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1. Introduction

O. Bortvka [3] investigated in his lectures the structures of the intersection
of groups of dispersions of two oscillatory equations (q;) : ¥" = q,(1) ,(qp) : y" =
= ¢,(t) y and found necessary and sufficient conditions for this intersection to be
one-parametric continuous group. This problem is considered also in the present
paper. Here the structure of the intersection of sets of dispersions of equations (q,)
and (q,) is entirely described and namely under the assumption that (q,) is a oscil-
latory equation, ¢; € C°(R), ¢, — g, € C*(R) and ¢q,(?) # ¢,(¢t) for te R,

2. Basic notions and notation

In the interest of brevity we shall write hereafter gX(z), ™ *ex(¢) etc. instead of
q[X 01 o~ *[e((t))] ete. If there exists a function inverse to the function f, we will
denote it by 1.

We investigate differential equations of the type

Y =q@)y, qeC°’R). @

Say that a function o € C°(R) is the (first) phase of (q) if there exist independent
solutions u, v of (q) such that

tga(t) = u()/v(r) for teR — {te R, v(f) = 0}.
Every phase o of (Q) has the following properties:
ae C’(R), a'(t) #0 and  q(t) = —{a, t} — «'%(2),
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where {a, 1} 1= a"(£)/2a" (1) — 3(@"(1)/’(£))* is the Schwarz derivative of the
function « at the point ¢.

Equation (q) is oscillatory exactly if any (and then every) phase of (q) maps R
onto R.

The set of phases of the equation y” = —y will be written as €. If « is a phase
of (q) then €o := {ea, ¢ € €} is the set of phases of (q).

Say that a function X e C3(j), X'(r) # O for tej = R,is a dispersion (of the
1st kind) of (q) exactly if X is a maximal solution of a nonlinear differential equation
of the 3°¢ order

—{X, 1} + X'%(D) . gX(t) = q(2).

The dispersion X :j — R of (q) has the following characteristic property: for

every solution u of (q) uXi (t)/\/ | X'(t) | is again a solution of this equation (in the
interval j).

Let o be a phase of (q). Then a™*Eua is the set of dispersions of (q), that is:
if X is a dispersion of (q) defined in j, then there exists ¢ € € such that X(¢) =
= a 'ea(f) for tej and also conversely, for every ¢ € € the function o™ lex is
a dispersion of (q) and namely in the interval where the composite function o™ !ex
is defined.

The set of the dispersions of (q) will be written as £, the set of increasing
(decreasing) dispersions of (q) as " (£,). Equation (q) is oscillatory exactly if all
their dispersions are mapping R onto R. In case of an oscillatory equation (q),
the sets £, and & generate groups under the composition of functions.

If id; denotes the identical mapping j (= R) on j, then there is idg e,?; for
every equation (q).

The reader is referred to [1, 2] for all definitions and results.

Let (q) be an oscillatory equation (on R) and 2* < & . Say that #* is a con-
tinuous one-parametric group if #* is a subgroup .5,”: and through the
every point (f,, xo) € R x R passes exactly one function from 27
BY 24102 (Pgiass Paar) We denote the set £ nL,, (L} &) L nZy). For
any two equations (q,) and (q,) is idg € 2.

Say that a function f belongs to the set .# iff f:j — R for an interval je R
and there exists a number ¢ with f(—¢ + @) = f(¢) for tej. Obviously fe .#
exactly if the graph of the function f is symmetric with respect to a line parallel
with the axis of ordinates.

3. Principle results

Say that functions g, and g, satisfy the assumption (L) if

g, € C°(R), g, — 9, € C*(R), q:(1) # q.(0) for teR
and the equation (q;) is oscillatory.

L)

80



Lemma 1. Let functions 41, 92 satisfy the assumption (L). Let X be a dispersion
t
of (qy). Let to e R and put y(t) := [ /| q,(s) — q,(s)|ds for teR and j := y(R).
to
Then

() XeP,,,, exactly if for a number k is
yX(t) = sign X' . y(¢) + k, teR. )
(i) If Xe2],, and X # idg, then j = R.
(iii) Ifj # R, then qu {idg} and 2,,,, containes one element at most.
(lV) Ier'@quh’ then '@4142 = X'@;;qz ( glhqu)'

Proof. Let the assumptions of Lemma 1 be fulfilled and let ¢ = sign X’.
(i) According to the definition of the dispersion is X e€#, . iff

—{X, t} + X'Z(t) . qu(t) = qi(t)’ te R) i= 15 2’
which is equivalent to
X'OVia:X(0) — ;X0 | = 0./ :() — q2(1)|,  teR. @

Integrating (2) from ¢, to ¢, using the substitution method and respecting the
definition 7, gives

yX(t) = o . 9(f) + k, teR, 3)

X(to)
where k := yX(to) = j \/| 4:(s) — g»(s)|ds. Let the dispersion X of (q,)

satisfy (3), where k is a number Then by differentiating (3) we obtain (2) whence
Xey‘ll‘lz

(ii) Let X e@mz, X # idg. Then, by (i), there exists a number k, k # 0, such that
yX(7) = p(t) + k for 1 € R and therefrom p(R) = R, hence j = R.

