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1. Dynamical systems driven by a unit pulse (by the Dirac 

function) 

In investigating pulse characteristics we often meet with the 

necessity of generating a unit pulse (the Dirac function). 

This unit pulse, as such, cannot be directly generated either 

by a digital or by an analog computer. For this reason we 

are seeking another equivalent mathematical description of a 

system wherein the until pulse does not occur. 

Given a differential equation 

y ( n ) + a n _ i y ( n _ 1 ) + ••• + a 0 y " £ ( t ) - ( 1 - 1 ) 

where 8 (t) is a unit pulse. For simplicity we assume that 

the initial conditions 

y ( n _ 1 )(0) = ... = y'(0) = y(0) = 0 . 
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The Laplace image of equation (1.1) has the form 

s
n
Y(s) + ... + a

Q
Y(s) = 1 (1.2) 

Let us next have a homogeneous differential equation 

y i ( n ) + an-iyi ( n" 1 ) + ••• * a

0 y i = ° ( 1 - 3 > 

and seek such initial conditions under which the solution of 

equation (1.3) would be analogous to that of equation (1.1). 

The Laplace image of equation (1.3) has the form 

n-1 

п
ү ( s )

 _____ .n-l-i ( 1 )
( 0 ) + 

i=0 

a
n-l (

aП
"

lү
i(

a
) " Ç s"-2"1 ^(^(0))^ 

+ ... + a_(sY_(s) - Yl(0)) + 8 ^ ( 8 ) = 0 . (1.4) 

If y = y_ is to be true, then also 

Y(s) = Y_(s) (1.5) 

must be true. By comparing the coefficients consisting of the 

initial conditions at the individual powers s (see Table 1 ) , 

we get 

yi(0)+an__y_(
n-2>(0)+ia___yi(

n-3)(0) +...+ a_y_(0)+ a_y_(0)=l 

y1
(n"2)(0)+an_iyi(

n-3>(0) +...+ a3y_(0)+a_yi(0) =0 

yi ( n _ 3 )(0) +...+ a4Y_(0)+ a3Yl(0)=0 

Ф 

JÛ 

CÖ 

УÍ(°)+an-iУi(°) = 0 

i- y_(0)=o 

Уi^-^ÍO) = i 

Уl
( П _ 2 )

(0) = ... = y_(0) = 0 (l.б) 
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for the fulfilment of relation (1.5). Let us have a different

ial equation 

y ( n ) + a n - i y ( n " 1 ) + ••• + aov = s i*) c 1 - 7 ) 

with initial conditions v(0),
 y
 '(0), . . . . y(

 n
~ )(0) 7- 0 

and a differential equation 

V l
( n ) + a

n - i y i
C n _ 1 ) +

 •••
 + a

0
Vl = ° • (-'

8
) 

We seek such initial conditions that y = y. may be true 

again. The Laplace image of equation (1.7) is now of the form 

s
П
Y(s) 

n-1 
Y n-l-i (i)

/ r
^ Ĺ— s yv

 Ҷ O ) + 
i=0 

n-2 
n-l

v a
n-l (

S
"^

Y
(
S
) "*- в^-V^^O)) + 

n A
 i=0 

+ ... + a
1
(sY(s) - y(0)) + a

0
Y(s) = 1 (1.9) 

By comparing the coefficients consisting of the initial con

ditions at the individual powers s in (1.4) and (1.9) (see 

table 2) 

s°: y ^ " - 1 ) ^ ) + v i V i 1 " " 2 ' 1 ! 0 ) * - * a

2 y i ( ° ) + a i y ^ 0 > • 

= l+y(
n
-

1
>(0) + a

n 4
y

l n
"

2 )
( 0 )

+
-

+
 a

2
y'(0)

 +
 a

l V
(0) 

s :
 y i

( n - 2 )
( 0 ) + a n _ i y i ( n - 3 ) ( 0 ) + . . . + a

3
y

:
[(0) + a

2
y

1
(0) = 

= V
( n _ 2 )

( 0 ) + a
n
_

i y
(

n
-

3 )
( 0 )

+
. . .

