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This paper deals with relations between phases of two accompanying spaces
Po[a, B] and Po[y, 8] to the space S = C,(i) from the point of view of Academician
O. Bortivka’s theory on transformations of integrals of the second order differential
equations [1]. It is referred to [4] and results of [2] and [3] are applied.

Throughout this article S < C,(i) is assumed to be a regular two-dimensional
space of a certain type and the set S’ = C,(7) of derivatives of all functions relative
to S to be a regular two-dimensional space of a certain type as well. The function
w = uv’ — u'vis a Wronskian of functions of the basis (u, v) of the space S.

Definition 1. Let (u, v) be a basis of the space S and (', v") be a basis of the space S'.
The function r(t) = N u*(t) + v(t), t € i, will be called the amplitude of the basis
(u, v), the function r,(t) = Vu'*(t) + v'%(¢), t € i, will be called the second amplitude
of the basis (u, v).

Theorem 1. Let (u, v) be a basis of the space S, r, be the first amplitude and A
be the first phase of the basis (u, v). Then it holds for tei
u(t) = ery(t) sin A(t),
o(t) = ery(2) cos A(t), )
where ¢ = +1.
Proof: With reference to the definition of the phase, it holds for all ¢ € i, for
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u(t)

which v(t) # 0, tg A(?) = o)

, where A(¢) is a phase of the basis (u, v). It then

follows for t e i
sin A(t) = q(t) u(t),
cos A(t) = q(t) v(¢).

On squaring and adding, we obtain 1 = ¢?r} and therefrom | g| = —rL, i.e. the
1

relations of (1).

Definition 2. The phase A of the basis (u, v) relative to the space S will be called
proper and improper if ¢ = 1 and ¢ = —1, respectively, in (1).

Theorem 2. Any two phases in the system of the first phases of the basis (u, v)
relative to S differ from each other by 2kwn if both are proper or both improper, and
by (2k + 1) n if one is proper and the other improper; k is an integer number.

Proof: Following Theorem 2.4 [2] there exists a countable system of the first
phases of the basis (v, v) whereby the individual phases differ from one another
by an integral multiple #. From the periodicity of functions sin and cos we obtain

for k-integer and x € (— 0, + o0)
g

sin (x + 2kn) = sin x, sin (x + 2k + 1)) = —sin x,
cos (x + 2km) = cos x, cos (x + 2k + 1) ) = —cos x.

Thus, if 4, and 4, are phases of the basis (1, v) both proper or improper, there
must hold 4, = 4, + 2kmn; if A, is proper and 4, improper or vice versa, then
A, =A; + Rk + D =

! Corollary 1. The proper (improper) phases form a countable subsystem in the
system of the first phase of the basis (u, v).

Remark 1. It is obvious that Theorems 1 and 2 and Corollary 1 are valid for the
phases of an arbitrary two-dimensional space of continuous functions being regular
and a certain type. If the functions are considered without a continuous first derivative,
we speak only of an amplitude or a phase of the basis relative to this space.

In all what follows every function y € S and its derivative y’ will be considered
to be independent on the interval i and two accompanying spaces Pg[a, ] and
Po[y, 8] to the space S will be discussed (cf. definition 1.1 [4]). Then accompanying
space Pg[a, B] or Po[y, 8] is a set of all functions having the form g(ay + By’)
or o(yy + 6y’), where o, B, 7, 6 are real constants different from zero satisfying
the condition ad — By # 0, and ¢ > 0, ¢ > 0 are functions continuous on the
interval ;. We assume the spaces Pg[a, ] and Pa[y, 6] to be regular and of a certain
type on i. If (u, v) is a basis of the space S, then the characteristic or the phase of
the basis (¢(au + Bu’), o(av + Bv’)) relative to the space Po[a, ] will be written
as f(¢) or ¢(t), t € i, and the characteristic or the phase of the basis (¢(y¥ + '),
a(yv + 6v')) relative to the space Po[y, 8] will be written as p(t) or ¥(t), tei.

