Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Ján Andres

On a boundary value problem for $x^{\prime \prime \prime}=f\left(t, x, x^{\prime}, x^{\prime \prime}\right)$

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 27 (1988), No. 1, 289--298

Persistent URL: http://dml.cz/dmlcz/120199

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1988
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS

FACULTAS RERUM NATURALIUM

1988
VOL. 91

Katedra matematické analýzy a numerické matematiky přírodovědecké fakulty Univerzity Palackého v Olomouci Vedoucí katedry: Doc.RNDr. Jindřich Palát, CSc.

ON A BOUNDARY VALUE PROBLEM FOR $\mathbf{x "}^{\prime \prime}=\mathrm{f}\left(\mathrm{t}, \mathrm{x}, \mathrm{x}^{\prime}, \mathrm{x}^{\prime \prime}\right)$

JAN ANDRES
(Received January 15, 1987)

1. In the twenty past years great attention has been devotea t.o the study of two-point or three-point boundary value problems (hereafter only BVPs) for the above equation. As far as we know, about thirty corresponding titles $\left[\begin{array}{ll}1 & -24\end{array}\right]$, [26-32] have appeared up to the present time.

Among them we regard the result obtained by L.Jackson and K.Schrader in $[17,18]$ to be of extraordinary importance, because they gave an affirmative answer to the old problem whether the uniqueness of solutions of all two-point or three--point BVPs for our equation implies the existence under some natural additional restrictions.

Further result of particular importance is due to D.Barr and T.Sherman who have shown how solutions $x(t)$ of our equation, satisfying the boundary conditions in two points, namely

$$
x(a)=A, x(b)=B, x^{\prime}(b)=B^{-}
$$

and $x(b)=B, x^{\circ}(b)=B^{\prime}, x(c)=C$,
can be "matched" to yield a unique solution satisfying the boundary conditions at thre points, namely

$$
x(a)=A, x(b)=B, x(c)=C \text { 。 }
$$

Thus many earlier or more recent papers dealing with two-point BVPs could be applied in this way (cf. e.g. $\left[\begin{array}{l}1-6\end{array}\right]$, [12], [26]). Let us note that in the last quoted papers improved error bounds for the Picard iterations (whence the employed technique) have been successively given.

Taking into account other interesting papers, let us mention [9], where the coincidence degree technique has been used for solving a periodic BVP and [32], where an asymptotic BVP has been of interest.
2. In [7] we have proved by a manner similar to that of [9] that the following BVP:

$$
\begin{align*}
& x^{\cdots}=f\left(t, x, x^{\prime}, x^{\cdots}\right), f \in C^{1}\left(\langle 0, \theta\rangle x R^{3}\right) \tag{1}\\
& x(\theta)-x(0)=A_{0}, x^{\prime}(\theta)-x^{\prime}(0)=A_{1} \cdot x^{\cdots}(\theta)-x^{\prime \prime}(0)= \\
&=A_{2} \tag{2}
\end{align*}
$$

where $\theta, A_{0}, A_{1}, A_{2}$ are suitable reals, admits a solution, provided the function f is bounded for all its arguments, but not necessarily x and

$$
\begin{equation*}
|f(t, x, y, z)| \leq M|x|+\text { const } \tag{3}
\end{equation*}
$$

is satisfied everywhere for a small enough constant M together with
$\underset{|x| \rightarrow \infty}{\lim \inf ^{\mid x} f(t, x, y, z) \operatorname{sgn} x \geq}\left|\frac{A_{2}}{\Theta}\right|$ (or $\lim _{|x| \rightarrow \infty} f(t, x, y, z) \operatorname{sgn} x \leqslant$

$$
\begin{equation*}
\left.\leq-\left|\frac{A_{2}}{\theta}\right|\right) \tag{4}
\end{equation*}
$$

