Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Naturalium. Mathematica

Vladimir Viéek

On splitting solutions of a certain n-th order differential equation

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 24 (1985), No.
1,71--80

Persistent URL: http://dml.cz/dmlcz/120155

Terms of use:

© Palacky University Olomouc, Faculty of Science, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz



http://dml.cz/dmlcz/120155
http://project.dml.cz

ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS
FACULTAS RERUM NATURALIUM
1985 MATHEMATICA XXIV Vol. 82

Katedra matematické analyzy a numerické matematiky prirodovédecké fakuity Univerzity Palackého
v Olomouci
Vedouci katedry: prof. RNDr. Miroslav Laitoch, CSc.

ON SPLITTING SOLUTIONS OF A CERTAIN N-th ORDER
DIFFERENTIAL EQUATION

VLADIMIR VLCEK

(Received March 27, 1984)

Let us have a 2-nd order linear homogeneous differential equation
y'(t) + q() y(1) = 0 ()]

with g(1)e C*~2)(—c0, + ), neN, n > 1, g(t) > 0 on I = (=0, + ), whose
basis [u(t), v(t)] of the space of all solutions

y(t) = Cuu(t) + Cyo(),

CieR (i = 1,2), forms an ordered pair of functions u(t), v(¢) oscillatory on the
interval I in the sense of [2].
Consider a linear homogeneous differential equation of the n-th order

YO + ¥ alny0 (e =0, ()

i=1
where a; = a;[¢(t), ¢'(t), ..., g ~2(2)], whose basis of the space of all solutions
ORI GLa O) (Y)

i=1

with C;eR (i = 1, ..., n) forms an ordered n-tuple of functions
[ =10, un 72(0) o(t), ..., u(t) v*2(2), 0* ()] (B)

For the fact that (n) is of the n-th order, any arbitrary zero of its nontrivial
oscillatory solution y(¢) is of multiplicity ve {1, ...,n — 1},i.e. v = n — 1 at most.
Throughout this paper we shall assume all solutions both of (2) and of (n) to be
nontrivial, only.
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The bundles of oscillatory solutions of the differential equation (n)

A sufficient condition for the oscillatority of the solution y(t) of (n) of an
arbitrary order ne N, n > 1 with a basis (B), among whose zeros t* € I are such
that

ya*) =u@*) or  y(*) =o(*),

is that this solution y(¢) be in the form

n—1 n—1
yt) =Y Cu” '@ o' "(t), where Y Ci>0, (8%
i=1 i=1
or
n n
yt) =Y Cu"'(t)v' "} (1),  where Y ci>o. (S*#)
=2 i=2

With respect to the symmetrical distribution of both functions u(t), v(¢) and their
powers occuring in the general solution (Y) of (n) it suffices to study the zeros of
oscillatory solutions of (n) from the bundle (S¥*), i.e. entirely such solutions among
whose zeros always belong all zeros of the function u(t).

Thereby: if the solution y(¢) of (n) is expressible in the form

y(t) = u () Y*(2),

where 1l £ k £ n — 1(k,ne N, n > 1), where u(¢) is an oscillatory solution of (2)
having all zeros simple and if at the same time

u(ty) =0, Y*(to) # 0

holds at any point #, € I, then the point ¢, is a k-fold zero of the oscillatory solution
¥(t) of (n).

Lemma: Let ¢ty e (—o0, + o) be an arbitrary firmly chosen point whereat the
function u(t) from the basis [u(?), v(t)] of the oscillatory differential equation (2)
vanishes. Then every solution y(¢) of the differential equation (n) with the basis (B)
vanishing together with the solution u(¢) of the differential equation (2) at the point
to is of the form

n—k
(1) =3 Cu""'(1) o' (), (S)

where C;eR (i=1,..,n—k) and where C,_, #0, 1 2k=n-1n>1,
n € N, exactly if the point ¢, is a k-fold zero of the solution y(¢) of the differential
equation (n).