54



Theorem 3. Letting t, € i yields w(t,) = 0 exactly if either f(t,) = p(t,) or f and p
are not simultaneously defined at the point t,.
Proof: I. Let fand p be defined at the point ¢,. It then follows from f(¢,) =
= p(t,) that
[au(to) + Bu'(to)] [yv(te) + 6v'(25)] =
= [av(to) + Bv'(to)] [yulte) + 81 (1,)],
whence a brief calculation gives (@6 — fy) w(ty) = 0, i.e. w(t,) = 0. If f and p
are not simultaneously defined at ¢,, then

av(to) + Pv'(to) = 0,
yo(to) + 0v'(t) =0
and since ad — Py # 0, we obtain v(fy) = v'(¢,) = 0 and by Theorem 1.7 [3]
finally w(t,) = 0.
II. Let w(t,) = 0. Then it holds with reference to the part I of the proof, that

[ou(ty) + Bu'(t0)] [yv(to) + 6v'(25)] =
= [av(ty) + Bv'(t0)] [yu(to) + ou'(2)].

If av(ty) + Bv'(te) # 0 and yu(f,) + dv'(1y) # 0, then f(fy) = plt,); if av(ty) +
+ Bv'(ty) = 0, then necessarity yv(f,) + 0v'(ty) = 0 because of the regularity
of the space Po[a, f]. Thus fand p are not defined at the point ¢#,.

Corollary 2. We see that w(t,) # 0 for every t, €i iff either

(i) the functions f, p are defined at t, and f(t,) # p(to)
or

(i) exactly one of the functions f, p is not defined at t,.

Theorem 4. If t, € i, then ¢(to) = Y(to) + kn, k an integer, exactly if w(t,) = 0.
Proof: With respect to Theorem 3 the statement follows from the contmulty
of the phases ¢ and y on i as well as of the relations

tg o) =ft),  tgy(t) = p(t)
for all # € i, for which f(¢) and p(t) are defined.

Corollary 3. If to€i, then @(t;) — Y(t,) # kmn, where k is an integer exactly
if w(to) # 0.

"Remark 2. Let us write s, = \/(au + Bu) + (w + P and s, =
= (yu + 6u')* + (yv + 6v')2. Following Theorem 1

elou + Bu’) = ggsy sin @,

2
o(aw + Bv’) = egs, cos @, @)

where g¢s, is an amplitude, @ is a phase of the basis (o(ou + Pu’), o(ov + Bv'))
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\
relative to the space Pol®, B] and ¢ = +1 or —1 according as the phase ¢ is proper
or improper and
o(yu + ou') = g'as, sin Y,
a(yv + §v') = €'os, cos Y,

3)

where os, is an amplitude, \y is a phase of the basis (o(yu + ou'), o(yv + 6v"))
relative to the space Po[y, 6] and & = +1 or —1 according as the phase \ is proper
or improper.

Theorem 5. Let w # 0 on the interval j < i and ¢, &' be the numbers of (2) and (3).
Then it holds for any t € j and k an integer that

2kmn < @(t) — Y1) < 2k + D=, if  &'(@d — By) w(t) >0,
@k — D =n < o(t) — Y(t) < 2km, if  ee'(@d — By) w(t) <O.

Proof: On making use of (2) and (3) we can write
(au + Bu’) (yv + 6v') — (o + Bv’) (yu + ') =
= g¢'5,85,(sin ¢ cos Y — cos @ sin Y),
whence a simple calculation gives
ee'(ad — Py) w = 5,5, sin (¢ — ), from which the statement results.

Theorem 6. Let (u, v) be a basis of the space S, t,, t, €i. Then the functions u, v
and the points t,, t, satisfying the equation

au(ty) + Bu'(ty) av(ty) + Bo'(ty)
yu(ty) + 6u'(ty) yolts) + v'(ty) |
exactly if there exists an y € S such that oy(t,) + By'(t;) = 0 and yy(ty) + 6y'(t2) =
= 0.
Proof: I. Let (4) by satisfied. Then the system of linear equations with the
unknowns d, b

0 (4)

aleu(ty) + Pu'(ty)) + blav(ty) + P'(ty) = O,

a(yu(ty) + 0u'(1y)) + b(yu(ty) + 6v'(z,)) = O,
has a nontrivial solution ay, b, and it holds for the function y = aou + by
relative to S ay(z;) + By'(t,) = 0 and yy(t,) + 6Y'(¢,) = 0.