(iii) Let j # R. We have from (ii) that idg is the single element of .@mz Let
Y,,Y,€2,,,, Y1 # Y,. Then, by (i), there exist numbers k,, k5, k; # k,, such
that yY;(f) = —y(t) + ky, Y,(t) = —yp(¢) + k,. FromthisyY, Y,(¢) = —yY,(¢) +
+ ky = 9(f) + ky — k,. Putting Y(t) := Y,Y,(¢), teR, k:=k, — k, then
sign Y' =1,k # 0,yY(f) = y(t) + k. Hence Y # idg, Ye 2} . .By (i) thenj = R
which contradicts our assumption.

(iv) Let X eﬂqm If2} . = {idg}, then with respect to (iii) the assertion (iv) is

4192°

true. Let Yeg’mz, Y # i:iq; Then there exist numbers k,, k, # 0: X = —y +
+ ky, yY =9 + k,. From here yXY = —yY + k;, = —y + k — k,, yYX =
=yX + k, = =y +ky + k, and by (i)we have XY, YXeZ,,. . This proves
that X#, < P .., @;MX C Prg-Let Xy ey, X # X, and 9X; = —y + ks

for a number k;. If weput ¥, := X !X, ¥, := X, X !, thensign Y| = sign¥; =
=1 and from yY, = yX 7 'X, = —yX, + ky =y + ky — k3, 7Y, =yX, X ' =
= —yX ' 4 ky=9y+k, — k, and from (i) we get Y, Y, €2,,,. Therefore
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X, =XY, eX?}, ., X = YzXeg’qmX and consequently 2, < X2 . P, <
< P.,,X. From this 2, = XP7, and X2, = P, X.

Remark. According to (iii) of Lemma 1 we have from the assumption j # R
that 2, .. has one element at most. The following example shows that there exist
functions g,, ¢, fulfilling the assumptions of Lemma 1 and such that #__ is
a one-element set.

9192

Example 1. Let q,(t) := —1, ¢,() := —1 + (I + !, reR. The functions
ql,qz satisfy the assumptions of Lemma 1 and since the improper integrals

j(l + Y2 s, j(l + 1*)71/2 dt converge, we getj # R. Let us put X(¢) := —¢,

teR Then —{X, t} + X'(1). ¢:X(1) = q{1), te R,i = 1,2. Thus X is a dispersion
of both equations (q;), (q2) and according to (iii) P .4, 18 @ One-element set.

Lemma 2. Let functions q,, q, fulfil the assumption (L). Let o, be a phase of (q,)
t

and X be its dispersion. Let to € R and let us put (1) := [ /] q,(s) — q,(s) | ds for
to

teRand p(t) 1= ayy ') for tej:= y(R). Then X P
iff for a number k

s and X = ay tea, €€,

B(t.sign X' + k) = ef(r), te€j. @

Proof. Let the assumptions of Lemma 2 be fulfilled and let ¢ = sign X’. Let
next X € 2,,5,and X = o ea; , & € €. Then according to the assertion (i) of Lemma 1
there exists a number k: yX(f) = o . y(f) + k, t € R. From this we have yay 'ea;(f) =
= ¢ .y(f) + k and consequently ¢f(z) = B(at + k) for tej. Let for a number k
and ¢ €€ the relation (4) hold. Then for the dispersion X := a; 'ex, of (q,) we
get yX() = o.y(t) + k, teR, and from the assertion (i) of Lemma 1 we have
Xe?

q9192°

Corollary 1. Let the assumptions of Lemma 2 be fulfilled and let the function
B :j = R be a phase of (p). Then

(i) X €2y, and X # idg iff p is a periodic function on R,

(i) XeZ, ., if pe#M andp :j - R.

Proof. Let the assumptions of Lemma 2 be fulfilled and let § be a phase of (p)
and o = sign X'. By Lemma 2 is X €2, ,, iff for a number k and ¢ € € the relation
(4) holds. From the theory of phases now follows that (4) is equivalent to the
assertion saying that (p) has also a phase f(6t + k), which is again equivalent
to the equality p(at + k) = p(¢) for ¢ €.

(i) If Xe?,,,, and X # idg, thenj = R (see (ii) of Lemma 1) and p is a periodic
function with the period & # 0 on R. Reversely, if p is a periodic function with
a period k # 0 on R, then for any ¢ €€ we have f(t + k) = ¢f(f). Hence X :=
1= a len; € Py, X # idg.
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(i) If Xe?,,, then p(—t + k) = p(¢) for tej and pe.#. Let pe M and
p :j — R. Then there exists a number k such that p(—t + k) = p(?) for tej and
consequently for an e€€ we have B(—1 + k) = ¢f(¢) for tej and by Lemma 2
we have X := ay len; €2 ,,.

