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1. O.Bordvka /1/ has introduced the concept of a (first)
phase of the equation

vy’ = alt)y., qe €%, - (q)
whare jr=(a,b) (~o< a<bg =o), with C"{j) and C"(J) deno~
ting the set of real end complex functions, respectively, hae
wving continucus derivatives up to and including the order n
fn=0,1,2, coo) on j» There were thus given a reel form for
a gzanspal 3o0luticn the above equation together with & neat
description of the structure of phases of (q) in applying a
cercain decomposition in the set of functions of class Ca(J)
with the derivetive different from zero on j. The phases of
{q) appeared to be exceedingly suitable to studying global
properties of homogenous linear second order differential
2quaticn, 8.9, global transformations, limit circle classifi-
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cation, stability of solutions, decomposition of zeros of so-
lutions, Floquet theory etc.

This idea inspired the author to introduce a (first) pha=-
se of the equation

y'* = Q(t)y, Qec®(j), ImQ(t) # O, (Q)

in a certain analogy with the above real cese. Thus there were
given a form of the general solution of (Q) (Theorem 5 and to
it related Theorems 6, 7, 8) and a description of phases of
(Q) in Theorem 4, Next a proof is given for the fact that the
phases of (Q) have properties analogous to those of the real
case (Lemma 3, Theorem 3), yet it is also shown that the pro-
perties of solutions of (Q) have no analogies with equations
having a real coefficient (Lemma 2, Theorems 1, 2, 9).

2, Let MCR xR be a subset of the Cartesian product
RXx R and let m(M) be the Lebesgue measure of the set M, Then
the validity of the following Lemma may be verified without
difficulty,

Lomma 1, Let a c... < EnCoeodt ] <ty ty eon ¢t ese < b,
&iﬁat-n = a, }iﬂ t, = b. Let x = xn(t), y = yn(t) be_real

functions continuous_first derivatives_on the interval
(tn-l' tﬂ)' ne0, : 1, z 2, oo o §e_t.t_:i_.n“g

M= {(x.y)z xmx (t), y=y,(t), t e(tn_l,tn)f CRxR ,

M:= Ej Mn »
Yiglds

n(M)) for each n
and

m(M) = O,



3. Let us look now at some properties of solutions of
(Q). The trivial solution of (Q) will be excluded throughout
this text., It is obvious that to any two complex numbers Yo!
y;e C non-vanishing at the same time there existe a unique so-
lution ymsy(t) of (Q), defined on j and satisfying the initial

conditione y(t )=y, y'(to)-y; at a point t € j. It is next
obvious:

(i) The zeros of any solution of (Q) (so far they exist)
have no cluster point in j;

(ii) Solutions u, v of (Q) are linearly dependent exactly
if wim uv’ - u'v = O on j;

(iii) Let u be a solution of (Q) with u(t) # O for
te (al,bl)c jo Let t ¢ (al,bl) and let us set
t

v(t):= u(t)S 2, te(ayb)) . )
o, U

Then v is a solution of (Q) on the interval (al,bl) and
uv’ = u'v = 13

(iv) Let Ql(t):- Re Q(t), Qz(t):n Im Q(t), t€ jo Then
the solution y(t) = yl(t) + 1y2(t) of (Q) is equivalent to

the solution (yl(t), yz(t)) of the system of differential
equations

Yi. = Q;(t)y; - Qx(t)y,
Y'z' = Qz(t)yl + Ql(t)‘/z .

Theorem 1. Equation_(Q) has at_least_one solution with_ng
zero _on j.