II. Let (%, v) be the basis of the space S and let there exist an y€ S, y = apt +
+ bov, ai + by # 0, such that ay(z,) + By'(t;) =0 and yy(fy) + 8y'(1,) = 0,
On substituting we get

aolau(ty) + Pu'(ty)) + bolaw(ty) + Bu'(ry)) = 0,
ag(yu(ty) + 8u'(ty)) + bo(yo(t) + 6v'(2)) = 0,

from which we get the validity of (4).
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Corollary 4. Let the points t,, t, € i and let the functions of (u, v) relative to the
space S satisfy equation (4). If w(t,) # 0 or w(t,) # 0, then t; # t,.

Theorem 7. Let t,, t, € i and let there exist the basis (u, v) relative to the space S
such that the functions u, v and the points t,, t, satisfy equation (4). Then any two
independent functions of the space S satisfy equation (4) at the points t,,t,.

Proof: In view of the fact that every function y € S may be expressed as a non-
trivial combination of two arbitrary functions of the space S, the statement follows
from proof II of Theorem 6.

Theorem 8. Let t,, 1, € i. Then there exists the basis (u, v) relative to the space S
such that the functions u, v and the points t,, t, satisfy equation (4) exactly if either
(i) the function f is defined at the point t{, the function p is defined at the point
t, and f(t)) = p(t,),
or
(i) the function f is not defined at the point t, and the function p is not defined
at the point t,.
Proof: I Letequation (4) be valid. If aw(t,) + Pv'(¢;) # 0and yv(z,) + 6v'(t,) #
# 0, then
au(ty) + fu'(ty) _ yulty) + u'(ty)
av(ty) + Bu'(ty)  yu(ty) + 6v'(t,)

whence the statement (i) follows. If ow(z;) + pv'(t;) = 0, then because of the
regularity of the space Pg[a, f] we have yu(t,) + 6v'(f,) = 0, whence the state-
ment (ii) follows.

IL If fat ¢; and p at ¢, are defined and f(t,) = p(t,), then the validity of equa-
tion (4) is evident. If awv(t,) + Pv'(z,) = 0 and yu(t,) + 6v'(¢,) = 0, then equa-
tion (4) holds (by Theorem 6).

Theorem 9. Let t,,t, €i. Then there exists a basis (u, v) of the space S such
that the functions u, v and the points t,, t, satisfy equation (4) exactly if o(t,) =
= Y(t,) + k= holds, k being an integer.

Proof: The statement follows from the continuity of ¢ and i on i and from
Theorem 8.

Considering the cases of the bases of the accompanying spaces [«, ] = [«, 0]
and [y, 8] = [0, §] we find that the system of phases relative to the space Po[a, f]
is identical with the system of the first phases A4 relative to the space S and the
system of phases relative to the space Po[y, 6] is identical with the system of the
second phases B relative to the space S. With reference to Remark 1 it holds for
the second phase B(t), ¢ €i, of the basis (u, v) relative to S

u'(t) = &'r,(t) sin B(1),

, ®)
v'(¢) = &'rylt) cos B(t),

where ¢ = +1 or —1 according as B(#) is a proper phase or an improper one.
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This leads us to conclude that between the phases A and B the following Theorem
holds:

Theorem 10. Let A and B be, respectively, the first and the second phase of the
basis (u, v) relative to the space S. Let next w 5= O hold on the interval j < i and
¢, €' be the numbers from (1) and (5). Then

2kn < A(t) — B(t) < 2k + D=, if e'w() >0,
2k — 1) n < A(t) — B(t) < 2km, if e'w(lt)<O0

holds for any t € j and k being an integer.
Proof: On making use of (1) and (5) we obtain

w=uv’ — u'v = eg'r;r,(sin A cos B — cos 4 sin B),
thus
geg'w = ryr,sin(4 — B),

whence the statement follows.

Corollary 5. Let A and B be, respectively, the first and the second phase of the
basis (u, v) relative to the space S and w(ty) = 0, where ty €i. Then

A(to) = B(ty) + kn
holds for k being an integer.