Here we would like to show that the same conditions (i.e. (3), (4)) imply for $\theta=2 a$ also the solvability of the following incomplet'e BVP, namely (1) and

$$
\begin{equation*}
x^{\prime}(0)=x^{\prime}(a)=x^{\prime}(2 a) \tag{5}
\end{equation*}
$$

even if (4) is replaced by
$\lim \inf f(t, x, y, z) \operatorname{sgn} x>0$ (or $\lim \sup f(t, x, y, z) \operatorname{sgn} x<0)$
$|x| \rightarrow \infty \quad|x| \rightarrow \infty$
for $t \in\langle 0,2 a\rangle,(y, z) \in R^{2}$.
In fact we will prove the same for (1) and (6), where

$$
x(0)=x(a), \quad x^{0}(0)=x^{\prime}(a)=x^{\prime}(2 a)
$$

3. For this purpose let us define the modified Levinson operator, where $\mu, \nu \in\langle 0,1\rangle$ are parameters and $x(0)=$ $=\left(x(0), x^{*}(0), x^{\prime \prime}(0)\right)$ are Cauchy's initial values, in the following way:

$$
\begin{aligned}
& \int \mathrm{F}(x(\mathrm{a})-\mathrm{x}(0)), \mathrm{x}^{*}(\mathrm{a})-\mathrm{x}^{\circ}(0), \mathrm{x}^{\bullet}(2 a)-2 \mathrm{x}^{\circ}(\mathrm{a})+ \\
& \left.+x^{\circ}(0)\right] a^{-2} \quad \text { for } \mu=\nu=1 \text {, } \\
& {\left[\mu a(x(\nu a)-x(0)), \mu\left(x^{*}(\nu a)-x^{0}(0)\right),\left(x^{0}((\mu+\nu) a)-\right.\right.} \\
& {\left[-x^{*}(\nu a)-\left(x^{\bullet}(\downarrow a)-x^{\bullet}(0)\right)\right](\phi \nu)^{-1} a^{-2}} \\
& \text { for } \mu, \nu \in(0,1\rangle \text {, } \\
& \begin{array}{l}
= \\
{\left[\begin{array}{ll}
x(\nu a)-x(0), x^{\prime}(\nu a)-x^{\prime}(0), x^{\prime \prime}(\nu a) & \\
\left.-x^{\cdots}(0)\right](\nu a)^{-1} & \text { for } \mu=0, \nu \in(0,1\rangle,
\end{array}\right],}
\end{array}
\end{aligned}
$$

$T_{\mu, \nu} \times(0)$

Theorem 1. The problem of (1), (6) is solvable, provided
(i) $\frac{f(0, x(0), 0,0)}{|f(0, x(0), 0,0)|} \neq \frac{f(0,-x(0), 0,0)}{|f(0,-x(0), 0,0)|} \quad(f(0, x(0), 0,0) \neq 0)$
holds for $|x(0)| \geq R_{0}$, where R_{0} is a sufficiently large positive constant and
(ii) $T_{\mu, 1} X(0) \neq 0, T_{0, \nu} x(0) \neq 0$ for $\|x(0)\| \geq \sum_{R} \geq R_{0}$ (great enough R), independently of $\mu, \nu \in(0,1\rangle$.

Proof. It is clear that our problem is solvable iff $T_{1,1} X(0)=$ $=0$. Since we will here employ the topological degree arguments, the fundamental requirement for ensuring this reads

$$
\begin{equation*}
T_{1,1} \times(0) \neq 0 \tag{7}
\end{equation*}
$$

on the sphere $\|x(0)\|=R>0$. But assuming (ii), condition (7) can be replaced by

$$
\begin{equation*}
T_{0,0} x(0) \neq 0 \text { for }\|x(0)\|=R \tag{8}
\end{equation*}
$$

by virtue of the well-known invariance under homotopy [25]. Furthermore, since the degree of an odd operator is not equal to zero on the sphere according to the classical Borsuk's antipodal theorem [25], namely

$$
\begin{array}{r}
d\left[T_{0,0} X(0)-T_{0,0}(-X(0)),\|x(0)\| \leq R, 0\right] \neq 0 \\
f \text { or }\|x(0)\|=R
\end{array}
$$

condition (8) can be replaced by

$$
T_{0,0} x(0)-(1-\lambda) T_{0,0}(-x(0)) \neq 0 \quad \text { for } \lambda \in(0,1\rangle
$$

which is certainly implied by (i) for $f\left(0, x(0), x^{\bullet}(0), x^{\prime \prime}(0)\right) \neq$ $\neq 0$. This completes the proof.