Proof. Suppose to the contrary that every solution of
(Q) has at least one zero on j and suppose u, v are indepen-
dent solutions of this equation, Then for any two complex
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numbers c, d, non-vanishing at the same time, the equation
cu(t) + dv(t) = O has at least one raot togmzc{c,a))e 1. Yhus,
to every AcC, A # 0, there existe ¢ ¢ J 2uch thet Aufty) =
- v(tl) = 0, If u(tl) = 0, then v(tl) = 0, which is in contra-
diction to the linear independence of the solutions u, v of

vit,)
{Q). Therefore u(tl)ﬁo and — 1 . A, By the assumption
uf{t,) )
there existe o t,€ j: v(ty) © O, hence ——— = 0, The selu-
u(ty,)

tion u of (Q) has at most countably many zeros on j end let
u(tyd = O with 8 eeo £t [ CoseadtyLosedf 0 0oe<hs Tha

v(t)
function

!
maps the 88t j = { coee t__sseeot vesect, sers
u(t) 1 =) ) o f

on the set C, Let u = ul{t} + ﬁua(t), vit) = vlgt} + 1v2(t}

vaftdu,{(t) ¢+ wof{t)u,(t
and M, = {(x.y): X = 1 1 ) 2(") AR .

lu(t'-)[2

. té(timlnti){ ( RxR »

. vz(t)ul(t) - vl(t)uz(t)

2
lu()]
If the number of terms of the sequence oo Tyo Spoese 18 fi=
nite with t_ the greatset of them, then M :s { (x,y);

X = Vl(t)ul(t) + Vz(t)uz(t) . Vz(t)“l(!) - Vl(t)ug(t)

e
! z
Ju(e)[? ju(ey] #
te (tm,b)}c'R xR, If the number of terms of the sequence
fgrto)etogrece 18 finite with ¢ __ the asuallest of them, then
vl(t)ul(m) @ vz(t)uzgt)

ok

Mo te [ (xay)s x =
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vz(t)ul(t) - vl(t)uz(t)

luge)] 2
Mem %J Mi. By Leama 1 wm(M) = O, contradicting thus the fact
thet m(H) = a(Rx R) = o< , Honce, there exists a solution of
{Q) navino no zere on je

. te(a.ﬁ_n)}cﬁxl&, Let us set

Corollery 1. The exist two independent solutions of (Q) having

foiat A R iR -
0o _Zero on _j.
AL S " L.

Proof, 8y Theorem 1 thers exists a solution u of (Q),
t
ule}fs for v € jo Let £, € o Setting v(t)= u{t) S
o
t € j. yields that u, v are independent solutions of (Q). Let
ug essume thet every solution of (Q) independent of u has
a zerc on j. Then the equation

ds
u2(s)

£
sty = u(t) j 9% =0 ‘

2
(
€ ut(s)

has for svery A€ C at least one root on j. With respect to
t
: f ds
the assumption u{t}#0 for t ¢ j, the function J —
u?(s)
o
maps the interval j on the set C in contradiction to Lemma 1,

by which this functdon mepe the interval j on the set of measu-
re 2erov.

Lemmg 2. The functions u, v_ere independent_solutions_of (Q)
and v(t) + vo(t) # O for t € exactly if u+iv, u-iv arg
indepsndent 2olutions of (Q)_having no_zero on_j.

L) - wn e o e

Proof., (=>) Let u, v be independent solutione of (Q)
and ua(t) + vzit) # 0 on j, Then u+iv, u-iv are solutions



of (Q), wie (u+iv)(u=iv)’ = (u+iv) (u~iv) = 2i(vu” = v7u) ¥ O,
hence u+iv, u-iv sre independent solutions of (Q) and
(utiv)(u~iv) = v + v2 # 0 on i

(<
having no zero on j. Then u, v are independent solutions of
(Q) and wivla (u+iv)(u=-iv) ¥ O on j.

) Let u+iv, u-iv be independent solutions of (Q)

Theorem 2. There exist independent solutions u, v of (Q),

P a1 e

such_that u™(t) + v°(t) ¢ O for t € j,

Proof, By Corollary 1 there exist independent solutions
Y1+ Y of (Q) having no zero on j. Set u(t)::-}(yl(t)+y2(t)),
v(t):= {L(ya(t)-yl(t)). t € jo Then u, v are independent so-
lutions of (Q) and since y1-u+iv. y2=u-iv it follows from
Lemma 2 that u® + v # 0 on j.