®A3bI COTPOBOANUTEJIbBHBIX ITPOCTPAHCTB
K JIJUHENHOMY JIBYXPA3BMEPHOMY ITPOCTPAHCTBY
OYHKI NN C HENPEPBIBHON NMEPBOI ITPOM3BOJHON

Peszrome

Ilycte Pole, f]1 1 Poly, 6] cOmpoBOANTENbHEIE POCTPAHCTBA K ABYXPa3MEPHOMY IIPOCTPAHCTBY
S < Cy(), rue a, B, y, 0 HE paBHbIE HYJIIO BELIECTBEHHBIE IOCTOSHABIE, ad — Py # 0,0 > 0u o > 0
HenpepsiBHbIC GYyHKUEKM HA HHTEpBaNe i. IIycTh (1, v) 6a3uc mpocTpancTea .S, 0603Ha4nM @(t) dasy
6azuca (o(au + pu’), o(av + Pv’)) mpoctpauctsa Pole, f1 1 p(¢) dasy Gasuca (o(yu + ou’), o(yv 4
+ 6v’)) mpoctpanctea Poly, 6]. PyEKuus W = uv’ — u'v €cTh oupeuema-rem, Bpouckoro (yskimit
Gasnca (u, v) IpOCTpaECTBa S.

HOns ¢a3 ¢ u y noiydaem CICAYIOIME TEOPEMBI:

Teopema 4. Ecau to € i, mo @(to) = ¥(to) + k, k-yeaoe, mozoa u moavko mozoa, koz0a w(te) = 0.

Teopema 5. ITycms Ha unmepéase j < i ecms w # O u ¢, € uucaa uz gopmya (2) u (3). Tozoa
04A Kawcoo20 t € j u k-yenozo umeem mecmo

2kn < @(t) — p(t) < 2k + 1) 7, ecau ee’(@d — By) w(t) > 0,
Qk—1) < @ty — y(t) < 2kn, ecau ee'(@d — By) w(t) < 0.
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Teopema 9. ITycms ty, t, €i. Tozda cywecmeyem 6azuc (u,v) npocmpancmea S max, 4mo GyHKyuu
U, V u mouku ty, t, yoos pawom yp @) 0a u moavko mozoa, K020a umeem Mecmo
(1) = y(t2) + km, k-yeace.

B 3aKim09eHHH mOKa3aHel B TeopeMe 10 U B ee CIEACTBAH COOTHOIICHAS MeXHy HepBoit (a3oit
A n BTOpO#t ha3oit B 6a3uca (¢, v) OpoCTPaHCTRA S.

FAZE PRUVODNICH PROSTORU
K LINEARNIMU DVOJROZMERNEMU PROSTORU FUNKCI
SE SPOJITOU PRVNI DERIVACI

Souhrn

Necht Polx, ] a Poly, 6] jsou privodni prostory k linedrnimu dvojrozmérnému prostoru
S = Cy(@), kde &, f, ¥, § jsou redlné konstanty rtizné od nuly, «d — By #0,a ¢ > 0, ¢ > 0 jsou
funkce spojité na intervalu i. Necht (v, v) je baze prostoru S, ozname ¢(r) fizi baze (o(xu + pu’),
o(aw + Pv’)) prostoru Polex, f] a y(t) fazi baze (o(yu + ou’), a(yv + 6v)) prostoru Poly, 8]. Funkce
w = uv’ — u'v je wronskian funkci baze (4, v) prostoru S.

Pro faze ¢ a y plati tato tvrzeni:

Véta 4. Bud to €i. Pak @(to) = w(to) + kn, k-celé, pravé tehdy, kdyz w(ty) = 0.
Véta 5. Necht na intervalu j < ije w > 0 a ¢, & jsou Cisla ze vztahii (2) a (3). Pak plati pro kaZdé
tejak-celé
2kn < @(t) — p(t) < Rk + 1)z, je-lice’(d — By) w(t) > 0
Qk—1)m < @(t)— yw(t) < 2km, je-li ec’(ad — By) w(t) < 0.

Véta 9. Budte t,, t, € i. Pak existuje bdze (u, v) prostoru S tak, Ze funkce u, v a body t,, t; spliuji
rovnici (4) pravé tehdy, kdyz plati o(t,) = y(t2) + kn, kde k je celé Cislo.

Zavérem jsou ve vété 10 a jejim dusledku uvedeny vztahy mezi prvni fazi 4 a druhou fdzi B
baze (4, v) prostoru S.
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