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ON SPLITTING SOLUTIONS OF A CERTAIN N-th O R D E R 
DIFFERENTIAL EQUATION 

VLADIMÍR VLČEK 

(Received March 27, 1984) 

Let us have a 2-nd order linear homogeneous differential equation 

y"(0 + q(Oy(0 = o (2) 

with q(0eC(*-2)(-oo, +oo), n e N, n > 1, q(t) > 0 on I = (-co, +co), whose 
basis \u(t), v(t)~\ of the space of all solutions 

y(t) = Ctu(0 + C2v(t), 

Ci e R (i = 1, 2), forms an ordered pair of functions u(t), v(t) oscillatory on the 
interval I in the sense of [2]. 

Consider a linear homogeneous differential equation of the n-th order 

/ n ) (0 + la i(0y ( i- 1 >e0 = 0, (n) 
i = l 

where ai = afy(t)fq
f(t), ..., # ( n~ 2 )(t)], whose basis of the space of all solutions 

m-twKtW~Ht), (Y) 
i = l 

with Q 6 R (i = 1, ..., n) forms an ordered n-tuple of functions 

iu«-Kt\u«~\t)v(t),...,u(t)v»-\t\v«-\t)l (B) 
For the fact that (n) is of the n-fh order, any arbitrary zero of its nontrivial 
oscillatory solution y(t)is of multiplicity v e {1, ..., n — 1}, i.e. v = n — 1 at most. 
Throughout this paper we shall assume all solutions both of (2) and of (n) to be 
nontrivial, only. 
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The bundles of oscillatory solutions of the differential equation (n) 

A sufficient condition for the oscillatority of the solution y(t) of (n) of an 
arbitrary order n e N, n > 1 with a basis (B), among whose zeros t* e I are such 
that 

(S*) 

oг 

y(t*) -=» u(t*) or y(t*) - v(П, 

tion y(t) be in the form 

K0=EІClt.n-,(ť)t;1-1(í)» 
1 = 1 

where 
n - 1 

Z c? > o, 
i = l 

ym-tcyvŕ'\tw\t)t 
i = 2 

where І cf > o. 
i=-2 

(S**) 

With respect to the symmetrical distribution of both functions u(t), v(t) and their 
powers occuring in the general solution (Y) of (n) it suffices to study the zeros of 
oscillatory solutions of (n) from the bundle (S*), i.e. entirely such solutions among 
whose zeros always belong all zeros of the function u(t). 

Thereby: if the solution y(t) of (n) is expressible in the form 

y(t) = u\t) Y*(t)9 

where 1 £ k ^ n — 1 (k, n e N, n > 1), where u(t) is an oscillatory solution of (2) 
having all zeros simple and if at the same time 

u(t0) = 0, Y*(t0) ?- 0 

holds at any point t0 e I, then the point f0 is a k~foid zero of the oscillatory solution 
jKOof(n). 

Lemma: Let /0 e ( - o o , +oo) be an arbitrary firmly chosen point whereat the 
function u(t) from the basis [u(t)9 v(t)] of the oscillatory differential equation (2) 
vanishes. Then every solution y(t) of the differential equation (n) with the basis (B) 
vanishing together with the solution u(t) of the differential equation (2) at the point 
t0 is of the form 

M-lW-KtW-1®, (S) 
i = l 

where Cf eR 0* == 1, ..., n - k) and where Cn„k # 0 , 1 < k g n - 1, n > 1, 
n e N, exactly if the point t0 is a A:-fold zero of the solution y(t) of the differential 
equation (n). 

An immediate consequence of the above Lemma is: if the point t0 is a zero of 
the solution y(t) of (n) with multiplicity v = k9 ke {1, ..., n - 1}, then all solu­
tions y(t) of (n) from (S) fc-fold vanishing at t0 together with the function u(t) 
may be written as 



y(t) - u\t) Y*_k(t), 
where 

y*-k(t) =*Y ciU*-k-\t)j-\t), c»-k ?- o. 

Corollaries of the Lemma 

Every solution y(t) of the differential equation (n) from an (n — fc)-parametric 
bundle (S) always vanishes at all zeros of the function uk(t) all without exception 
being of the same multiplicity v = fc, fce {1, ..., n — 1} (the so-called strongly 
conjugate points from the bundle (S) of the solutions y(t) of (n) — see Definition 1.3 
in [1]). 

Writting Tx for the first (neighbouring) zero of the function u(t) lying to the right 
of the point t0, then every solution y(t) of (n) from the bundle (S) has at least both 
points t0, Tt on the interval <t0, Tx), which are its (fc-fold) zeros for all fce 
e{l , . . . , / i ~ l } . 