Lemma 1. If all solutions $x(t)$ of (1), satisfying the following boundary conditions

$$
\begin{align*}
x(\nu a)=x(0) x^{\prime}(\nu a) & =x^{\circ}(0), x^{\prime \prime}(\nu a)=x^{\prime \prime}(0) \text { for all } \nu \in(0,1\rangle, \text { (9) } \tag{9}\\
x(a) & =x(0), x^{\circ}((\mu+1) a)=x^{\circ}(\mu a), x^{-}(a)= \\
& =x^{\circ}(0) \quad \text { for all } \mu \in(0,1\rangle \tag{10}
\end{align*}
$$

are uniformly a priori bounded with their derivatives $x^{\prime}(t)$ in (10) and $x^{\prime}(t), x^{\prime \prime}(t)$ in (9), then condition (ii) is fulfilled.

Proof. It can be readily checked that

$$
\begin{aligned}
& T_{\mu, 1} \times(0) \neq 0 \text { if } x(a) \neq x(0) \text { or } x^{\prime}(a) \neq x^{\prime}(0) \text { or } \\
& x^{-}((\mu+1) a) \neq x^{\prime}(\mu a) \text { for all } \mu \in(0,1\rangle, \\
& T_{0, \nu} x(0) \neq 0 \text { if } \times(\nu a) \neq x(0) \text { or } x^{\prime}(\nu a) \neq x^{\prime}(0) \text { or } x^{\prime \prime}(\nu a) \neq x^{\prime \prime}(0) \\
& \text { for all } \nu \in(0,1\rangle .
\end{aligned}
$$

Therefore assuming a priori estimates as above, these inequalities are satisfied successively, which was to be proved.

Lemma 2. The a priori estimates of Lemma 1 exist, provided (40) and (3) with M small enough.

Proof. Denote
where S is a suitable constant specified bellow and consider instead of (1) the equation

$$
\begin{equation*}
x^{\cdots}=f^{*}\left(t, x, x^{*}, x^{\cdots}\right) \tag{11}
\end{equation*}
$$

Since such a constant F^{*} must exist that $\left|f^{*}(t, x, y, z)\right| \leq F^{*}$ for all $t \in\langle 0,2 a\rangle,(x, y, z) \in R^{3}$, we have also $\left|x^{\cdots}(t)\right| \leqslant F^{*}$. Furthermore, since such points $t_{1}, t_{2} \in\langle 0,2 a\rangle$ exist with respect to (9), (10) that $x^{\prime \prime}\left(t_{1}\right)=0=x^{\prime \prime}\left(t_{2}\right)$, the following inequalities are satisfied:

$$
\begin{align*}
& \left|x^{\prime \prime}(t)\right| \leq\left|\int_{t_{2}}^{t}\right| x^{\prime \prime}(s)|d s| \leq 2 a F^{*} \tag{12}\\
& \left|x^{\prime}(t)\right| \leq\left|\int_{t_{1}}^{t}\right| x^{\prime \prime}(s)|d s| \leq 4 a^{2} F^{*} \tag{13}
\end{align*}
$$

Condition (4_{0}) implies such an $R_{0}(c f .(i))$ that $f(t, x, y, z) \operatorname{sgn} x>0$ or $f(t, x, y, z)$ sgn $x<0$ holds for $|x|>R_{0}$ and $t \in\langle 0,2 a\rangle,(y, z) \in R^{2}$ and consequently $x^{\cdots}(t)>0$ or $x^{\prime \prime}(t)<0$, from which follows the convexity or concavity of $x^{\circ}(t)$ for $|x(t)|>R_{0}$, respectively. Hence (9) or (10) cannot be satisfied in this respect.
Thus $\min _{t \in\langle 0,2 a\rangle}|x(t)|=\left|x\left(t_{0}\right)\right| \leq R_{0}$ in some $t_{0} \in\langle 0,2 a\rangle$ and we get

$$
|x(t)| \leq\left|x\left(t_{0}\right)\right|+\left|\int_{t_{0}}^{t}\right| x^{*}(s)|d s| \leq R_{0}+8 a^{3} F^{*}
$$

with respect to (13).
Obviously, the existence of such constants S, F is guaranteed by (3) that

$$
R_{0}+\left.\left.8 a^{3} \max _{|x| \leq S}\right|_{f}(t, x, y, z)\right|^{*} \leq R_{0}+8 a^{3} F<s,
$$

and hence we have not only $|x(t)| \leq s$, but also (cf. (12), (13))

$$
\left|x^{\prime}(t)\right|+\left|x^{\prime \prime}(t)\right| \leq(1+2 a) 2 a F
$$

The same is certainly true for solutions $x(t)$ of (1). This completes the proof.

