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1. Introduction

Let 4 = A(A) be the discriminant of a differential equation
Y =@+ Ay, ge C°(R), q(t + n) = q(t) for teR, (q+2)
AeR. This paper presents all differential equations of the type
y' =s(t,1)y, seCRxR),s(t + n,A) =s(t, 1) for (t, ) eRxR, (1)

whose discriminant is equal to 4(2).

2. Basic concepts and auxiliary results

Let us consider the differential equation of the type
Yy =p(t)y, peC°’(R),  p(t+ m) = p(t) for teR. ()

The trivial solution of (p) is excluded from our considerations.

As is well-known (see [11]), the equation (p) is either oscillatory (i.e. co and — 0
are cluster points of zeros of any solution of (p)), or disconjugate (i.e. any solution
of (p) has at most one zero on R). If (p) is disconjugate, then it may be either pure
disconjugate (i.e. there exist two linearly independent solutions of (p) not possessing
any zero on R) or special disconjugate (i.e. there exists one and only one solution
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of (p), up to a multiplicative constant, not possessing any zero on R) (see [14]).
Say that a function « e CO(R) is (the first elliptic) phase of (p) (see [2], [3])
if there exist linearly independent solutions u, v of (p) such that

tg alt) = u(t)/v(t) for teR — {t;te R, v(t) = 0}.

Every phase « of (p) possesses the following properties:
(i) ae C*(R),

(ii) o’(t) # 0 for te R,

(iii) —{«, ¢t} — «’?(t) = p(¢) for te R,
where {a, 1} := o"(1)/(2«'(t)) — (3/4) (¢"(¢)/o'(2))* denotes the Schwarz derivative
of « at the point ¢.

Let (p) be an oscillatory equation, » an integer and « a phase of (p). Let us set
@ut) := o~ [o(t) + nnsigna’], teR, where a”' denotes the inverse function
to the function o. The values of the function ¢, are independent of the choice
of the phase a. The function ¢, is called the (first kind) central dispersion of (p)
with the index n. The function ¢, , or more briefly ¢, is called the (first kind) basic
central dispersion of (p). This function possesses the following properties:

(i) 9 C’(R),

(i) @(t) > tfor te R,

(iii) @'(t) > 0 for t e R,

(iv) ¢(t + n) = @(t) + nfor te R,

V) 99 ... 0(t) = @,(1), 9, (1) = @, () for te R,
—_—
(see [2], [3]).

Let (p) be a pure disconjugate equation. Say that a function § € C°(R) is a hyper-
bolic phase of (p) if there exist linearly independent solutions u, v of (p) satisfying:
[u(®)| <|o(t)| and tgh p(z) = u(t)/v(t) for t € R. Then fe C3(R), f'(z) # 0 and
p(t) = —{B,t} + B*(t) for t € R (see [7], [9]).

Let (p) be a special disconjugate equation. Say that a function y e C°(R) is
a parabolic phase of (p) if there exist linearly independent solutions u, v of (p),
u(t) # 0 for ¢ e R such that y(z) = u(t)/v(t), t € R. Then y e C3(R), y'(¢) # 0 and
p(t) = —{y, ¢t} for 1 e R (see [8], [9]).

Let ce C3(R), ¢'(t) # Ofor t € R. Say that c is an elementary phase if ¢(t + 7) =
= c(t) + nsignc’, teR (see [2], [3]).

Let (p) be an oscillatory equation. The equation (p) is of category (1, n), where
n is a positive integer, if there exists an x € R: ¢,(x) = x + =n. The equation (p)
is of category (2, m), where m is an integer, if there exists a number ae (0, 1)
and a phase « of (p) such that a(t + n) = «(t) + 2m + a) = (see [3]). All solu-
tions of (p) are n-periodic or z-halfperiodic iff ¢,(t) =1 + = for te R, where
n an is even or an odd number. All solutions of (p) are bounded and are not
n-periodic or n-halfperiodic iff (p) is of category (2, m).
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Convention. Let u = u(¢, 1) be a function defined on D =« RxR, depending on
the parameter 1. From now on (if there is no risk of confusion) we shall simplify

matters by writing «®¥(¢, 1) instead of agﬁ(t, ).
ll

Following Floquet’s theory every equation (1) may be associated with a quadratic

equation
0> — AN e +1 =0,

whose roots are called the characteristic multipliers of (1) and 4(4) is called the
discriminant of (1). Let u = u(t, ), v = v(¢, 2) be solutions of (1) satisfying the
initial conditions: u(0, 1) = v'(0,1) =0, #'(0,4) = v(0,4) = 1. Then A(}) =
= v(n, A) + u'(w, 2) (see [1], [3], [6], [10]).