4. In this part we introduce the notion of a (first)
phase of (Q).
Definition 1, Let u, v be_independent_solutions_of (Q),
u€(t) + vo(t) # 0 for t € j (the existence of such solutions
is_guarenteed by Theorem 2) and let w:= uv’ - u’v, We_say_
that_a function o € C°(j) is_e_(first)_phase of the basis
(u,v) of (Q) if

) w
d'tx) i ¢

u(t)
and tod (t) =Ty
We_say_that & funclion £ is a (first) phasg of (Q)_if there
exists_a _basis_(u,v) of (Q) such that o is_a (first) phase
of_the_basis_(u,v).

at_a_point t ¢ j, where v(to) ¥ 0,



Convention. Let £ be a phase of (Q). Then o(,'(t) ¥ O for

t € jJ and from the theory of functions of the complex variable

then it follows the existence of a continuous unique branch
o' (t). Hereafter [/{'(t) is used to indicate a continuous

unique branch of the square root of the function o(,l(t).

In analogy with the real case (see e.9./l/) we can prove

Lemma 3. Let o(, be_a_phase_of a basis (u,v) of (Q). Then
(1) tgld (t) =28 for ey - {t: v(t)=0, te 3] ;
v(t)

(ii) u(t) = k_S__]_.!lﬂ(,_(t_)— 0 V(t)= kac !‘.h—.r_ te
VL (t) Vi (e)

and k€ C is_an appropriate numbgr:

(1i1) L (t) + nW

. wherg n=0, %1, %2, ... exactly all
Rhasgs_of the basis (u.v)

of (E).

Theorem 3. A function o is_a_phase of (Q) exactly if it is

- e e e - -

2 solution of the nonlinsar giffgrential equation

- {dorf - L = (3)

I 2
on j., wher {o{.t§=lim_(fl_-§.<i(—’(—i) is the
2 L (1) 4\ £ (¢)

Schwarzian derivative of  at_the_point t.

Proof, (==>) Let { be a phase gf (Q). Vhen there exists
a basis (u,v) of (Q) such that ul v £0Oon jand {'(t) =

w 04 .
== ———  for tej and Wi= u¥ =~ u v, It may be ve-

uz(t)+v2(t)
. . ’LII vé m
rified after a computation of the functions ’ from the

w

’ ~
formula L= - that o(é Ca(j) and o/ 1is a solution

u2+V
of (3) on j.



R Y
((==) Let { be a solution of (3) on j. Then L€ C(j),

£ (t
L()AO for e §. Let us set u(t)r= SALL) | yri),= SOBALL)
o i at u et u{t): 0 s )

for t¢ j, A direct calculation shows that u, v are independent

solutions of (Q) for we= uv’ « u’v = -1, Nex: u? 4w ,,.l',u .
o
u(t,)
hence o w = L With tgo (t_ ) & cwwwiew at a polnt
2 2 o vl )
u + v Yo

t,€ 3, where v(to)ﬂo. Consequently, ¢ is & phase of the basis
(u,v) of (Q) and therefore alsc a phase of (Q).

Corollarx 3. Letd be_a_phase_of (Q). Then_alsg the func

o + ¢ are phases_of (Q) for every ce¢ C,

Proof. The functions % £ + ¢, c¢ C, sre soluticns of (3}
on j and thus by Theorem 3 they are phases of (Q).

Theorem 4. Let { be_a_phase of (Q). €1s €0 Cgs Cu€ L,
€14 = e2¢3 # O gnd

(clcos«((t)+c231m((t))2+(c3cos»((t)+c4sin((t))2;‘0 for ve& 3. (4}

Let t 3 and dec, Ih_g_n__t.t_\_e__fgngt_i‘og_ﬂ defined ae

4(t) cCq - clc;t
/Z(t) = g 5o dz
R (cjcos z+c sin z)2+(c3cos z+c 8in z)
o

tej . (%)

4s_8_phage_of (Q). Here the integral on the_righizhang 3ige
of_(5) is_taken along the_curve z =  (t), © € j.