Lemma 3. Let functions q1» g2 fulfil the assumption (L). Let o, be a phase of (qy),
to € R and put (1) := I\/l 4:(5) — q5(s) | ds for teR and B(t) := ayy~ (1) for

tej:=yR). Let f be a phase of (p). Then

(i) 2., is a one-parametric continuous group iff j = R and p(t) = constant,
(i) #;,, is an infinite cyclic group iff j = R and p is an in constant periodic
Sfunction.

Proof. Let the assumptions of Lemma 3 be satisfied. Note first that from (i)
and (ii) follows that 2 mz contains at least two elements and X eﬁ’;‘qz, X # idg
if j = R and for a number k # 0 we have X = y~}(y + k).

Let Ye.@mz, Y # idz. Then by Corollary 1, p is a periodic function on R.
With respect to the continuity of the function p there may occur two possibilities:

a) p(t) = constant. Then (¢t + k) is a phase of (p) for every k € R and g’qm =
= {y"*(y(t) + k), k e R} follows from Lemma 2. It is easily verified that exactly
one function passes through each point (5, xo) € RxR — hence 2., is a one-
periodic continuous group.

b) p(?) # constant and r > 0 is its main period. Then (¢ + k) is a phase of (p)
iff k = nr for an integer n. Hence 2, = {y~'(¢(t) + nr), n = 0, £1, +2, ...}.
Again, it is easy to verify that g‘qm is an infinite cyclic group.

Let 2, . be a one-parametric continuous group. Then j = R and because of the
elements #,,,, being of the form y~!(y + k), where k is a number, it is necessarily
Pa = {y7((t) + k), k € R}, hence every number is a period of the function p
and with respect to its continuity, necessarily p(f) = constant. Let 2, be an
infinite cyclic group and y~'(y + r) be one of the generators of the group g’mz
Then j = R and p is necessarily an in constant function where | r | is its main
period.

From Lemmas 1 —3 and from Corollary 1 now follows

Theorem 1. Let functions q,, q, fulﬁl the assumption (L) and let o, be a phase
of (qy). Let tyeR and put y(t) := j" JIay(s) = gx(s)|ds for te R and B(t) :=

i=oyy M) for tej:= y(R). Let B be a phase of (p).
Then P, is either a one-parametric continuous group or it is an infinite cyclic
group or 2., = {idg} and it holds:

. + . . . - .
() Paa, is an one parametric continuous group, P, . is an non-empty set and
Poar = XP], for a Xe P,

iff p(f) = constant for t € R,

9192
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(i) Py, is an infinite cyclic group, Pg,,, is an non-empty set and P, = XP} .
Sfor a XeP,,, iff p is an ion-constant periodic function on R and p € M,

(iii) @;m is an infinite cyclic group and P, is the empty set iff p is an in-
constant periodic function on R and p ¢ #,

@iv) @;m = {idg} and P, is an non-empty set (then necessarily one-element) iff
pé¢ M and p is not a periodic function,

) g’;m = {idg} and P,,, is an empty set iff p ¢ M and p is not a periodic fun-
ction.
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Souhrn

STRUKTURA PRUNIKU MNOZINY DISPERSI
DVOU LINEARNICH DIFERENCIALNICH
ROVNIC 2. RADU

SVATOSLAV STANEK

Rekneme, ¢ funkce X e C3(j), X'(1) # 0 pro tej:= (a,b) = R, je disperse
rovnice :

Y =4q)y, 9eC®R), ' (@
jestlize je feSenim diferencialni rovnice
1 Xm 3 X// 2 2
—_—— ] + . = .
T X +7 (X) X" q(X) = q(1)

Ozna¢me £, mnoZinu dispersi rovnice (q). Necht g, € C°(R), 4, — g2 € C*(R),
,(?) # q2(?) pro t € R a necht rovnice (q;) je oscilatoricka. V praci je vySetfovana
algebraicka struktura mnoZiny &£, n.%,,-
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Pesrome

CTPYKTYPA IIEPECEYEHU S MHOXECTB
AUCIHIEPCUN OBYX JIUHEWHBIX
AUO®OEPEHLIUAJIBHBIX YPABHEHUN
BTOPOI'O ITOPA KA

CBATOCJIAB CTAHEK

®ynxuus X e C3(j), X'(f) = 0 nas tej:= (a, b) = R, HaspBaeTcs AucHEpCHen
ypaBJICHHS

Y =4q@)y, qeC°R), (@
ecid X pelueHHWEM ypaBJICHUS
1 Xm 3 Xll 2 "
——2—7 + T(—X—’) + X'°. q(X) = q(t)

MHOXecTBO BCeX mucmepcuii ypaBHenus (q) oGosmawaem £,. Ilycts g, € C°(R),
q; — 42 € C*(R), q,(t) # q,(¢) nns t € R u (q;) xonme6monyecs ypasHenue. B pabote
uccienyercs anrebpamveckas cTpykTypa MHOXectBa £, N %, ..
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