Whether the solution y(t) of (n) from the bundle (S) has besides both end points 
t0, Tt any more zeros (the so-called weakly conjugate points from the bundle (S) 
of the solutions y(t) of (n), see Definition 1.3 in [1]) on the interval <i*0, Tx}, 
decides but the existence of the zeros of the (n — fc)-parametric system of functions 
7*_k(0 occurring in the bundle (S). This "moving" nature of the above zeros on 
the open interval (t0, Tx)9 their occurrence, number and multiplicities are given 
by the arbitrariness of the n — fc real parameters Cl9 ..., Cn„k in the system of 
functions Y*_-k(0 on one hand and by the varied possibilities of their interrelations 
by which the number, multiplicities and positions of those zeros between the points 
t0 and Tt are determined, on the other hand. 

It may be generally stated here that the higher is the multiplicity fc of the point t0, 
the less — as regards the number (n — fc — 1) — remains for the number of zeros 
of the functional system Y*_k(t) and for their possible multiplicities (whose maxi­
mum may be n — fc — 1). 

The minimal number of zeros on </0, Tt} may thus be expected when the value 
of fc e {1, ..., n - 1} is maximal, i.e. fc = n - 1. Then the only (n - l)-fold zeros 
of the solution y(t) of (n) from the bundle (S) on the interval <t0, Tx> are but both 
end points t0,Tl9 i.e. the zeros of the function un~x(t). This, however, is not the 
only possible case, when no zeros of the solution y(t) of (n) from the bundle (S) 
exist on the open interval (/0, 7\) as will be shown below. 

If all solutions from the bundle (S) are vanishing together with the function u(t) 
at the v-fold point t0, ve {1, ..., n — 1}, then the solution y(t) of (n) from the 
bundle (S) may have at most an n -= (n — v — l)-fold zero or s e {1, ..., n — v — 1} 
zeros with the sum of their multiplicities Ne{l, . . . ,n — v — 1} on the open 
interval (t0, Tt). 
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Specially: There may exist such a solution y(0 of (n) having exactly n — v — 1 
zeros with multiplicity \x = 1 on the interval (*<>, -̂ _X which represents the maximal 
possible number of zeros of the solution y(t) of (n) from the bundle (S) for every 
k e {1, ..., n - 1} on the interval (t09 T^). 

Thereby may however also exist such a solution y(t) of (n) from the bundle (S) 
having no zero on the open interval (t09 Ty), namely, if n — k — 1 is an even 
number. 

It evidently holds: if the numbers n — 1 and k9 k e {1, ..., n — 1}, are both of 
the same parity (i.e. either both even, or both odd), when their difference is an even 
number, then the functional system F*_k(t) — and so also the bundle (S) of the 
solutions y(t) of (n) — need not have any zero on the open interval (t0, Tx) at all. 

However, if the numbers n — 1 and k are of different parity, when their difference 
is an odd number, then the functional system Y*_k(i>) and together with it also the 
bundle (S) of the solutions y(t) of (n) always have at least one zero on the open 
interval (t0, Tx). 

Potentially maximal both for the occurrence of zeros of the solutions y(t) of (n) 
and for the number of zeros and the degree of their multiplicities evidently is the 
bundle 

Ya^(l) = H O ) E C , U " - , - 1 ( 0 » * " 1 ( 0 . (SI) 
i = l 

where k = 1, i.e. the bundle with the lowest possible multiplicity of both end 
points t0, Tt on the interval <t0, 7\> with the degree of the functional polynomial 
F*_i(0 being maximal: n — 2. Exactly this bundle may contain the solution y(t) 
of (n) with the maximal possible number of zeros (and consequently the densest 
distribution of zeros) on the interval <«*0, Tt}. 

Factorization of the bundle (S) of the solutions y(t) of (n) 

From what has been said so far we can see that just the analysis of the (n — k)-
parametric functional system Y*_k(0 will be of decisive importance for our further 
considerations. Here the point will be to find a mean enabling to penetrate into 
the structure of an arbitrary solution XO of (n) from whatever type of the bundle (S) 
of these solutions for ke {1, ..., n — 1} giving at the same time a survey of the 
existence, the number and multiplicities of its zeros. It is the factorization of the 
functional system F*_k(0 and thus also the bundle (S) or every solution y(t) of (n) 
from this bundle. 