The converse_is _a_l_s_o‘t_qug_:_Lgt/( be_a_phess_of (Q). Then
there exist numbers €1€2:€3:C4, dEC, €1C,4=Co0#0 Such that
(4) ang (5) hold, where integral on the righi-hand sidg of

(5) is_taken alaeng_the_curve z = « (t), t& jo
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Proof. Let { be a phase of (Q), £/ be defined by (5), where
cl,cz,c3.c4.d€C. c1c4-c2c3;l0 and (4) be true, Setting yl(z)z-
1= c,c08 z + C8in z , yp(z) 3= czcos z + c,8in 2z, z¢€ C, yields
that Yy Yo @re independent solutions of y"- -y (on C) and
Wisyly, = ¥1¥3 = €€3=¢1C,. The following formulas

) Y1Y1 * YoY2

0'a —an LA YeY2

2
(Yl + Yg)z

. o 2 2 *2 2 2
(y1Y7 *+ YoY5) YiT tYs Y]~ Y
f‘,"a‘” 11 2Y2 - 2w 1 2 1 2

(yf + v%)3 (yf + yg)2

hold for the derivatives of the function

0(z) = = vz €C
/ v2(z) + y3(2)

where C; = { z; z¢€C, yf(z) + yg(z) ¥ 0? « Thence

1 3 ' 2 2
-_2- +-;(-i0-—) - g = -1, (6)

f

From (5) and with reference to the definition of the function
we obtain for t € j¢

Ly = L0 0[],
['(t) = «(z(t)o [€()] +d" () [L(o)],
Lr(e) = £'3(¢) ?“ [£(e)] + 3.,((t)1,'(t)€ [“()]+ L")y [K()],

This yields ﬂ (t)£ O for t¢ j and Ke %3(3) which on using (6)
gives

-1 % + %(mx) -1 - [%%%]]& ({)uiﬁ%}g{&n i:%]*
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(ORI T

i Sgmdo - .,ua] -Lloge) <[ % R0m) ¢
| L “ 1

( [[‘f(”) HLABI]n - L 48 (LY

(L8 - £ - b,

2

-
+

e

thus
[F
- {/Snt{ "/S (t)‘Q(t)l téJl
and following Theorem 3 we see that K is a phase of (Q).

Suppose ﬁ is a phase of (Q). By Lemma 3 the functions

ﬂﬂ.ﬁ.‘.ﬂ 5-93.’.(..5-‘-)- as well as the functions .—-s-ﬂ—ém

Vote) Ty V()
[o{1:] t

are independent solutions of (Q). Consequently,
WUFI p Q) q Y
ther xist numbers C1+C51C3,:Cy €C, €1C4 = CC3 = 1 such that

siné‘t]I= chosL‘t} + czsinfﬁt)
VA6 V(e Vo (e)
cos () . . cosd(t) , . sind(r)

e 3 Vo) 4 VT

" Thence it follows that

1

) L)
+(%wmﬂn+c5mlun2].

(cycos L (t) + czsj.no((i:))2

hence (4) is valid, which after integration yields (5) where
to€3, dim [ (t)).
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Theorem 5, Let L be_a_phase_of (Q). Then_every solution of (Q)
Dhay be written either as_

sin( L (t) + c,)
V() ‘
liToL(t)
C3 R I
VL' ()

where 7-1_ 1, Cyr €pr C3 € c, clﬂo;ics. Also_conversgly:_ The_
f

(8)

o e e - e am e wn e e

functions defined by (7) and (8) are solutions of (Q) for

arbitraly complex numbers c;f0, c,, c3é0 and for any numbgr

T rie L

sin{ (1) cosd (v)
Ve T Voo

pendent solutions of (Q)., Hence, all solutions of (Q) may be

ky sin L (t) + k, cos o (t)

