y(i\x) have the same meaning as in (18), there holds 

{RJP}BM:.2. 

Proof. In Theorem 2, we set W(x) = exp —-r-J at(x) dx I, X > 0. 

3. Applications to Bessel functions 

Throughout this section we suppose that a, /? are real numbers such that a2 + 
+ p2 > 0, ap < 0. 

Let Cv(x) denote any Bessel (cylinder) function of order v, i.e. any nontrivial 
solution of the Bessel equation 

У" + ~У' + U - ~jy = 0, xє(0, oo). (20v) 

Let x > v and let {a'vk}^i denote the sequence of consecutive positive zeros 
of the function 

«c;(x) + p(c:(x) + yayl(x)Cv(x)) 

75 



and let {Kk}k**i denote the analogous sequence of the function 

<x€'v(x) + ptc'Xx) + l f l v l (x ) Cv(x)) , 

where avl(x) is defined by (12x) and Cv(x) denotes any Bessel function of order v, 
possibly Cv(x) again. 

Lemma 2. Letfvl(x) be defined by (nt)for x > v. Then there exists one and only 
one number a e (v, oo) such that fvl(a) = 0. 

Proof. Using (17x) we have fvl(x) = 1 -

2 Ł 

v -T 1 Зv2 

x2 x2 - v2 (x2 - v2)2 

for x > v. It is obvious that lim Li(x) = — oo. 

Since lim/vl(x) = 1 and/ v l (x) e M*(v, oo) ([5], Theorem 3.1) there exists one 
X-+0O 

and only one number a e (v, oo) such thatfvl(a) = 0. 

Theorem 3. Let n > 2 be an integer and v > 0 an arbitrary number. Let avl(x) 
be defined by (\2t),fvl(x) be defined by (17\) for x > v, andfvl(a) = 0, a > v. Let 

W(x) > 0, W(x) e Mn..2(a, oo), x e (a, oo) 

and let Rvk be defined for x e (a, oo) and X > - 1 by 

&v»fc + l p j) "3 

r W ( x ) e x p ^ | a v l ( x ) d x j 
b\ 

aCv'+,9rC'v'+yavl(x)C'j 

Va2 + ß2JM) 
dx. (21> 

Let m be the smallest integer satisfying a < bvm. Then 

{R'vk}^meM:_2. (22) 

Proof. Theorem 3 is a direct corollaiy of Theorem 2. 
Sincefvl(a) -= 0 we obtain fromfvl(x) e M*(v, oo)([5],Theorem 3.1) thatfvl(x) > 

> 0 on (a, oo). 
So, the conditions of the modified form of Theorem 2 are satisfied for any 

n > 2 if the interval (0, oo) is replaced by (a, oo). 
The expression Rk

l) defined in (18) is of the form (21) so that (22) holds and the 
theorem is proved. 

Corollary 5. Let the assumptions of Theorem 3 hold. Let W(x) be a positive, 
completely monotonic function on (a, oo). Let Rvk be defined by (21). Then 

{ J W . » e M £ . 

The corollary is the case n = oo in Theorem 3. 
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Remark 2. As a direct conclusion of Theorem 3 we obtain 

{ « * + i ) r - (<4)»}?-eMi, 0 < y *| 1, (23) 

eM*. (24) 

Assertion (23) is an immediate consequence of Theorem 3 with X = 0, 
CV(JC) = Cv(x) and W(x) = yxy~K 

Assertion (24) follows from Theorem 3 with X = 0, Cv(x) = Cv(x) and 
W(x) = x"1. 

Remark 3. Let the assumptions of Theorem 3 hold and let y > 0. Then 

{ W T - e M * . , (25) 

{ 0 g O ~ T = m e M * , a v m > l , (26) 

{exp (-ya'vk)}?= m e M* . (27) 

Assertions (25), (26) and (27) follow from Theorem 3 with Cv(x) = Cv(;c), 
X = 0 and 

W(x) = -[x~yy, 
W(x)= - [ ( l g x ) " ^ 

and 
W(x) = -[e~yx]', 

respectively. 
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Souhrn 

POZNÁMKA O VLASTNOSTIACH VYŠŠEJ 
MONOTÓNNOSTI i-tej DERIVÁCIE R I E Š E N Í 

ROVNICE y* + a(x)y' + b(x)y = 0 

ELENA PAVLÍKOVÁ 

V práci [6] J. Vosmanský odvodil vlastnosti vyššej monotónnosti i-tej derivácie 
riešení diferenciálnej rovnice 

y" + a(x) y' + b(x) y = 0, x e (0, co) (1) 

v oscilatorickom případe. 
V tejto práci, na základe prvej sprievodnej rovnice vzhradom na bázu a, /?, 

kde a, P sú reálné čísla s vlastnosťou a2 + fi2 > 0, sú rozšířené výsledky z [6] 
na funkci u 

a/<> + p(y«+» + i ^ ^ j , i = 0,1,.... 

kde y(x) je riešením rovnice (1). 
V závěre sú uvedené aplikácie dosiahnutých výsledkov na Besselove funkcie. 

PesfOMe 

3AMETKA O CBOÍÍCTBAX BMCHIEH 
M O H O J O H H O C T H i-Toií n P O H 3 B O # H O Í Í 

P E I H E H H H y P A B H E H H i l y" + a(x)yf + b(x)y = 0 

EJIEHA nABJIHKOBA 

B paGoTe [6] 9L, BocMaHCKH Hccjie/roBaji cBoiícTBa BticmeH MOHOTOHHOCTH J-TOH 
npoHSBOjaHOH peuieHHH 7i;H(|)(J)epeHiiHajTi>Horo ypaBHeHHfl 

y" + a(x)yf + b(x)y =- 0, x e (0, co) (1) 

B KOJie6aTe.Jii>HOM cjiynae. 
B 3T0H pa6oTe, c noMoinjbio nepBoro conpoBOAHTenbHoro ypaBHeHHH npa 6a3Hce 

a, fi rae a, fi npoHSBOJibHBie BeinecTBemibie nocTOHHHbie c CBOHCTBOM a2 + p2 > 0, 
o6o6meHBi pe3vjn>TaTbi H3 [6] Ha (J)yHKiTHH 

a/» + /?(/+ 1>+ !*,(*)>.<'>), f - 0 , 1 , . . . , 

где у(х) решение дифференциального уравнения (1). 
В заключении приведены приложения полученых результатов к теории бес

селевых фвнкций. 
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