Theorem 2. There exists a solution of BVP (1), (6), provided (40) and (3) with M small enough.

Proof - follows immediately from Lemmas 1,2, because condition (i) of Theorem 1 is satisfied trivially by (4_{0}).
4. Remark. Although the incomplete BVP (1), (5) can be considered only as a special case of those studied in the papers $[5-7],[12],[18]$ and some others (see also the references included), our result cannot be deduced from any obtained there, in general. However, several results are comparable in certain aspects at least.

REFERENCES

[1] A g a $r w$ a 1, R.P.: Nonlinear two point boundary value problems. Ind.J.Pure Appl.Math. 4, 1973, 757-759.
[2] A g a r w a l, R.P.: Two-point problems for non-linear third order differential equations. J.Math.Phys.Sci.8, 1974, 571-576.
[3] A garwal, R.P. and K K i $\mathrm{s} h \mathrm{n}$ a moor m y, P.R.: On the uniqueness of solutions of nonlinear boundary value problems. Ibid. 10, 1, 1976, 17-31.
[4] A g a r w a l, R.P.: Improved error bounds for the Picard iterates. Ibid. 12, 1, 1978, 45-48.
[5] A g a r w a l, R.P. and $K r i s h n$ a moor $t y, P$. R.: Existence and uniqueness of solutions of boundary value problems for third order 'nonlinear differentiál equations. Proceed.Ind.Acad.Sci. 88A, 2, 1979, 105-113.
[6] A.g, a r a l_{1}, R, P : On the boundary value problems for $y^{-y}=f\left(x, y, y, y^{0}\right)$. Bull.Inst-Math.Acad.Sinica 12, 1984, 153-157.
[7] A n d r e s, J.: Higher kind periodic orbits. Acta UPO 88, Phys. 26, 1987 (in print).
[8] B a $r \quad r, D$. and $S h$ e $r m$ a n, T.: Existence and uniqueness of solutions of three-point boundary value problems. J.Diff.Eqs. 13, 1973, 197-212.
[9] Beber n e s, J., G a i n e s, R, and S chmitt, K.: Existence of periodic solutions for third and fourth order ordinary differential equations via coincidence degree. Ann.Soc.Sci.Bruxelles 1, 88, 1974, 25-36.
[10] B es palova, S.A. and $K l o k o v, Y u . A .: ~$ A three-point boundary value problem for a nonlinear third order ordinary differential equtions (in Russian), Diff.Urav. 12, 6, 1976, 963-970.
[11] C a r is $t i, G$. A three-point boundary value problem for a third order differential equation. B.U.M.I. C4, 1, 1985, 259-269.
[12〕 D a s, K.M. and, L a l li, B.S.: Boundary value problems for $y^{\circ=}=f\left(x, y, y^{\prime \prime}, y^{\prime \prime}\right)$. J.Diff.Eqs. 81, 1981, 300-307.
[13] G o e c k e, D.M. and H e $n d e r s o n, J .:$ Uniqueness of solutions of right focal problems for third order differential equations, Nonlin.Anal. 8, 3, 1984, 253-259.
[14] H a medani, G.G. and M e $h r i, B .:$ Boundary values problems for certain non-linear third order differential equations, Rev.Roum.Math.Pures Appl. 22, 3, 1977, 315-319.
[15] Henderson, J.: Existence and uniqueness of solutions of right focal point boundary value problems for third and fourth order equations. Rocky Mount.J. 14, 2, 1984, 487-497.
[16] J a ck s o n, L. and s ch r a der, K.: Subfunctions and third order differential inequalities. J.Diff.Eqs. 8, 1970, 180-194.
[17] Jack son, L. and s ch r a der, K.: Existence and uniqueness of boundary value problems for third order differéntial equations. Ibid. 9, 1971, 46-54.
[18] Jack son, L.: Existence and uniqueness of solutions of boundary value problems for third order differential equations. Ibid. 13, 1973, 432-437.
[19] Jackson, L.: Existence and uniqueness of solutions of boundary value problems for Lipschitz equations. Ibid. 32, 1, 1979, 76-90.
[20] K i g u r a d z e, I.T.: Some singular boundary value problems for ordinary differential equations (in Russian). Izdat.Tbil.Univ., Tbilisi 1975, pp.201-209.
[21] K l a a s e n, G.: Differential inequalities and existence theorems for second and third order boundary value problems. J.Diff.Eqs. 10, 1971, 529-537.
[22] $K l o k$ o v, Yu. and. P o s pelov, L.N.: Conditions for a priori boundedness of solutions of boundary value problems for third order equations (in Russian). Diff. Urav. (Rjazan) 9, 1977, 48-56.
[23] Konstantinov, M.S.: Existence of periodic solutions to some differential equation (in Russian). Diff.Urav. (Rjazan) 9, 1977, 48-56.
[24] Lepin a, E.I. and Lepin, A.Ya.: Existence of a solution of a three-point boundary value problem for a third order ordinary differential equation (in Russian). Latv.Math.Yearbook 4, Izdat.Zinatne, Riga 1968, 247-256.
[25] Ma whin, J.: Topological degree methods in nonlinear boundary value problems. CBMS Reg.Conf.Math. 40, AMS, Providence 1979.
[26] Me h r i, B.: Boundary value problem for certain non--linear third order differential equations. Rev.Roum. Math.Pures Appl. 19, 1974, 773-776.
[27] Murthy, K.N. and R a o, D.R.K.S.: On the existence and uniqueness of solutions of two and three-point boundary value problems. Bull.Calcutta Math.Soc. 73, 3, 1981, 165-172.
[28] P o s p e l o V, L.N.: Necessary and sufficient conditions for the existance of a solution of a certain boundary value problems for a third order nonlinear ordinary differential equations (in Russian). Latv.Math. Yearbook 8, Izdat.Zinatne, Riga 1970, 205-212.
[29] P o spelov, L.N.: A certain estimate of the solutions of a third order equation (in Russian). Ibid. 12, 1973, 135-140.
[30] P o s pelov, L.N.: The uniqueness of solutions of certain boundary value problems for third order differential equations (in Russian). Ibid。14, 1974, 177--186.
[31] R u s n á k, J.: A three-point boundary value problem for third order differential equations. Math.Slovaca 13, 3, 1983, 307-320.
[32] S ch r a d e $r, K .:$ Second and third order boundary value problems. Proceed.Amer.Math.Soc. 32, 1972, 247-252.