Let us remark that the functional polynomial F*_k(0 of the (n — k - l)st 
degree represents in fact an (n — k)~parametric space of all solutions of the 
differential equation of the (n — k)th order, namely, of the same type as is the 
differential equation (n), i.e. the equation wherein the basis of the space of all 
their solutions constitutes the ordered (n — k)-tuple of functions 
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[^-'-'(O^-^OKO,^^ 
Hereby with the increasing k at the function uk(0 in the form of the bundle (S), 
the degree of the polynomial Yn*_k(l) - and consequently also the order of the 
respective differential equation - is decreasing, until k = n - I when they vanish 
at all. That is where the superiority of the differential equation (n) is lying in con­
venient for interpreting its solutions in forms stepwise reduced up to the individual 
solutions of the differential equation (2). 

The fact that Y*_k(0 is a homogeneous functional polynomial of the (n — k — l)st 
degree in the functions u(t), v(t) namely enables its interpreting (in agreement with 
the fundamental theorem of algebra) as a factorization into a product of the 
n — k — 1 functional binomials cnu(t) + cj2v(t) naturally with the complex 
coefficients cn, cj2 (J = 1, 2, ..., n - k - 1) so that 

y.*-k(o-"n faii«(o + cS2v(t)i 
j = l 

where cj2 & 0 for allf = 1, 2, ..., n — k — 1. 
The above assumption follows from the essential requirement Cn_k ?- 0 laid 

upon the last from the n — k parameters Ct, ..., Cn_k e R occuring in a "summa­
tion" form of the functional system Y*_k(0 (cf. Lemma), where, on mutual com­
paring both forms Y*_k(0

 an<i -?*-k(0> we obtain 

n - k - l 

j = l 

Since all coefficients Ci9 ..., Cn-k occuring in the (n — k)th parametric functional 
system Y*_k(0

 a r e reai> it holds for the coefficients cn, cj2 being in the "product" 
form Yn_k(0

: t o a»y pair of complex (imaginary) coefficients c j l3 cj2, 
je {1, 2, ..., n — k — 1} involved in a functional twoparametric binomial cnu(t) + 
+ C}2v(t) there necessarily exists a binomial among the remaining functional 
binomials, with such a pair of imaginary coefficients cml9cm2, me{l, 2, ..., 
n — k — 1} that both ordered pairs (cn, cj2) and (cml , cm2) are complex conjugate. 
We constitute that both ordered pairs (c l l 5c1 2) , (c21,c22) of imaginary co­
efficients occuring successively in the twoparametric functional binomials ctlu(t) + 
+ ci2v(t), c2lu(t) + c22v(t) are complex conjugate exactly if c n is complex 
conjugate to c21 and c12 is complex conjugate to c22. 

Besides, there is required a linear independence of the alone coefficients in the 
complex pairs, so that 

Re Cji Im cj2 — Im c j t Re c j2 =£0; j = 1, 2. 

In consequence of the above property of coefficients the product of such two 
functional binomials with complex conjugate coefficients is a real function having 
no zero on the interval <fo5 P̂i> and even on the whole interval I = ( — oo, +oo). 
It is here either always positive or always negative (the latter alternative follows 
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from the fact that a negative number may eventually be pointed out from the 
complex conjugate pair of coefficients). 

It holds: writing 

cxl = ax + a2i, c12 = bx + b2\, c21 = ax — a2i, c22 = At — i2 i , 

where aj5 6j e R (j = 1, 2), so that 

k u | = I c2X | = VaJ + a?, | c12 | = | c22 | = Vfe? + ftL 

whereby a ^ — a2bx ^ 0, then we get for the product of two complex functional 
binomials 

[cui*(0 + c12t?(0] [c21«(0 + c22v(0] = 
= (a\ + a|)ti2(0 + 2(axbx + a2b2)u(t)v(t) + (b2

x + b2
2)v

2(t) = 
= | c n | V( f ) + 2 | ciX | | cm2 | M(0 v(t) cos a> + | cm2 | V( f ) cos2 co + 

+ k«2 I V ( t ) - I Cm2 | V ( 0 COS2 0) = 
= [| c n I u(0 + I cm2 I KO cos a>]2 + [| cm2 | v(t) sin a>]2 > 0, 

where co = | arg c n - arg cm2 | ^ krc; J, /w = 1, 2; fc = 0, +1 , ±2, ...; the ine­
quality obtained holds for all tel = ( — oo, +oo). 

Remark: However, if we denote the real coefficients 

AL = af + a2, B = 2(axbx + a2b2), C = b2
x + b\ 

in a quadratic functional trinomial 

(a\ + a^)w2(0 + 2(axbx + a2b2)u(t)v(t) + (b\ + b2
2)v

2(t), 

where a ^ — a2bx =5-= 0, then its nonfactorability into a product of two real 
functional binomials follows from the fact that 

B2 - 4AC = -4(a162 - a2b,)2 < 0. 