An immediate consequence of the above Lemma is: if the point #, is a zero of
the solution y(t) of (n) with multiplicity v = k, ke {1, ..., n — 1}, then all solu-
tions y(¢) of (n) from (S) k-fold vanishing at ¢, together with the function u(t)
may be written as
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y(t) = uk(t) Yo_ (1),
where

n—k
Y=Y Cu i ml(t),  Ca-k #0.
i=1

Corollaries of the Lemma

Every solution y(t) of the differential equation (n) from an (n — k)-parametric
bundle (S) always vanishes at all zeros of the function #*(z) all without exception
being of the same multiplicity v =k, ke {1, ..., n — 1} (the so-called strongly
conjugate points from the bundle (S) of the solutions y(¢) of (n) — see Definition 1.3
in [17]). '

Writting T for the first (neighbouring) zero of the function u(t) lying to the right
of the point ¢,, then every solution y(¢) of (n) from the bundle (S) has at least both
points t4, T; on the interval (¢, T)», which are its (k-fold) zeros for all ke
e{l,...,n— 1}

Whether the solution y(¢) of (n) from the bundle (S) has besides both end points
to, Ty any more zeros (the so-called weakly conjugate points from the bundle (S)
of the solutions y(¢) of (n), see Definition 1.3 in [1]) on the interval {t,, Ty),
decides but the existence of the zeros of the (n — k)-parametric system of functions
Y () occurring in the bundle (S). This “moving” nature of the above zeros on
the open interval (¢y, T;), their occurrence, number and multiplicities are given
by the arbitrariness of the n — k real parameters Cy, ..., C,-y in the system of
functions Y, (¢) on one hand and by the varied possibilities of their interrelations
by which the number, multiplicities and positions of those zeros between the points
to and T are determined, on the other hand.

It may be generally stated here that the higher is the multiplicity k of the point #,
the less — as regards the number (n — k — 1) — remains for the number of zeros
of the functional system Y, (¢) and for their possible multiplicities (Whose maxi-
mum may be n — k — 1).

The minimal number of zeros on {¢¢, Ty) may thus be expected when the value
of ke{l,...,n — 1} is maximal, i.e. k = n — 1. Then the only (» — 1)-fold zeros
of the solution y(¢) of (n) from the bundle (S) on the interval {¢,, T, are but both
end points 2o, Ty, i.e. the zeros of the function u*~*(¢). This, however, is not the
only possible case, when no zeros of the solution y(z) of (n) from the bundle (S)
exist on the open interval (¢y, T;) as will be shown below.

If all solutions from the bundle (S) are vanishing together with the function u(t)
at the v-fold point #,, ve {1, ...,n — 1}, then the solution y(¢) of (n) from the
bundle (S) may have at most an g =(n —v — 1)-fold zero or se{l, ..., n~v -1}
zeros with the sum of their multiplicities Ne {1, ...,n — v — 1} on the open
interval (¢, T).
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Specially: There may exist such a solution y(t) of (n) having exactly n — v — 1
zeros with multiplicity 4 = 1 on the interval (o, Ty), which represents the maximal
possible number of zeros of the solution y(¢) of (n) from the bundle (S) for every
ke{l,...,n — 1} on the interval {t,, Ty).

Thereby may however also exist such a solution y(¢) of (n) from the bundle (S)
having no zero on the open interval (¢, Ty), namely, if n — k — 1 is an even
number.

It evidently holds: if the numbers n — 1 and &, ke {1, ..., n — 1}, are both of
the same parity (i.e. either both even, or both odd), when their difference is an even
number, then the functional system Y ,(¢) — and so also the bundle (S) of the
solutions y(t) of (n) — need not have any zero on the open interval (¢,, T,) at all.

However, if the numbers n — 1 and k are of different parity, when their difference
is an odd number, then the functional system Y, () and together with it also the
bundle (S) of the solutions y(¢) of (n) always have at least one zero on the open
interval (¢o, Ty).

Potentially maximal both for the occurrence of zeros of the solutions y(¢) of (n)
and for the number of zeros and the degree of their multiplicities evidently is the
bundle

Y () = u() S a0 o), S1)
i=1

where k = 1, i.e. the bundle with the lowest possible multiplicity of both end
points to, T; on the interval {t,, T, ) with the degree of the functional polynomial
YX_,(¢) being maximal: n — 2. Exactly this bundle may contain the solution y(t)
of (n) with the maximal possible number of zeros (and consequently the densest
distribution of zeros) on the interval {¢y, T().

Factorization of the bundle (S) of the solutions y(¢) of (n)

From what has been said so far we can see that just the analysis of the (n — k)-
parametric functional system Y., (¢) will be of decisive importance for our further
considerations. Here the point will be to find a mean enabling to penetrate into
the structure of an arbitrary solution y(¢) of (n) from whatever type of the bundle (S)
of these solutions for ke {1, ..., n — 1} giving at the same time a survey of the
existence, the number and multiplicities of its zeros. It is the factorization of the
functional system YX_,(¢) and thus also the bundle (S) or every solution y(z) of (n)
from this bundle.