+
 a

3
y'(0)

+
a

2
y(0) 

s
n
'

2
 : Vi(0) + a

n
_

i y i
(0) = y'(0) + a

n
_

i y
(0) 

s
n _ 1

 :
 Y l
(0) = y(0) 

Ш 
CГ 

(D 

IV) 
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we obtain 

yx(0) = y(0) (1.10) 

Yl(0) = y*(0) 

y i
( n- 2 )(0) - y(

n-2>(0) 

y1(
n-1)(0) = 1 * yO^CO) • 

The solution of the equation (1.1) may thus be carried over 

to that of the homogeneous equation (1.3) with initial con

ditions according to (1.10). 

2. Applying the Laplace images of functions in generating 

functional dependences 

Generating the functions of the form 

f(t) = Atk e*11 cos (Alt +(f> ) (2.1) 

we can unilize the tables of correspondences in the Laplace 

transform by the following reasoning: Given a differential 

equations with constant coefficients 

a n y ( n ) + an-l y J + ... + a1y' + aQy = b 1z
/. (2.2) 

Rewriting this equation by means of the differential operator 

pn
 5 dIL , yields 

dtn 

b l P 

y = — n T l - z , (2.3) 

anP + a
n-lP + ... + a l P + aQ 

which is merely another writing of equation (2.2). 

Equation (2.3) can be extended by 

l< . „ J<~1 
c kp + ck_lP + ... + c l P + CQ 
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t o t h e f o r m 

, k + l , k , 
d

k P + d k _ l P + . . . + d Q p 
n+k n + k - 1 

Зn+l<P + 9 n + k _ _ P + ••• + 9 C 

( 2 . 4 ] 

Let us solve equation (2.2) with zero initial conditions and 

let z be a unit function. Then the Laplace image of the so

lution of (2.2) has the form 

Y(s) 
b^s 

n n-1 
a s + a^ л s + ... + aл s + a n

 s 
n n-1 l 0 

b i 

a
n
s

n
 + ... + a

0 

(2.5) 

This equation can be modified analogous to (2.3) and becomes 

the form 

d. s
k
 + d. .s

1
*""

1
 + ... + d

n w/ x k k-1 0 ,_, _. 
Y(s) = --- . (2.6) 

g n + k s + g n + k - i s • . . . + g 0 

Comparing equations (2.4) and (2.6) we find that we may 

directly obtain a differential equation from the Laplace 

image of the function, whose solution is this function so 

that the Laplace operator s in the Laplace image of this 

function will be replaced by the operator p and this expres

sion will be multiplied out by p, whereby the function z is 

a unit function. 

To apply this approach in generating functional depen

dences, it is necessary that the Laplace image of the 

function generated be a strictly broken rational function, 

i.e. the degree of the denominator must be less than that 

of the numerator. On changing the Laplace operator s for the 

operator p and multiplying out the denominator of p, we obtain 

a differential equation in the form (2.14), where the highest 
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order of the derivative at z. Equations of this type may 

then be programmed without any knowledge of the derivatives 

of the function z either by the method of successive inte

grations or by the method of decreasing the order of the 

derivate with introducing a new variable. 

The Laplace images of the functions t e (m • the non-

-negative integer, A = a complex number) and the linear com

binations of these functions possess this property as shown 

below. 

The image of the function t
m
 is given by the relation 

[«•] 
m! 
m+.l 

*t -s t .. 
e e d t « 

l_[eЛ t f ( t ) ] = J f ( t ) 
o 

æ 

= f f ( t ) e ~ ( s " " Л ) t d t = F ( s - 7 . ) , 

so t h a t 

, • . , - » ( 2 - 7 ) 

The linear combinations of the functions t
m
 . e are the 

multiples and the sums of the multiples, of these functions. 