Two functional binomials with complex conjugate pairs of coefficients (cix, cj2), 
(cmi»cm2)5I 7* m;j, me {1,2, . . . ,n — k — 1} will be termed the mutual associated 
binomials. 

The number of always two mutually associated functional binomials in the 
functional system Y*„k(t) is always even. 

The presence of any pair of mutually associated binomials in the functional 
system Y*-k(0 decreases always by 2 the maximal possible number of the n — k — 1 
zeros of this system on the open interval (t0, Tx). If v is trie multiplicity of such 
a pair, then its presence in the functional system Y*_k(0 decreases by 2v the total 
highest possible number of zeros on the interval (t0, Tt). In particular, if n - k - 1 
is an even number, it may happen that with 2v = n - k - 1 (no matter whether 2v 
is a multiplicity of one pair or a sum of multiplicities of more distinct pairs of 
mutually associated functional binomials), the functional system Yn*-k(0 has no 
zero on the interval (t0, Tt). For the occurrence (and a possibly multiplicity) of 
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zeros of the functional system Y*-k(f) — and thus also of the bundle (S) of the 
solutions y(t) relative to (n) — will be only such a functional binomial 

yj(0 « cn<0 + ci2v(t), 

je {1, 2, ..., n — k — 1}, of interest, wherein both coefficients cn, cn are real 
(with cj2 ?- 0). 

However in this case y}(t) always means a solution of the differential equation (2) 
linearly independent with the solution u(t) of the same differential equation on the 
interval I = ( —oo, +oo). An immediate consequence of this is the fact that the 
zeros of the any function yft) mutually separate with the zeros of the function u(t) 
on I. 

Specially: between two points t0 and Tt in <f0, Txy there lies exactly by one zero 
of each function y$(t), je {1, 2, ..., n — k — 1}. Then it is true that any simple 
zero of yfit) = cnu(t) + ci2v(t), ci2 ^ 0, on an open interval (t0, Tx) differs from 
the (also simple) zero of ym(0 = cmlu(t) + cm2v(t), cm2 ^ 0, on the same interval 
( t o ^ i ) i f 

C j l C j 2 

C m l C m2 
9-= 0; j,me {1,2, ..., n - k - 1},; ^ m 

and vice versa: if both functions yfo), ym(t) on the interval I = ( —oo, +oo) are 
linearly independent, then their (simple) zeros are different from each other on I 
and especially on (t0, Tt). 

To the linear dependence of two functions yj(0> ym(0 corresponds the double-
multiplicity of their common zero on (t0, Tt). 

Generally: the function y)(t), /ie {1, 2, . . . ,n — k — 1}, has an ju-foid zero on 
(to, Tx). 

Thus the maximal number of zeros of the solution y(t) from the bundle (S) 
relative to the differential equation (n) on the open interval (t0, Tt) may btn — k—1, 
whereby all zeros are simple altogether. This situation is relevant to the factorization 
of the functional system Y*-k(0 into n — k — 1 functional binomials with all real 
coefficients, always in twos (in pairs) linearly independent on I. 

For every fce{l,2 n - l } , » 6 N , » > l , exactly such a solution is called 
a totally split up solution y(t) of the differential equation (n) from the bundle (S) 
having the form 

n - k - l 
y(t) = u\t) [ ] lcnu(t) + c52v(t)l 

j = i 

where cn, cj2eR, c}1 ^ 0, for all je {1, 2, ..., n - k - 1} with 

^ 0 
C j l C j 2 

C m l C m 2 

forj, /we {1,2, . . . ,n - k - \}, j ^ m. 
Such a solution y(t) has always for all k e {\, 2, ..., n - 1} the maximal possible 
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number of zeros being simple and separating themselves on the interval <to» 7i ) . 
Hereat the sum of multiplicities of all these simple zeros on the open interval (t0, Ti) 
is exactly \i = n — k — I. 

If we denote y0(t) = u(t), y}(t) = cnu(0 + ci2v(t)9 cj2 & 0,j e {1, 2, ..., n - k - 1}, 
then the totally split up solution y(t) of the differential equation (n) from the 
bundle (S) may be more briefly written as 

y(o = yo(onffVi(o. 
j = l 

Any simple zero of this solution on the open interval (r0, Tt) belongs by one always 
to only one from the functions yj(0- Then every from these functions, obtained by 
a certain choice of the corresponding constants cn, cn e R (j = 1, 2, ..., n — k — 1) 
in a twoparametric system of functions 

cnu(t) + cjZv(t), cn * 0, 

always represents any solution of the differential equation (2). All thus obtained 
solutions of (2) are always among themselves in pairs linearly independent, whereby 
each of them is linearly independent with the solution y0(t) = u(t) of this equation 
on I = (~oo, +oo). 