Let us remark that the functional polynomial ¥ ,(¢) of the (n — k — 1)s¢
degree represents in fact an (n — k)-parametric space of all solutions of the
differential equation of the (n — k)th order, namely, of the same type as is the
differential equation (n), i.e. the equation wherein the basis of the space of all
their solutions constitutes the ordered (n — k)-tuple of functions
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[t .= 1(2), %= 2(p) o(t), ..., u(t) " "E2(), 0" T (D]

Hereby with the increasing k at the function #*(¢) in the form of the bundle (S),
the degree of the polynomial Y, .(t) — and consequently also the order of the
respective differential equation — is decreasing, until k = n — 1 when they vanish
at all. That is where the superiority of the differential equation (n) is lying in con-
venient for interpreting its solutions in forms stepwise reduced up to the individual
solutions of the differential equation (2).

The fact that ¥,*_,(t)is a homogeneous functional polynomial of the (n — k —1)st
degree in the functions u(t), v(¢) namely enables its interpreting (in agreement with
the fundamental theorem of algebra) as a factorization into a product of the
n — k — 1 functional binomials c¢;;u(t) + ¢;,v(¢) naturally with the complex
coefficients ¢;y, ¢;; (j = 1,2, ...,n — k — 1) so that

n—k—-1

B = 11 o) + )],

where ¢;; # Oforallj=1,2,...,n —k - 1.

The above assumption follows from the essential requirement C,_, # 0 laid
upon the last from the n — k parameters Cy, ..., C,_, € R occuring in a ‘‘summa-
tion” form of the functional system Y, ,(¢) (cf. Lemma), where, on mutual com-
paring both forms Y* .(¢) and ¥* (¢), we obtain

n-k-1
Cn-k = l_I Cjz.
i=1
Since all coefficients C,, ..., C,_, occuring in the (n — k)th parametric functional

system Y,_,(¢) are real, it holds for the coefficients Cj15 €5, being in the “product”
form if,f__k(t): to any pair of complex (imaginary) coefficients c;y, ¢;;,
je{l,2,...,n — k — 1} involved in a functional twoparametric binomial ¢;,u(t) +
+ ¢;,v(¢) there necessarily exists a binomial among the remaining functional
binomials, with such a pair of imaginary coefficients c,q, ¢,,, me{l, 2, ...,
n — k — 1} that both ordered pairs (¢;;, ¢;;) and (cm1> Cm2) are complex conjugate.
We constitute that both ordered pairs (c;y, ¢y;), (€21, ¢;5) of imaginary co-
efficients occuring successively in the twoparametric functional binomials ¢, ;u(t) +
+ ¢;,0(t), ¢y u(t) + cyyv(2) are complex conjugate exactly if ¢, is complex
conjugate to ¢,; and ¢, is complex conjugate to ¢,,.

Besides, there is required a linear independence of the alone coefficients in the
complex pairs, so that

Rele Iﬂ]ojz‘—IijlRCCjzzléo; j= ],2.
In consequence of the above property of coefficients the product of such two
functional binomials with complex conjugate coefficients is a real function having

no zero on the interval {t¢, T,)> and even on the whole interval I = (~ 00, + o0).
It is here either always positive or always negative (the latter alternative follows
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from the fact that a negative number may eventually be pointed out from the
complex conjugate pair of coefficients).
It holds: writing

€11 = ay + asi, €12 = by + by, €31 = ay — a3i, €22 = by — byi,

where a;, b;e R (j = 1, 2), so that
lesl=ley | =vaZ + a2, Lol =lcy| =+b2 + b2,

whereby a1b, — a,b; # 0, then we get for the product of two complex functional
binomials

[eqqu(t) + c20(0)] [eagu(t) + c20(2)] =
= (a} + a)) u(t) + 2a,b, + a,b;) u() o(t) + (b3 + b3) v*(t) =
= ey PuP(t) + 2| ¢y | | ez | 8(8) (1) cos @ + | ey |20%(t) cos? @ +
+ | ez 120%(t) — | cps 1202(t) cos? @ =
= [leg lult) + | ez | 0(2) cos @] + [| ez | 0(2) sin @]* > 0,

where @ = |argey —argey, | # kn; j,m=1,2; k=0, +£1, +2, ...; the ine-
quality obtained holds for all teI = (— 00, + ).
Remark: However, if we denote the real coefficients

A = a% + a%, B = 2(a’1b1 + azbz)y C = bi + bg
in a quadratic functional trinomial
(af + a3) (1) + 2asby + azby) u(t) o(r) + (b3 + b3) v*(0),

where a,;b, — a,b; # 0, then its nonfactorability into a product of two real
functional binomials follows from the fact that

Bz - 4AC = ~4(a1b2 - a2b1)2 < 0.