Since 

L[C f(t)] = c F(s) 

L^f^t) + c
2
f

2
(t) + ... -_• c

n
f

n
(t)] -

= c
1
F(s) + ... + c

n
F(s) (2.8) 

and (2.7) is a strictly broken rational function, then (2.8) 

is also a strictly broken rationa function. If we are to 

writca program schema using the tables of the Laplace trans

form for generaling the function 
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f(t) = e'fi* sin oCt (2.9) 

we proceed as follows: 

The Laplace image of the function (2.9) is 

F(B) - % 2 (
2
-

10
) 

(s +/j r +<* 

Expression (2.10) is the image of the differential equation 

in the operator form by means of the operator p = -rr 

p
2
 + 2p/} + (Ь2

 +<*
2 

where z means a unit function. We rewrite the equation to 

the form 

y" + 2/3y' + (ft2 +oi2) y = * z' (2.11)' 

and will solve it by the method of successive integration 

y" = otz' - 2/}y' - (ft 2
 +<*

2
) y , 

y' = c*z - 2/3y -
 Y l 

where 

y
l
 =
 J^

2 +0<2) y dt
 ' 

y = y
2 

and 

y
2
 = j (c<z - 2/*y -

 Y l
) dt . 

The respective program scheme is given in figure 1. 
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Figure 1 

The correctness of this procedure is demonstrated as 

follows: The program scheme in figure 1 is described by the 

following system of equations 

Y l * j " ( * 2 +/S 2 ) Y dt , 
o 
t 

= - ({- C* + 2ßY2 + Y±) ćt 

Y 3 ' " Y 2 • 

Y{ = - (cк2 +fb2) Y = ( o c 2 + /S2) Y. ( 2 . 1 2 ) 

Y 2 = o < - 2 / Î Y 2 + Y^ 

The system of equations (2.12) will be carried over to a 

second order equation for Y«, i.e. 

Y2 " * 2/*Y2 + Yl " " 2/ 3 Y2 + ^ 2 + ^ 2 ) Y2 ' 

so that the respective differential equation of the second 
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order for Yp is of the form 

Y2 + 2/hY2 " C**2 +/ j 2 ) Y2 = ° ' (2-13) 

By figure 1 and by latter system of equations (2.12) we find 

that Y2(0) = Y1(0) = 0, so that Y2(0) = 06 . The function 

Y = e ' sinoCt is the solution of (2.13) with initial 

conditions Y2(0) = 0, Y2(0) = oC . 

3. Programming integral equations with the kerner k(t - x), 

With the help of the Laplace transform we may (without 

any additional device) solve the integral equations of the 

type 

t 

A u(t) + B f k(t - x) u(x) dx = C f(t) (3.1) 

0 

where u(t) is the function sought, f(t) and k(t) are the 

functions given, AfB,C are the constants, B,C / 0. In cases 

of A = 0 and A ^ 0 the integral equations of the 1st and of 

the 2nd kind are involved, respectively. Let 

L[u(t)] = U(s), L[k(t)] = K(s), L[f(t)] = F(s) . 

f k(t - x) u(x) dx = K(s) U(s) , 

Because 

L 

the Laplace image of (3.1) is of the form 

A U(s) + B K(s) U(s) = C F(s) . 

Then the Laplace image of the function u(t) is 

U(.) -
 C F < 5 > . (3.2) 
A + B K(s) 

For the 1st kind integral equation, where A = 0, the Laplace 
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image of the function sought is 

C F(s) 
U(s) = 

B K(s) 

This problem may be carried over to generating a function 

given by its Laplace image, as described in part 2. If we are 

write a program scheme for the solution of the equation 

t 

u(t) + J sin (t-x) u(x) dx = t 2 (3.3) 

0 

2 
then, in this case, k(t) = sin t, f(t) = t , so that 

K ( S) = - ^ , F(s) = -§- • 
s + 1 s^ 

Thus 

U(s) + K(s) U(s) = F(s) , 

2_ 

u ( s ) . _ŁÜÜ Ł = 2(в
2
 + 1) 

1 + K(s) 1 + - 5 — s^s + 2) 
s +1 

is the image of equation (3.3). This expression is the image 

of the differential equation 

u(t) 2 p
3
 + 2 p 

5 ^ 3 ' 
z p + 2 p 

where z is a unit function. We rewrite this equation into 

the form 

u(
5
)(t) + 2 u(

3
)(t) = 2 z' + 2 z^

3
) (3.4) 

which will be programmed by the method of decreasing the 

order of the derivative with new variable being introduced. 
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The equation will be split into two equations 

v(
5
) + 2 v<

3
> = z 

2
 V
(

3
> + 2 v* = u . 

