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1. In the twenty past years great attention has been devoted 

t.o the study of two-point or three-point boundary value 

problems (hereafter only BVPs) for the above equation. As 

far as we know, about thirty corresponding titles jl - 24], 

[26 - 32] have appeared up to the present time. 

Among them we regard the result obtained by L.Jackson 

and K.Schrader in Il7, 18] to be of extraordinary importance, 

because they gave an affirmative answer to the old problem 

whether the uniqueness of solutions of all two-point or three-

-point BVPs for our equation implies the existence under 

some natural additional restrictions. 

Further result of particular importance is due to D.Barr 

and T.Sherman who have shown how solutions x(t) of our equa

tion, satisfying the boundary conditions in two points, namely 

x(a) = A, x(b) = B, x'(b) = B' 

289 



and x(b) = B, x'(b) = B', X(C) C, 

can be "matched" to yield a unique solution satisfying the 

boundary conditions at thre points, namely 

x(a) = A, x(b) = B, x(c) = Co 

Thus many earlier or more recent papers dealing with 

two-point BVPs could be applied in this way (cf. e.g. jl - 6\, 

[l2], [26j). Let us note that in the last quoted papers im

proved error bounds for the Picard iterations (whence the 

employed technique) have been successively given. 

Taking into account other interesting papers, let us 

mention [9], where the coincidence degree technique has been 

used for solving a periodic BVP and [32], where an asymptotic 

BVP has been of interest. 

2. In [7] we have proved by a manner similar to that of [9] 

that the following BVP: 

x ' " = f(t,x,x',x"), f €C 1(<O,0>XR 3), (1) 

x(6) - x(0) = AQ, x'(0) - x'(0) = A±. x"(0) - x"(0) = 

= A2 , (2) 

where 6,An,AlfA? are suitable reals, admits a solution, pro

vided the function f is bounded for all its arguments, but 

not necessarily x and 

Jf(t,x,y,z)J <M|x|+ const. (3) 

is satisfied everywhere for a small enough constant M to

gether with 

lim inf f(t,x,y,z)sgn x 
Ix (->oэ 

2 x 

-g— (or lim sup f(t,x,y,z)sgn x — 

• /x| -->co 
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Here we would like to show that the same conditions (i.e. 

(3), (4)) imply for 0 = 2a also the solvability of the follow

ing incomplete BVP, namely (1) and 

/ / / 
x(0) = x(a) = x(2a), 

even if (4) is replaced by 

(5 ) 

l im in f f ( t ,x ,y ,z)sgn x > 0 (or l im sup f ( t , x, y, z)sgn x < 0 ) 
|x|->co |x|-*co 

(4n> 

for t6<0,2a> , ( y , z )€ R2. 

In fact we w i l l prove the same for (1) and (6 ) , where 

x(0) = x(a) . x (0) = x (a) = x ' (2a) ( б ) 

3. For this' purpose let us define the modified Levinson 

operator, where ^ , ^ £ ^ 0 , 1 ^ are parameters and X(0) = 

• (x(0), x'(0), x"(0)) are Cauchy's initial values, in the 

following way: 

ì ( x (a ) - x (0 ) ) , x Ҷ a ) - x ' ( 0 ) , x ' ( 2 a ) - 2 x ' ( a ) + 

x ' ( 0 ) ] f 0 Г ^Ą ш \>ш 1 , 

v v

x (o) 

^a(x (va ) - . x (0 ) ) , / i ( x # ( ^a ) -x ' (0 ) ) , ( x ' ( ( í i +y )a )« 
x Ҷ y a J - Ҷ x Ҷ ^ a î - x Ҷ O П j t ø y Г V 2 

f o r f9Э Є (0 ,1> , 

^ ( O a ) - x ( 0 ) , x ' ( v a ) - x ' ( 0 ) , x " ( ^ a ) -

- x " ( 0 ) ] (Va)" 1 for ^u= 0 , ^ é ( 0 , І > , 

[ x ' ( 0 ) , x " ( 0 ) , f ( 0 , x ' ( 0 ) , x " ( 0 ) ] 

f OГ ^A = V = 0 . 

Theorem 1. The problem of (1), (6) is solvable, provided 
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( i ) f(Ofx(0)fOfO) f(Of-x(0)fOfO) (f(0.x(0).0.0) f 0) V |f(0fx(0)f0f0)r |f(0,-x(0)f0f0)| 

holds for |x(0)| — RQf where RQ is a sufficiently large po

sitive constant and 

(ii) T^1X(0)^Of T0^X(0)j<0 for |x(0)J| - R - RQ (great 
enough R)f 

independently of ut$€ (0fl> . 

Proof. It is clear that our problem is solvable iff T- .iX(O) • 
• 0. Since we will here employ the topological degree 

arguments, the fundamental requirement for ensuring this 

reads 

J1AH0) / 0 (7) 

on the sphere ||X(0)|| • R>0. But assuming (ii)f condition 

(7) can be replaced by 

T0 f0
X ( 0 ) * ° for HX(0)" = R (8) 

by virtue of the well-known invariance under homotopy [25J • 

Furthermore, since the degree of an odd operator is not equal 

to zero on the sphere according to the classical Borsuk's 

antipodal theorem [25], namely 

d[Tofo
x(0)-Tofo

(-x(0))^x(o)H ~ R.o] 7- 0 

for |X(0)|| = R, 

condition (8) can be replaced by 
To fo

x ( 0 ) " ( 1-* ) To fo
(- x ( 0 ) ) * ° f0r ^ ( ° . 1 > • 

which is certainly implied by (i) for f (0, x(0)f x*(0),x"(0))? 