Two functional binomials with complex conjugate pairs of coefficients (¢;;, ¢;2),
(Cm1s Cm2)sJ # m3j,me{l,2,...,n — k — 1} will be termed the mutual associated
binomials.

The number of always two mutually associated functional binomials in the
functional system ¥*_,(¢) is always even.

The presence of any pair of mutually associated binomials in the functional
system f’:_k(t)decreases always by 2 the maximal possible number of then — k — 1
zeros of this system on the open interval (¢, 7). If v is the multiplicity of such
a pair, then its presence in the functional system ¥*_(¢) decreases by 2v the total
highest possible number of zeros on the interval (¢,, T,). In particular, ifn — k — 1
is an even number, it may happen that with 2v = n — k — 1 (no matter whether 2v
is a multiplicity of one pair or a sum of multiplicities of more distinct pairs of
mutually associated functional binomials), the functional system Y ,(¢) has no
zero on the interval (¢y, 7). For the occurrence (and a possibly multiplicity) of

76



zeros of the functional system ?:‘k(t) — and thus also of the bundle (S) of the
solutions y(¢) relative to (n) — will be only such a functional binomial

yi(t) = c;u(t) + c;0(t),

je{l,2,....,n — k — 1}, of interest, wherein both coefficients ¢;;, ¢;, are real
(with ¢;, # 0).

However in this case y;(t) always means a solution of the differential equation (2)
linearly independent with the solution u(¢) of the same differential equation on the
interval I = (— o0, + ). An immediate consequence of this is the fact that the
zeros of the any function y;(t) mutually separate with the zeros of the function u(t)
onL

Specially: between two points ¢y and T in {#,, T there lies exactly by one zero
of each function y(t), j€ {1,2,...,n — k — 1}. Then it is true that any simple
zero of yi(t) = c;;u(t) + ¢;0(¢), ¢;2 # 0, on an open interval (¢, T;) differs from
the (also simple) zero of yu(t) = cpt(t) + cmat(t), ¢z # 0, on the same interval
(to, Ty) if

Gt %2 l%0;  jme{l,2,..,n—k—1}j#m

Cm1 Cm2

and vice versa: if both functions y;(t), ym(t) on the interval I = (— o0, + o0) are
linearly independent, then their (simple) zeros are different from each other on I
and especially on (¢4, T;).

To the linear dependence of two functions y;(t), y,(t) corresponds the double-
multiplicity of their common zero on (¢, T).

Generally: the function y%(?), pe {l1,2, ...,n — k — 1}, has an p-fold zero on
(to, T).

Thus the maximal number of zeros of the solution y(¢) from the bundle (S)
relative to the differential equation (n) on the openinterval (¢, ;) mayben — k — 1,
whereby all zeros are simple altogether. This situation is relevant to the factorization
of the functional system f/:.k(t) into n — k — I functional binomials with all real
coefficients, always in twos (in pairs) linearly independent on I.

For every k€ {1,2,...,n — 1}, ne N, n > 1, exactly such a solution is called
a totally split up solution y(¢) of the differential equation (n) from the bundle (S)

having the form
n—-k-1

y@) =u*(®) TT [e;u() + ()]s
i=1
where ¢;y, ¢;;€R, ¢;, # 0, forall je{l,2,...,n — k — 1} with

€1 Cj2
Cm1 Cm2

#0

forjyme{l,2,...,n —k — 1}, j # m.
Such a solution y(t) has always for all k € {1, 2, ..., n — 1} the maximal possible
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number of zeros being simple and separating themselves on the interval (o, Ty>-
Hereat the sum of multiplicities of all these simple zeros on the open interval (fo, T1)
isexactly uy=n —k — 1.

If we denote yo(t) = u(t), y;(t) = c;iu(t) + c;0(1), ¢, #0,je{1,2, ..., n —k =1},
then the totally split up solution p(t) of the differential equation (n) from the
bundle (S) may be more briefly written as

n-k-1

y() = y5(®) jl='[1 y5(0)-

Any simple zero of this solution on the open interval (¢4, T,) belongs by one always
to only one from the functions y;(¢). Then every from these functions, obtained by
a certain choice of the corresponding constants ¢j;, ¢, €R(j = 1,2, ..., n =k —1)
in a twoparametric system of functions

leu(t) + Cjzv(t), ch # 0,

always represents any solution of the differential equation (2). All thus obtained
solutions of (2) are always among themselves in pairs linearly independent, whereby
each of them is linearly independent with the solution y,(t) = u(z) of this equation
onI = (—o00, + ).

