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ON GENERALIZED FORMAL
POWER SERIES

ALENA VANZUROVA
(Received April 4th, 1985)

In the present paper the usual construction of formal
power series is carried over to the case where "exponents"
form an ordered loop and "coefficients" form a structure T
with two binary operations + , . such that (T,+) is & commu-
tative group with a neutral element 0,(T-{0},.) is a quasi-
group, and a.0=0.a=0 holds for all a ¢ T. Especielly, if
the set of eoefficients is a commutative Cartesian group,
then formal power series also form a commutative Cartesian
group. Some of our proofe can be understood as a modern form
of the classical proofs given by H. He hn in /4/ for
power series with real coefficients and exponents forming
an ordered commutative group. We use transfinite induction
in contemporary version given in /2/, p.243.

Power series with exponents in en ordered loop and
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coefficients in a non-associative ring have been investigated
in /3/ by D. Zelinski.

A loop L is said to be ordered under a linear order =<
if the set L is linearly ordered under =< so that a < b imp-
lies c+a =< c+b and a+c < b+c for all a,b,c in L. Each ordered
loop is necessarily infinite. Some types of ordered loops are
mentioned in /3/ and /4/.

Let us investigate an ordered loop (L,+,4 ) with a neutral
element e together with a set T admitting two binary operations
+,. such that

(i) (T,+) is en Abelian group with & neutral element O,
(ii)  (1-{0},.) is a quasigroup,
(iii) a.0=0.a=0 for all a € T.

Denote by D(T,L) the set of all functions from L to T,f & TL,

such that the support spt(f):{xéELff(x)#O} is well-ordered
by the starting order  , that is, each non-empty subset of
spt(f) has a smallest element. Obviously D(T,L) # @ and the
elements of D(T,L) can be interpreted as generalized formal
Laurent series with exponents in L and coefficients in T.

Define addition and multiplication on D(T,L) by
(£+g) (x) = f£(x) + g(x) for all x € L,

§ £(y).g(z) for all x € L.

y+z=x

(f.g)(x)

It must be verified thet these operations are well-defined.
First, the set spt(f+g) is well-ordered by £ because spt(f)
and spt(g) are well-ordered under £ , and spt(f+g) is a sub-
set in the ordered set-union spt(f) v spt(g). The summation

in Z £(y).g(z) is meaningful because there is only a
y+z=x
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finite number of non-zero terms under the summation sign. In
fact, suppose an infinite number of such terms. Then it can be
found a countable set {(yj,zj) [jeN], W= {1,2,3,... } ’
such that y; € spt(f),z‘j € 8pt(g) and ¥ 5+ 5=X. Since

{yj | j€ M} is an ordered subset in spt(f) under 4 , we can
suppose without loss of generality that y. < Y %/ whenever

Jj < ke Now j < k implies 2y { 2., contrary to the fact that
the set {zj | de /N} is well-ordered under £ . Further, spt(f.g)
is well-ordered under £ . For if spt(f.g) would not be well-
ordered by £ , it had to contain & non-empty subset without

a smellest element, and it could be found a countable set of
couples (yj,zj) such that {yj | ie /NZ < spt(f),

{zj[ Je Nicsept(g) and y,+z, <« yirz5 whenever j £ k. Let ynl
denotes the smallest element in {yj |de /Nz, Yn the smal-
lest element in{yj |3 > n1{ etc. For any j<k,2 we have

inequalities ynk + znk4 . *+ sz_, n < ynk, which implies

. J
znk-< z, , & contradiction.

In can be easily seen that (D(T,L),+) is a commutative
group with the neutral element o determined by spt(o) = @.
From now on we shall use the notation D(T,L)* = D(T,L) - {o} .

== = aTa 2FAMS T8 la LT &V

(£.8)(c) = z f(f ).g(?), f ¢ spt{f), 7 € spt(g). Thus

f + Z =c
a 4 f ,b 4%, and ¢ £ a+b. Assume 3+b=a+b for some &,b & L.
If & {a, then £(8)=0. The other inequality a { 3 implies
B £ b and consequently g(b)=0. Therefore &=a,b=b, and it must

be (f.g)(a+b)=f(a).g(b) # O, We get a+b € spt(f.g), so that
¢ 4 a+b, Thus c=a+b.