O JISTÉ OKRAJOVÉ ÚLOZE PRO $x^{\cdots "}=f\left(t, x, x^{\prime}, x^{" "}\right)$

Souhrn

Užitím teorie topologického stupně zobrazení jsou nalezeny efektivní podmínky řešitelnosti třibodové periodické okrajové úlohy pro obecnou nelineární diferenciální rovnici třetího řádu. Jsou uvedeny dosud dosažené základní výsledky o okrajových úlohách pro studovanou rovnici.

ОВ ОДНОЙ НРАЕВОЙ ЗАДАЧЕ ДЛЯ $x^{\prime \prime \prime}=f\left(t . x, x^{*}, x^{\prime \prime}\right)$

Резоме

На основе теории топологической степени отобрахения получены эффективные условия раярешимости трехточечной периодической креевой задачи для одного нелинейного дифференцияльного уравнения третьего порядка. Представлены также основные результаты решения краевых вадач, достигнутые в настоящее время для данного уравнения.

Author's address:
RNDr. Jan Andres, CSc. přírodovědecká fakulta Univerzity Falackého Gottwaldova 15
77146 Olomouc
CSSR /Czechoslovakia/

Acta UPO, Fac.rer.nat., Vol. 91 , Mathematica XXVII, 1988,289-293.