Specially: It holds for k = I that a totally split up solution

n—1
y(t) = .Vo(t)jl;ll yi(t)

has the maximal number of simple zeros (namely n) of all solutions y(¢) of (n) on
the interval {t,, T ) at all. It represents the case of the densest possible distribution
of zeros that the solution y(z) of (n) on {¢¢, T;» may reach.

All of this leads us to believe that we can use various types of solutions y(¢) of the
differential equation (n) from the bundle (S) for all possible k€ {1, 2, ..., n —k — 1}
in solving k-point (I £ k < n) boundary value problems for this differential
equation, wherein before all the totally split up solutions are applied in achieving
the maximal number of zeros on the given interval.

An example of the factorized solutions

Below we show an example concerning a bundle of solutions of a seventh order
differential equation with all type forms for factoring the solutions inclusive their
totally split up solutions for every k€ {1, ..., 6} — expressed by means of always
two and two linearly independent solutions of differential equation (2).

The bundle of all solutions y(¢) relative to the seventh order diff. equation (with
a basis of the type considered) vanishing together with the function u(#) at an
arbitrary firmly chosen point to €I = (— o0, +0) is of the form
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6-k
W) = yg(t)jljl yi(0), ke{l,...,6},
(where for k = 6 we pose y,(t) = 1, eic., at right).
1. For k = 6 is y(t) = Cy§(t)
2. For k = 5is y(t) = Cys) V1"
3. For k = 4is a) »(t) = Cyo®)
b) () = (Vi)
o) ¥(t) = cysl) i) ya(r)
4 For k = 3 is a) () = cyo®) »1(®)
b) ¥(t) = C}’g(t)y?(t)
0) () = Cro® yi(t) y3()
d) p(t) = Cyol) y1(t) y2(1) y3(t)
5. For k = 2 is a) y(t) = Cyot)
b) y(t) = o) ¥i(®)
¢) ¥(t) = Cya®) yi(t) ya(t)
d) () = cya® ¥i()
e) ¥ty = Cya®) ¥1(®) y3(0)
£) y(t) = Cr30) y1() y2(1) y3(t)
g) ¥t) = Cy5(®) y1(2) y2(2) 3(t) ya(t)
6. For k = 11is a) y(t) = Cyo(t) y:1(t)
b) ¥(t) = Cyolt) ¥t
¢) ¥(t) = Cyolt) y1(1) ¥3(t)
d) y(t) = Cyo(t) y1(t) y2() y5(t)
¢) ¥(t) = Co(t) ¥3(t)
£) p(t) = Cyolt) y1(2) y5(6)
g) ¥(t) = Cyo(t) y:(t) y2(2) ¥3(t)
h) p(t) = Cyo(t) y1(£) (1) y5()
i) ¥(t) = Cyo(t) y1(2) y2(2) y3(2) ¥3()
i) &) = Cyo(t) y1(t) y,(t) ya(2) p4(t) y5(2),

where throughout Ce R — {0} means an arbitrary constant (parameter).

(*)

*)

*

(*)

*)

®*

The solutions denoted by (*) are totally split up for the corresponding k €

e{l, ..., 6}.
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O ROZLOZITELNOSTI RESENI JISTE DIFERENCIALNI
ROVNICE N-TEHO RADU

Souhrn

Price se zabyva rozkladem libovolného svazku oscilatorickych feSeni jisté diferencidlni rov-
nice n-tého fadu na soudin oscilatorickych reSeni diferencidlnich rovnic niZ§ich f4du (téhoZ typu)
aZ do rovnice 2. fadu vetné.

0 PA3BJIOKMMOCTI PEWEHUN MNO@OEPEHIUAJBHOIO
YPABHEHNUA N-T0 HOPAJTKA COHPEJEJEHHOTO THIIA

Pesiome

B paboTe H3y4aeTcst pa3iioKeHue Jrob0ro mydka KosieOmronmxcs peuleHnit quddepeHuHaIbHOro
YPAaBHEHHS N-TO MOPSIOKA OIMPEACICHHOTO THI B HPOW3BEHCHHE KOJICOMIOLIMXCS DeIueHud mud-
(hepeHIHAIBHBIX YPABHEHMIT HU3IOWX HOPSOKOB (TOTO Xe CaMOro Tmha) IO YPaBHEHHA 2-ro [o-
psiiKa BKITIOYUTEIHHO.
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