The program scheme for the solution of this system is given 

in figure 2. 

F i g u r e 2 

И 7ÏI>ЧT> 7Ï> t-У) 

Ѓt>^ 
т 

ÍУ) 

i . e . 

By the program scheme in figure 2 we have 

w" = - 1 - 2 w , 

w" + 2w = - 1 , w(0) = w*(0) = 0 . (3.5) 

The roots of the characteristic equation of (3.5) 7t + 2 = 0 

are X-
 2
 = - iW2 . The solution of (3.5) may be written in 

the form 

w = C^ sin ^2 t + C
2
 cos y2 t + C, , 

where C, = a constant, wchich we determine on substituting 

in (3.5), i.e. 

2 C
3
 = - 1 . C = - | . 

327 



l.Є. 

w = C^ si n \Í2 t + C 2 cos p t 

The coefficients C± and C 2 with be determined from the 

initial conditions w(0) = w'(O) = 0. i.e. 

C0 - » = 0 2 2 
^2 q = 0 , 

i.e. 

C, - 0 , C0 = ~ 1 2 2 

Thus the function 

w = i (cos |2 t - 1 ) . (3.6) 

is the solution of equation (3.5). 

Moreover we see in figure 2 that 

= íw dt = - -jL- sin |2 t - t + K 

and because of Y*(0) = 0 also K = 0. 

Figure 2 shows that 

J Y' dt = | Д | sin Џ t - t) dt = 

= | (" | cos |fľ t - | t 2

 + K l ) 

Since Y(0) = 0, we have K- = *• 

_ i. c o s \fi t - 3- t
2

 + i 
4 ? 4 4. 

The output value at the summator is given by the relation 
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u = - 2(w + Y) = - - cos 1̂ 2 t + - t 2 + i- , ( 3 . 7 ) 

, / M 1 s 1 2 1 -2 s 5 +2 (s 2 +2 )s 3 +2 (s 2 +2 )2s 4 
L(u) = 2 + T- + — = -*—g =3 = 

2 s + 2 2 s 2s 2(s +2)2ss 

-. 2(s2+ 1) 
- -z 2 • 
s^(s^+2) 

which is also the Laplace image of the solution of (3.3). The 

correctness may be verified by substituting (3.7) into 

equation (3.3) 

t 

- |- cos ̂ 2 t + | - t 2 + --+ Jsin(t-x)(- | cos |i x + 

+ | x2 + |) dx = t2 (3.8) 

i 

í sin(t-x)( ) cos j[2 x dx =' - Гsin(t-x) - p sin 2̂ x -

0
 t

 " 

- — cos(t-x) cos p x = - cos yi t - — cos t , 

/
l 2 1Г 2 I

1
* 

sin(t-x) -5- x dx = ̂ - 2x sin(t-x) + (x -2) cos(t-x) = 

= | (t
2
 - 2 + 2 cos t) , 

t
 t 

í sin(t-x) -5- dx = -=- cos(t-x)J = 2 ~ 2 cos t. 

Inserting the above expressions into equation (3.8), we find 

that the following equation is satisfied 

- - cos V2 t + i t2 + -=- + - cos fi t - - cos t - - t2 -
2 f 2 2 2 ' 2 2 

1 1 2 
- 1 + cos t + =- COS t = t , 

2 2 
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2 2 
t = t . 