Let now 4(4) be the discriminant of (q + A). We know from [1], [6] and [10]
that the function A4(1) possesses derivatives of all orders on R and that there exists
consequences {1;}2o, {4j};21,

LA SN <Ay S Ay <A <A <A, 0))

such that A(A) =2 iff A=4; (i=0,1,2,..) and A(}) = =2 iff A=A, (i =
=1,2,3,...). The intervals [As,, 45,11, [A3n> A2n-1] (n = 1,2, 3,...) are called
the intervals of instability of (q + A). For A lying within these intervals, all solu-
tions of (q + A) are unbounded and the equation (q + A) possesses two different
real characteristic multipliers. The intervals (43,41, 42n), (Aan+1> Aon+2) (B =
=0,1,2,...) are called the intervals of stability of (q + A). For A lying within
these intervals, all solutions of (q + A) are bounded and the equation (q + A)
possesses complex characteristic multipliers. If A3,-, = 15,(A;,—1 = 42,) for
a positive integer », then all solutions of (q + Aj,) ((q + A,,)) are n-halfperiodic
(r-periodic). If A5,_, > A3,(A2n < A,,_1), then the equations (q + Aj,-,) and
(q +A3,) ((q +2,,) and (q + A,,-1)) possess bounded (n-halfperiodic or n-periodic)
solutions as well as unbounded solutions. The equation (q + Ag) is special dis-
conjugate and (q + A) is for A > 4, a pure disconjugate one.

Lemma 1. There exists a phase o = a(t, 1) of (q + A) with the following properties:
it+j
G AL d)
ot oA’
=0,1,2,...,

(ii) (0, 1) = 0 for A eR,

(iii) a'(z, ) # O on RxR.

Proof. Let u = u(t, A), v = v(t, A) be solutions of (q + A) satisfying the initial
conditions: #(0, 1) = v'(0, 1) = 0, ¥'(0, A) = v(0, 1) = 1. Then it follows from the
Theorem on continuous dependence of solutions on parameters ([5]) that

it+) i+j

0 t_t(t,.l) and 2 {)(t, 4)
ot o’ ot' oA’

are continuous functions on RxR for i =0,1,2,3 and j =

are continuous on RxR for i =0,1,2 and j =
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=0,1,2 ... Let us put
t
at, ) 1= [ds/(u’(s, A) + v*(s, D)), (1, HeRXR.
0

Then o = a(z 2) is a phase of (q + A) having the properties (i) — (iii).

Lemma 2. Let ¢, = ¢,(1, A) be the central dispersion of (q + \) with the index n
defined on D = RxR. Then ¢, has on D continuous partial derivatives up to and
including order three.

Proof. Let o = «(t. ) be a phase of (q + A) having the properties (i) — (iii)
stated in Lemma 1. Then « has continuous partial derivatives on Rx R up to and
including order three. Let us put ¢ : = sign «'(¢, 1), F(t, 4, 2) 1= o'(z, 1) — a(t, ) —
—nnefor (¢, A,z) e Rx R x R.Then the function F has continuous partial derivatives.
in the definition domain up to and including order three, ——————aF(tét}" 2) =a'(t,A) # 0
on RxRxR and F(t, 4, ¢,(t, 4)) = 0 for (¢, A) € D. Thus, following the Theorem
on implicit functions ¢, = ¢,(¢, 1) has on D continuous partial derivatives up to.
and including order three.

Remark 1. The continuity of the central dispersion of (q + A) with the index »
with respect to parameter 1 was proved in [4].

Remark 2. Let A, be a number occurring in (2). Then it holds for the set D in
Lemma 2 that D = Rx (— 00, 4y).

Lemma 3. Let [b, c], b < ¢, be an instability interval of (Q + N). Then there exists
a positive integer n such that (1, n) is the category of (q + A) for A € [b, c].

Proof. The equation (q + A) is oscillatory for A€ [b, c]. Let ¢,(t, 1) be the
central dispersion of (q + 1) with the index m. The above function is surely defined
on Rx[b, c]. It follows from Lemma 2 and from the Sturm comparison theorem
that ¢,, is a continuous function on Rx [, c], it is a decreasing function of the
variable J at a firm 7 and ¢,(t + 7, 1) = @,(t, ) + = for (¢, ) e Rx[b, c]. Let
(1, n) be the category of (q + c). Assume that (q + A) has no category (1, n)
for 1 € [b, c]. Clearly, there exists a A € [, c] such that the equation ¢,(¢, 1) — ¢t —
— 7 = 0 has a solution on R. Let 1 be the least number of the given property.
Evidently 1€ (b, ¢]. It follows from [13] that for any 1e[b,c) the equation
@n+1(t, 1) — t — 1 = 0 must have a solution on R. Let 4 be the greatest number
of the given property. Then necessarily 1 < A and naturally there is @,(t, 1) <
<t+ 7T <@, 4) (teR) for Ae (i, A). Hence (q +A) has for 1e(Z,2)
complex characteristic multipliers (see [13]) which, however, conflicts with the
fact that (q + A) has real characteristic multipliers for A e [b, c].