VL (t)
vanish at the same time, The next part of the proof will be
devided into two parts:

are inde=

Proof, By Lemma 3 the functions

written as

., where kl, k2 € C do not

k .
(i k2+k2;‘0andletcosc=-—-]-'—-—--,sinc =
1 2 2

2
Vi2 k§
k, :
_ _ ‘[—‘2 —
T mrmm———— Cl = kl + k2 o Then

2. 2
VKT + k§

oo

kysind(t)+k,cosd(t) . c1

[cos c, sind (t) + sin czoé(t)] =

ol(t) Vl(t)
= ¢ sin‘ K‘t)-ﬁcg)

(ii) kf + kg = 0, Then k; = 1Tk2, where ’f’z = 1, Setting

c3t= k, ylelds
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klsinx(t) + kzcos((t) cosd(t) + 17sin.((t)
- = C =

3
VL (x) V &i(t)

174
= ca -.{'-——.E:-)-
7483

Inserting this into (Q) readily verifies that the functions
defined on j (7) and (8) are solutions of (Q) and this for eve-
ry complex numbers clﬂo, Cp: Co¥0 and for a number T, T e 1.

Corollary 4. Let £ be_a_phase of (Q). Ihen

y(t) = b ()¢

VL(t)

is_the general solution of (Q).

o en wn EATEn e o W wn G e o o e 1!(,(t)

Proof., By Theorem § the functions y;(t):=

1(t) czl-i’((t)). ted, cp.ceC ,

3

: L(t)

yo(t)s= .A:f.(.:l , t& j, are solutions of (Q) and from Yin =
Vi (o) '

- ¥;y2 = 21 then follows that y;, y, are independent solu-

tions of (Q).

Theorem 6. Let «{ be_a_phase_of (Q), t,€ 3. Then_all solutions

Yy ‘.’i (Q) which may be written as in_(7)_are determined by_the

Anitisl conditions_either
y(t,) = 0 ‘
o 1 ‘c( to)

or.y (t,) = c (K0), y (t,)mc(L'(t )cotg(K (t5)+c)= § mmd)
o(.(to)
where c,€C is_such a number_that sin(«L (t )+c,) # O gnd all

solutions y of (Q) which mey be written in the form of (8) are

- wn o - en o o

degermingd by the initisl gonditions y(to) = c(#0), y°(t,) =
L'(tg)

et - 3 T
[+]
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Proof. Suppose y is a solution of (Q). If y(t;)=0, then
y may be written in the form of (7), only. Let y(to)-c(ﬁ 0)

sin( A (t) + c,)

and y may be written in the form y(t)-cl T —————

rany

h 40 itabl b Th s10(L (tg)veg)
where c » C, 8re suitable numbers, ON CuCy e = warwmrwe
1 2 1V o)

and y"(tg)=c; (A1) erby (dlE) ve) - 4 a(fi%)

1L (t)
If y wmay be written in the form y(t) = c3 VZTTF)
where c;#0 is a suitable number and 7' a1, then
AT4 ()
VL (xo)

and

c-ca

Y (ty) = c3 (A'.To((h\";‘,w(b;).

Theorem 7. Let y be_a_solution of_(Q). y(t)¥#0 for te€ j. Then

there exists e phase £ of (Q) and (0) k€ C such thag
08 L (t)
Va(e)
Ihg converse_is valid, toos Let £ be_a_phsse of (Q).
(Of)ke C and y be_defined by (9)._Then v is_a solution of (Q)
and y(t)Fo for te j.
Proof, Suppose y is a solution of (Q), y(t)¥O for te j.

Then the existence of a solution u of (Q) follows from the
proof of Corollary 1 saying that the solutions y, u are inde-

y(t) = k tej . (9)

pendent and u(t)#0 for t& j. Set Us= éf (y+u), V:-% (y=u).
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Then U,V are independent solutions of (Q), Uz(t)+V2(t);l0 for
te j. Let £ be a phase of the basis (U,V) of (Q). Then

u(t) = k aind(t) , V(t) = k -9-93—'5-(-5-1 , where kyO is an appro-
VL' (t) Vo (t)

priate constant, It then follows

£) s 4 sand() o, L2400

V) V(e

The second part of the Theorem follows from Theorem (5).

y(t) = V(t) + 1U(t) = k S94L

Theorem 8. Let y be_a_solution of (Q). Then_ there_ exist_a phase (.
of_(Q) and a number cFO such_that

y(t).csé.".f.m . tej .
Vi (e)
Proof, Suppose there exists & number t,€d such that
y(to)-o. Let K% be a phase of (Q). Then the existence of num-

. 40 b h () sin({,(t) + c,) i
ers c,#0, c, such that y(t) = ¢, ~——e—————S, t '
1 2 AT

follows from Theorems 5 and 6., To get the statement of the
Theorem we set { 1= & + c,.