/ 0. This completes the proof. 

Lemma 1. If all solutions x(t) of (1), satisfying the follow

ing boundary conditions 
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x(va)=x(0) x'(va)=x'(0),x"(?a) = x"(0) f or all ̂ £ (0,1>, (9) 

x(a) = x(0),x'(QU+l)a) = x'(^a),x'(a) = 

= x'*(0) for all̂ w € (0,1> (10) 

are uniformly a priori bounded with their derivatives x'(t) 

in (10) and x'(t),x"(t) in (9), then condition (ii) is 

fulfilled. 

Proof_. It can be readily checked that 

TM,1X(°)?° if x(a)/x(0) or x'(a)/x'(0) or 

x'((^+l)a)7-x'Qi4a) for all^ C (0fl> , 

TQVX(0)^0 if x(Va)/x(0) or x'(va)/*x'(0) or x"(va)/x"(0) 

for all 9£ (0.1> . 

Therefore assuming a priori estimates as above, these ine

qualities are satisfied successively, which was to be proved-

Lemma 2. The a priori estimates of Lemma 1 exist, provided 

(4n) and (3) with M small enough. 

Proo£. Denote 

f(t.x.y.z) 

f*(t,x.y,z) -' 
f(t,Ssgn x,y,z) for |x| - S , 

where S is a suitable constant specified bellow and consider 

instead of (1) the equation 

x = fn(t,x,x ,x ) . (11) 

Since such a constant F must exist that |f (t,x,y,z)| — F 

for all t€ <0,2a> , (x,y,z)£R3, we have also |x'"(t)J - F*. 

Furthermore, since such points t1(t2£\0,2a> exist with 

respect to (9), (10) that x'(t1) = 0 = x"(t 2), the following 

inequalities are satisfied: 
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1. 

|x"(t)| --|5|x"*(8)|d6| ̂ 2aF* , (12) 
ť2 
t 

|x'(t)| - |Slx"(s)|dsl á 4 a V . (13) 

Condition (4Q) implies such an RQ (cf. (i)) that 
f (t,x,y,z)sgn x >0 or f (t ,x,y,z)sgn x < 0 holds for |xl>RQ 

and t£<(o,2a> , (y,z)£R2 and consequently x"*(t)>0 or 
x"'(t)<0, from which follows the convexity or concavity of 

*'(t) for |x(t)|>R0, respectively. Hence (9) or (10) cannot 

be satisfied in this respect. 

Thus min |x(t)| = |x(tQ)| — RQ in some tQ€^0,2a^ and we get 

t 

(*(«>. - lxCt0)| +1 $,x'(в)|dв| - R0
 + 8 a

3
F* 

ťo 

with respect to (13). 

Obviously, the existence of such constants S,F is 
guaranteed by (3) that 

* 
RQ + 8a 3 rnax I f ( t , x , y , z ) | ~ RQ + 8 a 3 F < S , 

J x j — S 

and hence we have not only |x(t)| — S, but also (cf. (12), 

(13)) 

|x'(t)| + |x"(t)l ^ (l + 2a)2aF . 

The same is certainly true for solutions x(t) of (1). This 
completes the proof. 

Theorem 2. There exists a solution of BVP (1), (6), provided 
(4Q) and (3) with M small enough. 

Proof̂  - follows immediately from Lemmas 1,2, because condition 
(i) of Theorem 1 is satisfied trivially by (4Q). 
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4
- Remark. Although the incomplete BVP (1), ( 5 ) can be 

considered only as a special case of those studied in the 

papers p-7] , [l2J , [l8j and some others (see also the refe

rences i n c l u d e d ) , our result cannot be deduced from any 

obtained there, in general. However, several results are 

comparable in certain aspects at least. 
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0 OISTÉ OKRAJOVÉ ÚLOZE PRO x " ' = f(t,x,x',x") 

Souhrn 

Užitím teorie topologického stupně zobrazení jsou nale

zeny efektivní podmínky řešitelnosti tříbodové periodické 

okrajové úlohy pro obecnou nelineární diferenciální rovnici 

třetího řádu. Jsou uvedeny dosud dosažené základní výsledky 

o okrajových úlohách pro studovanou rovnici. 
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ОБ ОДНОЙ КРАЕВОЙ ЗАДАЧЕ ДЛЯ х ' " = ^Пг.х.х'.х") 

Резюме 

На основе теории топологической степени отображения 

получены эффективные условия разрешимости трехточечной пе

риодической краевой задачи для одного нелинейного дифферен

циального уравнения третьего порядка. Представлены также 

основные результаты решения краевых вадач, достигнутые в на

стоящее время для данного уравнения. 
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