Lemma 4. Let (b, c) be a stability interval of (qQ + N). Then there exists an integer m
such that for any A € (b, c) the equation (q + A) has category (2, m).
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Proof. The equation (q + A) is oscillatory for A€ (b, ¢). Thus, if we denote
by ¢,(¢, 1) the central dispersion of (q + A) with the index n then, ¢, is defined .
on Rx(b,c). Furthermore, (q + A) has for Ae(b,c) complex characteristic
multipliers, thus the character of (q + A) is of type (2, k), where k is an integer.
We have to show that the value of the number k is independent of the choice of
the parameter 1 in the interval (b, ¢). Let A* € (b, ¢). Then there exists a phase «,
of (q + A*), ae (0, 1), and an integer m such that

oo(t + 1) = ao(t) + Cm + a) =, teR.
Let us put v := sign ag. Since

Ao(Pamy(ts A%)) = ao(t) + 2mn < ay(t) + @Cm + a) n =
= c(O(t + 7[) < “o(’) + (2m + 1) n = “0((p(2m+1)v(t5 /l*))7 te Ra

there is for v = 1 (necessarily m = 0)

(PZm(ta A*) <t+n< (p2m+1(t’ l*)a IER’ (3)
and for v = —1 (necessarily m < 0)
(p—Zm(t’ '1*) >t+n> (p—2m—-1(t5 }'*)’ teR. (4)

1t follows from the continuity of ¢,(¢, 1) on R x (b, ¢) that in case of (3) we obtain
Oomt, 1) <t + T < Qapyq(t, 1) for (¢, ) e Rx (b, ¢), (5)

and in case of (4) then
Ot D) >t + 7> @y, 2 for (¢, ) e Rx (D, ). (6)

If (5) or (6) were impaired, then the equation (q + A,) would have real character-
istic multipliers for any 4, € (b, ¢), which would lead to a contradiction. It becomes
evident that if (3) holds, then (5) holds as well, and if (4) holds, then (6) holds, too.

Remark 3. From Lemmas 3 and 4 and from their proofs we are led to: Let
{2320, {A}2, be the sequences of numbers relative to (q + A) satisfying (2),
discussed before. Then (q + A) has the categories (2, 0), (1, 1), (2, —1), (1, 2), (2, 2),
(1, 3),(2, =2), (1, 4), ... ontheintervals (1], o), [43, 411, (A1, 42), [A2, 411, (45, 43),
(24, A5], (As, 43), [A4, A3], ..., respectively.

3. Main theorem
Theorem 1. Let A(A) be the discriminant of (q + N). Then equation (1) has the

discriminant also equal to A(R) if there exists a function ¢ = c(t, A) defined on RxR
such that the function c, at the firm value of the parameter 1, is an elementary
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phase and
s(t, 2) = (@, A) [q(et, 1) + A] — ¢"(t, ]2 (t, 1)) +
+ (3/4) (c"(z, V)[c'(t, 2))? for (¢, 1) e RxR. . )

The converse is valid, too. Let ¢ = c(t, A) be an arbitrary function defined on Rx R
such that c at the firm value of the parameter A is an elementary phase and the function
occurring on the right side of (7) is continuous on R x R. Then the equation (1), where s
is defined by (7) has the discriminant equal to A(A).

Proof. (=) Let equation (1) have the discriminant equal to 4(4). Let {4;};2,
and {4;}{2, be sequences relative to (q + A) whose properties were treated in
part 2 of the paper. Then the equations (q + A*) and y” = s(¢, A*) y are for A* €
€ (— 00, 4y) of the same behaviour (see [12]). Let o, be a phase of (g + 4*) and a,
be a phase of y” = s(¢, A*) y. From Theorem in [12] then follows the existence of
an elementary phase ¢ = c¢(¢, A*) such that

oy(2) = aple(t, A%)], teR. 8)
Since s(t, A*) = —{ay, t} — ai?(t), we get from (8) and from {ap, t} = {, B(£)} %
x B'2(t) + {B, t} (see [2], p. 8):
s(t, A*) = —{ag, c(t, A¥)} ¢>(t, A*) — {c, (1, A®)} —
— ag[e(t, A9)] €22, A%) = (1, 2%) [g(c(t. A%)) + 2*] —
= ¢"(t, A¥)[2c'(2, A%)) + (3/4) (c"(t, AN/ (2, A%))?,
hence (7) is valid for (¢, 1) € Rx (— o0, 4¢).