EEf a £ b and a#b we shall write a 4 b.
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Proposition. Let L be_an ordered loop and (T,+,.) a structure

satisfying (i)=-(iii). _‘{hg_n_(D'(-TTL.)\,‘T)“i;";”qga_s.i;g‘rgug.a T
For the proof we shall use the theorem on definitions by

trensfinite induction in the following form (see /2/, p.243):

Let S be a set, of a given ordinel, f a get of all S-valued

? -sequenceals for all $§ £, and H: t§—>S a given map. Then

there is a unique S-valued (L +l)-sequence U such that

(1) u(L) = H(in(c)) for all ( &< .

Proof, We shall show that equation

(2) f.h=g

has a unique solution h € D(T,L)* for any given f,g € D(T,L)%.

(The case h,.f=g is similar.)

Let S=L X T. Assume «£ is the least ordinal not correspon-
ding to any well-ordered subset in L. More detailed, if A is
the set of all well-ordered subsets of (L,+,%£) and 4 the set
of their ordinals, then 4 is equal to W(«£) for the above ordi-
nal £ . Let 2 : L XL —>L be a map given by A (u,v)=wi=u+w=v
end T : T X T—>T a map given by 7’ (a,b)=c )a.c=b. Further,
let the map G :§ —» T" be given as follows. For every £ -
sequence P=((a ,b ))“f of if withsf #0,a, € L,b, € T and
(3) a[l‘i‘ aLZ whenever () ¥ (, (i,e.,(ab)uf injective)
let

G(P)(a/)=b, for a1l (<,
G(P)(w)=0 for all u € L - {a,plu_f%,

whereas set G(P)=o for sll remasining P. Now define our map H

1) 1¢ f is an ordinal, then W(f ) denotes the set of all

ordinals less than f .« If moreover S is a non-empty set,
then an S-valued f -sequence is a map from w(f ) to S.
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by H(P)=(A (min spt(f), min spt(g-f.G(P)),
T (£(min spt(f), (g=-f.G(P)){min spt(g~f.G(P))))

for 1l Pe¢ with g-£.G(P) # o,

and

H(P)=(e,0) for all Péig with g-f.G(P)=o0 (recall that e is

a neutral element of (L,+)). By the Theorem on definitions by
transfinite induction, there exists a unique (<« +1)-sequence
U=((z, ,r )) o 4 4 eatisfying (1), i.e., U(L)=(z, ,r )=
=H((z, ,Ty )"ZU' ). Let us denote y=min spt(f),U, =U | W)
h, =G(U, ),g, =g=f.h, for all (LA +l. Let x, =min spt(g, )
whenever g, # 0,(LAL+L. Clearly, if x, is defined, then
£(y)er, =g, (x, ) and

(4) y+z =x

t

Furthermore, h, : [ M. (zy) =ryfor 420,
h, (z) = O otherwise.

The proof continues in five steps.

(5) f € W(L+1) with U(() # (e,0) for all (& W(/4+1).
Then

(6) g, (x)=0 for ell x < x, and (< /f+1,

(7)y if %4(. £ f 41 end x £ xq then g, (x)=0,
(8) g, (x9)=0 for 7L (£[f+1.

(6) is trivial. By properties (4) and (6),

n(x)
g (x)=g(x) - (f.hL Hx)=g(x) = £.(y .)"hu {z

)
Jl fJ ’

$i

where

¥, vz, =x,y,. € spt(f), end z( e spt(hL).
§J gJ > d 2 J
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Since y < ;yf _ and yf . +z§.-4 x7 =y+z7 , it must be
J J J

2, 4 Zg . Therefore g, (x)=g,( (x)=0, which proves (7). Simi-
larJconsiderations lead to (8).

S tep 2. For an ordinal £ satisfying (5) the sequence

(z,) [ <A+ is strongly increasing. Because of (4) it suffi-
ces to show that (xb )L < A+l is strongly increasing. To prove
it we use transfinite induction: Let satisfies (5). Set X =
{LIL € W(p +1) and (f((@x £ x, )f . Assume ( £ f +1
such that W(( ) < X. We must show that ( € X. For this, suppose
there exists f & ( such that x, 4 x.. By (7) this assumption
implies g, (x, )=g¢ (x, )=0, which contradicts (6). Hence

xg 4 x, . By (8), g, (x¢)=0. But g, (x, )#0, thus the
equality cannot occur. Therefore ( ¢« X, indeed. That is,

X< W(ﬂ +1), Since the other inclusion is trivial, the assump-
tion §< ( [ +1 implies xg { x, as required.