Let y(t)¥0 for t¢ j. Let t,€J and A be chosen such that

t
(‘Y' -—%3-— + A)2 # - 1 for t¢ jo Such an A always exists as
t y(el t
it follows from Lemma 1. If we set z(t):=y(t)( f ~P ¢ A),
v, Y (s)
t¢ j, then z is a solution of (Q) and yz(t) + zz(t) =
t
- yz(t)(1+(A+ X ~ds )2)#0. Suppose d is a phase of the’
t, y2(s) :
basis (y,z) of (Q). Then there exists a cgO such that
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y(t) = ¢ sind(t)  gor yc 3o

Theorem 9. There exist _j._ng_age_rldent solutions u, Vv _gf_(Q) such_

that u(t)v(t)#0 and u(t)sv(t) for te j.

Proof. Suppose £ is a phase of (Q) and set Mi= {(x,y)x
x = Red (t), y = Ind (t), tleCR x R, Following Lemma 1
m(M)=0, hence there exists a number d such that £ (t) # d+k 7",
tej, ke, 21, 2 2,,.. . If we set ff 1= £ - d, then, by

LA mih(x)
VA (x) VA (v)
solutions of (Q)., Evidently, u(t)v(t) £ O for t¢ j and the
equality u(t)=v(t) holds for a t=st, (& j) exactly if

Theorem S, the functions are independent

eaﬂ(to) =1, i,e. exactly if for an integer n, ﬂ (to) = n(lr.
which is a contradiction. Consequently u(t)f v(t) for t€ j.

5. Applying the theory of phases enables us to find con-
crete examples of equations of type: (Q) whose solutions have
some pregiven properties, Thus, there exist equations having
exactly one solution (up to a multiplicative multiple) with
an infinite number of zeros and every further solution has a
finite number of zeros, only. This becomes readily apparent
from the following example,

Example. Setting o (t):= t+ -Il-z sin t, tc R, it yields
+t°

L) =1+ 1(-?-‘2%5-~- ﬁ—%’)—'-z-t—);‘ 0 for teR and £ € T3(R).
+ +t

Suppose Q(t)s= -{o(,t} ~{L*(t), téR, It then follows from

Theorem 3 that  is a phase of (Q) and we get from Theorems 5
and 6 that every solution of (Q) having a zero is to be sought
sin( { (t) + co)
R ———

Vo ()

in the form. ¢y , where cl(;!O), czec. Investi-
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gating the zeros of solutions of (Q) leads therefore to inves-
tigating the roots of equation

sin ({ (t) + a) = O, !
where a € C, Then sin/ (k7) = sin (k9 + -—-—-!--21 sin k7)) =
1+ k<7

=ein k% = O for every integer k, hence the solution u(t) =

= -a-!",;,_"((--f‘-’_g of (Q) has an infinite number of zeros. Suppose
a = a; ¢ 1a,60 and the equation sin (0((t)+al+182) = 0 has an in=-
finite number of solutions on R, Then there exists a sequence
t, } » t,€R, lim [t,| = == and a sequence {8, of integers e
such that

,(_(tn) +a8) +ia, = snT '
8o that

o
t +al-enjl .

n

sin t"

Tr + ‘2 - 0, n-l.2.3.ua o
+t

This yields t, = on'jT - a), 8in t_ = -a2(1+t;‘:) whence it fol=-
lows (as far as a,¥0) lim| az(l+tn)| = oo , which, however,
contradicts the boundedness of thq function s8in t, If a, = o,