Specially: It holds for k = 1 that a totally split up solution 
n - l 

y(0 = yo(0 Ebj(0 
j = l 

has the maximal number of simple zeros (namely n) of all solutions y(t) of (n) on 
the interval <t0> T{y at all. It represents the case of the densest possible distribution 
of zeros that the solution y(t) of (n) on (t0, Txy may reach. 

All of this leads us to believe that we can use various types of solutions y(t) of the 
differential equation (n) from the bundle (S) for all possible k e {1, 2, ..., n — k — 1} 
in solving k-point (I g k :§ n) boundary value problems for this differential 
equation, wherein before all the totally split up solutions are applied in achieving 
the maximal number of zeros on the given interval. 

An example of the factorized solutions 

Below we show an example concerning a bundle of solutions of a seventh order 
differential equation with all type forms for factoring the solutions inclusive their 
totally split up solutions for every k e {1, ..., 6} — expressed by means of always 
two and two linearly independent solutions of differential equation (2). 

The bundle of all solutions y(t) relative to the seventh order diff. equation (with 
a basis of the type considered) vanishing together with the function u(t) at an 
arbitrary firmly chosen point t0 e I = (— oo, + oo) is of the form 
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6-k 

Xt) = y o ( 0
j P 1

j ; j ( 0 ' keil>- ' 6>' 

/ i i- i ,- ~„„ /-,"> s 1, etc., at right), (where for k = 6 we pose ^.(f) ' ' s ' 

l.For)fc = 6 i s X 0 = CJo(l) (*} 

2. For * = 5 is XO = CJo(l)>;i(f) (*} 

3. For k = 4 is a) XO = O;o(0 
b)XO = cyo(Oy?(0 

c)XO = c/o(Oji(Oj2(0 (*) 

4. For Jfc = 3 is a) XO = C° (0 Ji(0 
b)XO= C/o(Oj?(0 

c ) X 0 = cyo(?) yi(t)yl(t) 
d) xt) = cylM ^i(t) >-2(t) y3(t) (*) 

5. For k = 2 is a) Xt) = 0^(0 
b)XO = Cyo(t)Ji(0 
c) x t) = C/o(0yi(Oy2(0 
d)XO = C/o(t)jt(t) 
e)XO= C/o(t)J?(t)J2(t) 
f) x t) = Cyl(t)yi(t)y2(t)yl(t) 

g) x t) = Cyo(t) yi(t) y2(0 y3(t) y*(t) (*) 

6. For k = 1 is a) Xt) = Cyo(i) Ji(t) 

b)XO = Oo(t)Ji(0 
c) X0 = Cy0(t)yi(t)yl(t) 
d) y(t) = Cyo(t)yi(t)y2(t)y3(t) 

e) x t ) = Cjo(t)yf(t) 
0 Xt) = Cyo(0 yi(t)yt(t) 
g)Xt)= Cy0(t)yi(t)y2(t)yl(t) 
h )XO = oJo(t)>'i(Oj|Ct)J3(t) 
0 Xt) = Cy0(t)yi(t)y2(t)y3(t)yl(t) 
j ) Xt) = C>"0(t) Jl(0 J>2(0 J3(t) J4(t) j5(t). (*) 

where throughout C e R - {0} means an arbitrary constant (parameter). 
The solutions denoted by (*) are totally split up for the corresponding ke 

6{1, . . . ,6} . 
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O ROZLOŽITELNOSTI ŘEŠENI JISTÉ DIFERENCIÁLNÍ 
ROVNICE N-TÉHO ŘÁDU 

Souhrn 

Práce se zabývá rozkladem libovolného svazku oscilatorických řešení jisté diferenciální rov­
nice n-tého řádu na součin oscilatorických řešení diferenciálních rovnic nižších řádů (téhož typu) 
až do rovnice 2. řádu včetně. 

О РАЗЛОЖИМОСТИ РЕШЕНИЙ ДИФФЕРЕНЦИАЛЬНОГО 
УРАВНЕНИЯ 14-ГО ПОРЯДКА ОПРЕДЕЛЕННОГО ТИПА 

Резюме 

В работе изучается разложение любого пучка колеблющихся решений дифференциального 
уравнения п-го порядка определенного типа в произведение колеблющихся решений диф­
ференциальных уравнений низших порядков (того же самого типа) до уравнения 2-го по­
рядка включительно. 
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