St ep 3. There exists f ¢ W(K+1) with U(f§ )=(e,0). In fact,
suppose U( () # (e,0) for all ( { { +1. Then we can express U
in the form U = ((z ,r ))64‘(&, where (z )Léa(+1 is by
step 2 a strictly increesing L-vealued (« +l)-sequence. But

{zL [te L +l§£A is a well-ordered subset in L with the ordi-
nal { , a contradiction.

Then h=h; =G(U o) is a solution of (2). It is clear that
h e D(T,L)*. Since U(f°)=(e,o), the equality g-f.h=o holds.

Ste p 4. (Existence of_solution) Let f o~min {f[U(f )=(e,o)} .

Step 5. (Uniqueness). The proof of unicity is based on
unique solvebility of all equations (4) and uses transfinite ,
induction agein. QED.

Remarks. Many algebraic properties of the original structu-
re (T,+,.) are preserved by passing over to (D(T,L),+,.). If
T has associative or commutative multiplication, D(T,L) has
the same property. Also distributive lews in (T,+,.) are
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preserved in D(T,L). If T hes an element 1 such that x.l =

= l.x=x for @ll x € T, then D(T,L) contains an element j such
that j(e)=1, j(x)=0 for all x#e,x € L, If T is a ring without
divisors of zero, then D(T,L) is also & ring without divisors
of zero. If T is a division ring, D(T,L) is a division ring,
too. If T is & commutative Cartesian group, then so also is
D(T,L). These facts permit a construction of some non-desar-
guesian projective planes yielding convenient homomorphisms
of projective planes.
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SHRNUT{

ZOBECNENE FORMAINf MOCNINNE RADY

Alena VANZUROVA

Cldnek vychézi z klasické préce H.Hahna (z r.1907) a z
&lé4nkd D.Zelinského (z r.1948). Ukazuje se, %e obvykld kon-
atrukce zobecninych formdlnich (Laurentovych) ¥ad dévé uZited-
ny vysledek i v pripadé€, Ze exponenty jsou prvky z usporéddané
lupy a koeficienty tvo¥{ strukturu se dvEma bindrnimi operace-
mi (s¥fté4ni a nésobeni), pridem? sditéni tvoi{ abelovskou gru-
pu 8 neutrdlnim prvkem O, nésobeni tvo¥{ na nenulovych prv-
cich kvazigrupu a sou&in prvku O s libovolnym prvkem je opét
0. Zvolime-li koeficienty v komutativni kartézské grupé, tvo-
#{ Laurentovy ¥Fady opét komutativni kartézskou grupu. Této
skute&nosti lze vyuZit ke konstrukci p¥ikledd netrividélnich
homomorfismi velmi obecnych projektivnich rovin.
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PE3UME
®OPMANBHHE CTENEHHHE PS1H
A"EHA BAHEYPOBA

CraTbs ucXOonUT U3 paboT XaHa u 3eJuMHCKOTro. Iloke3nwBaeTcs
YTO TIDUBHUHES KOHCTPYKIMS CTeleHHHWX PAJOB gaeT NoJesHu#t pe-~
3yJAbTaT N8¥e B CAyYae KOTrJ& IKCHNOHEHTH NpUHaLNeXaT Ynopsano-
ueHHoll ayne u kosdpduumenrts cocraBaspT CcTpYKTYpy (T, +,.)
BHMOJHANUYK crenybuue ycaoeus: (T, +)-kOMMyTaeTUBHad rpynna
c HeyTpaJsbHuM 2JeMeHToM O,a., = O,a = 0 aaa Brex a€T u Bce
YoHyJeBHEe OJEeMeHTH 06pas3yoT KBa3Urpynny. Ecayu MCXOLMUTHL U3
KOMMYTaTuBHO{ KapTesuaHckoit rpymnm (T, +,.), TO CTeneHHuNe psa-
a5 06pa3ynT ONATh KOMMYTSTUBHYD KApTE3MEHCKY® Ipynny.
Tor G8KT MOXHO NPUMEHUTb K KOHCTDYKIMM TpUMEpPOB roMomopdus-—
MOB NpPOEKTUBHHX INJOCKOCTelk.
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