8
then sin t, - sin (sn?T - al) = ~(=1} Ngin ay =0, whence a =

=a = pl”, where p is an integer. Then, naturally, Si8 £ (t)se)

sin( £ (t)+p T P (%)
- 820(2(t)spt) . (=1)"u(t). Consequently each solution of (Q)
V,(’zt;

not being of the form c 3.’;.’.‘-’.(.‘.!.1 , where (Of) c¢ C have an fi-
(£ (¢)

nite number of zeros on R,
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SOUHRN

FAZE DIFERENCIALNT ROVNICE y”“= Q(t)y S KOMPLEXNIM
KOEFICIENTEM Q REALNE PROMENNE

SVATOSLAV STANEK

V jisté analogii s redlnym piipadem je v préci zaveden
pojem fé&ze rovnice
y'T = Q(t)y, (Q)
kde Q je spojitd komplexni funkce redlné prom&nné t definova=-
né na intervalu ji:=(a,b) (-0 £ a<b £ o),

Je dokézdno, Ze kaXdd rovnice (Q) mé nezdvisla Fedeni u,
v spliujici uz(t)+v2(t)f0 pro te j (vdta 2)., Na zéklad& toho-
to vysledku je zaveden pojem féze rovnice (Q). Funkce « se
nazyvé fdze rovnice (Q) jestliZe existuji jeji nezdvislo Fede-

1u, kova, 2e u2(t)+v2(t)Fo a «(t)=- » -
ni u, v takov e u )"'V()f a (t) m(wx

t= uv’= u’v) pro te j a v bodd to€ 3, kde v(t )£O je tgl(t,) =

u(to)

v(to)

V préci jsou nalezeny vSechny féze rovnice (Q) a uzZitim
féze rovnice (Q) je uveden tvar jejiho obecného FeSeni., Dale
Je féaze vyuZito p¥i vySetfovédni rozloZeni nulovych bodd reSe-
ni rovnice (Q).
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PE3OME

®A3A NVGSEPEHLMAILHOTO VPABHEHMA y’ ‘= (t) y C KOMIUIEKCHHM
KO233JIIVEHTOM @ BEWECTBEEHOV TEPEMEHHON

CBATOCJIIAB CTAHEK

B HexoTOpO#t aHamoOrmu c BeleCTBEHHHM CAy4Y8eM BBOLUTCS B Pa-

Sore nOHawmé dasn ypeBHeHUSs
y'=Qq (%) 3, (Q

rie Q - HelmpepHBHAA KOMIVIeKCHas QYHKLUsS BeleCTBeHHO! NepeMeH-
"ot Ha uHTepBante J : = (&,b) (- £ adb £ oo )./okasaHo, yTO
Kaxnoe ypaBHeHue (Q) MMeeT Hes@BMCHUMHe pemeHMs U ,V TaKHMe, UTO
ua(t)+V2(t)£ O nans te€j (reopema 2). Ha sroM pesyabTaTe OCHO=
BaHO noHsTHe $asm ypeBHeHus (Q ). dyukuus £ HasuBaercs $asoii

ypaBHeHus (Q ) ecau cymecTBYWT eé He3sBUCUMHE pemleHNs U, V Ta-

K#e, uTO uz(t)+v2(t)£ 0 un %) = - > W 5
, , u(t) + v(
(w:= uv’= u’v) g té ? n)a TOuKe t e J rae v(to)# 0
u(t
uMeeT MecTo tg K.(to) = —° .
© v(%o)

B paboTe nokaseHu Bce $asu ypapHeHus ( Q) u c noMoup® dasu
npuBozurcs fopMa obmero pemeHuss ypaBHeHus ( Q). Jlaree ucrnoabso-
BaHa $asa Npu MUCCIENOBAHMM POBJOEREeHMS KOpHeit pemeHult ypaBHeHus
Q). ‘ .

RNDr. Svatoslav Stanék
prirodovédecka fakulta UP
Leninova 26

Olomouc
771 46

AUPO, Fac.r.nat.85, Mathematica XXV, (1986)
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