Equations (q + A) and (1) are for A = A, specially disconjugate and according
to [14] they are of the same behaviour. Let B, be a parabolic phase of (g + Ag)
and f,; be a parabolic phase of y” = s(t, ¢) y. By Theorem 4 in [14] there exists
an elementary phase ¢ = c(t, 4) such that B,(t) = Bo[c(z, 49)], £ € R. From the
equalities q(t) + A“O = —{ﬁ03 t}: S(t’ /10) = —{ﬁla t} we get

s(t, o) = —{B1.t} = —{Bo, c(t, /10)} (1, Ao) —
- {69 (t9 A‘O)} = C’Z(ta '10) [q(c(t! '10) + AO] -
= ¢"(t, A)[(2C'(2, Ag)) + (3/4) (c"(2, Ao)]c'(t, Ao))*.

Equations (q + A*) and (1) are for A* € (45, ©) pure disconjugate and according
to [14] they are of the same behaviour. Let y, or ; be hyperbolic phases of (q + A*)
or y" = s(t, A*) y. Then, by Theorem 2 in [14] there exists an elementary phase
¢ = c(t, A*) such that y,(¢) = yo[c(t, A*)]. Herefrom and from the equalities
q(®) + A* = —{yo, 1} + y'2(1), 5(t,2%) = —{v1, 1} + y'*(1) we get

5(t, A*) = —{po, c(t, A¥)} ¢'2(t, A*¥) — {c, (¢, A} +
+ pele(t, A%)] c'2(t, A*) = (8, A*) [q(c(t, A*) + A*] —
— c"(t, AN)|(2c (2, %) + (3[4) (c"(2, A%)[c(1, A*))*.
Hence (7) is valid for (¢, 1) € Rx (4,, ).
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(<) Let ¢ = c(t, ) be an arbitrary function defined on Rx R such that ¢(z, 1)
at the firm value of the parameter 1 is an elementary phase and the function occur-
ring on the right side of (7) is continuous on Rx R. Let s = s(z, A) be defined by (7).
Let (g + A) be oscillatory for A e (— o0, 4,) and let this equation be disconjugate
for 2 €[A,, ). Finally, let A* € (— o0, 4¢) and «, be a phase of (q + A*). Then
it follows from (7) that the function o (¢) := ag[c(t, 1*)], 1€ R, is a phase of
y" = s(¢, A*) y and since c(#, A*) is an elementary phase, it follows from [12]
that both equations are of the same behaviour and thus they have the same
characteristic multipliers. For A* = 4, or 1* € (1, c0) we proceed in the same
manner as above except for considering parabolic or hyperbolic phases instead
of phases. Following the results in [ 14] it can be shown that the equations (q + A*)
and y” = s(t, A*) y have the same characteristic multipliers.

This proves our assertion that 4(1) is the discriminant of equation (1).

Example. Let c(z, A) := t + (1/n) arctg 4. sin 2¢ for (¢, A) e Rx R. Then, at the
firm value of the parameter A the function c is an elementary phase and it follows
from Theorem 1 that the equations (q + 1) and y” = s(¢, A) y, where

s, 4) := [1 + (2/n) arctg A . cos 2t]* [q(t + (1/n) arctg A . sin 2t) + 4] —
— 4 arctg A . cos 2t/(n + 2arctg 4. cos 2t) +
+ (3/4) [4 arctg A . sin 2t/(n + 2 arctg A . cos 21)]?

for (¢, 2) e Rx R, have the same discriminant.

CTPYKTYPA JUHENHBIX TUO®OEPEHIMAJbHBIX
YPABHEHU I BTOPOTO NOPANKA
C IEPUOJUNYECKUMUN KOEOOUNIIUNEHTAMH
KOTOPBIE HMEIOT OfMHAKOBBINI JUCKPUMIHAHT

Peszrome

Iycts A = A() — DUCKPUMHHAHT yPaBHEHHS
Y =)+ 2y, qgeC¥R), gt +m) = q(t), Ae R, teR.
C noMommmio Teophu (a3 H TEOPHH HUCTIEPCHit MoKa3aHb! B paGoTe BCE YPABHEHHH THIA
Yy =s(t,A)y, seCR X R), s(t+m, ) =s04), 1, )eR X R,

KOTOPbIE HMEIOT RUCKPUMHHAHT A(4).
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STRUKTURA LINEARNICH DIFERENCIALNICH ROVNIC
2. RADU S PERIODICKYMI KOEFICIENTY,
KTERE MAJI STEIJNY DISKRIMINANT

Souhrn

Necht 4 = A(4) je diskriminant rovnice y” = (q(¢) + 4) y, q(t + 7) = q(t) pro ¢, A€ R. V praci
jsou uZitim teorie fazi a teorie dispersi nalezeny viechny rovnice typu »” = s(t, 1) y, s€ C°(R x R),
s(t + 7, X) = s(t, A) pro t, A€ R, jejichZ diskriminant je roven 4(2).
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