4. Determination of the coefficients of a Fourier series 

A periodic function satisfying further Dirichlet's 

conditions (the function is periodic, unique and finite; it 

has only a finite number of maxima and minima and a finite 

number of discontinuities on every interval of the periodici

ty) may be expressed in the whole interval of the periodicity 

T (except for the points at which it is not continuous) by 

the Fourier series, i.e. by an infinite convergent series of 

harmonic frequencies whose angular frequences are integral 

multiplies of a certain fundamental frequency. Thus 

a0 V " 
f(t) = — + / „ (a. cos kto t + b, sin k w t ) . 

k=l k k 

The coefficients aQ, ak and bk are given by expressions 

T 
a0 " T / f( t ) dt t4'1) 

0 
T 

ak = | I f(t) cos kto t cjt (4.2) 

0 

T 

bk = j \ f(t) sin k * > * dt (4.3) 

where T is the interval of the periodicity, u) = -sr" • 

The coefficients ak and bk could be determined directly 

by relations (4.1) - (4.3) but in generating the products 

f.(t)-cos k«wt and f(t)»sin k to t there may arise a certain 

impairment of accuracy since the analog multipliers work with 

a somehow reduced accuracy than the linear computing units. 

The coefficients of the Fourier series may be determined by 

applying the Laplace transform as follows: 
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We have a computing circuit with a carry H(s), i.e. 

with the Laplace images output quantity v(t) to the input 

quantity f(t) ratio. Bringing the quantity f(t) to the input 

of this circuit at the instant t = 0, then the image V(s) of 

the output quantity v(t) is given by 

V(s) = H(s)-F(s) (4.4) 

Bringing the unit pulse S (t) to the input of this circuit 

at the instant t = 0, then 

V1(s) = H(s) . 1 (4.5) 

holds for the image V1(s) of the output quantity v1(t). 

Excluding H(s) from relations (4.4) and (4.5) yields 

V(s) = V1(s).F(s) ( 4 . 6 ) 

for the output quantity v(t) we then obtain 

t 

v(t) = f f(t) v±(t -t) 6r . (4.7) 

Thus, if we know the response v1(t) of the circuit to the 

unit pulse, then the response v(t) to the input quantity 

f(.t) may be determined by relation (4.7). If we change the 

variables t = T, T= t, then relation (4.7) takes the form 

T 

v(T) = J f(t) V l(T - t) dt . (4.8) 

Let us now use a circuit whose response to the unit pulse is 

v1(t) = sin kA>t, or v1(t) = cos k to t and let co = -—!— hold. 
Bringing the input quantity j f(t) to the input of this 

circuit at the time t = 0, then the value of the output 

quantity at the time t = T by (4.8) is 
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I 

v(T) = f J f(t) cos kAJ(T-t) dt = 

0 

= | J f(t) cos fk 2f- (T-t)l dt = 

= | f f(t) cos (k2T - k y t) dt 

0 

T 

= Y [ *(*) c o s kAi t dt - ak 

0 

T 

v(T) = Y \ f(*) sin k-V(T-t) dt = 

0 

= | J f(t) sin [k ̂  (T-t)j dt = 

T 

= | J f(t) sin (k 2T - k -=-£- t) dt 
0 

T 

• - j f f(t) sin k*/t dt = - bk . 

(4.9) 

(4.10) 

Figure 3 illustrates the circuit with the required response 

to the unit pulse. The circuit solves the differential 

equation 

Figure 3 
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v£(t) + k2 A/2 Vl(t) = k co . $ (t) (4.11) 

with the initial conditions v1(0) = v^O) = 0. This equation 

is programmed in the form 

v£(t) c - f — = $ (t) - k^Vl(t) . 
k«v x 

The Laplace image of equation ( 4 . 1 1 ) is 

s2 V1(s> + k2AJ2 V ^ s ) = k*> , 

k*J 

s + k^co* 

so that making the inverse transformation we obtain 

v1 (t) = sin kwt 

At the output of the first integrator we get 

v^t) 
- --. - _ Cos k<wt 

k 

2 
Bringing now the function =• f(t) instead of the unit pulse 

£(t) to the input of the first integrator and letting the 

circuit solve for the duration of the period T, then there 

will be value of the coefficient - a. at the output of the 

first integrator, and the value - b. at the output of the 

second integrator (see equations (4.9) and (4.10)). On account 

of the fact that in the analysed courses the amplitudes of 

the individual harmonic frequences generally decrease with 

the increasing k, it is better to compose the circuit with 

a response to the unit pulse v1(t) = k sin kA) t, or v1(t) = 

= k cos k&.»t. If we program equation (4.11) in the form 

vl (t) S (t \ 
_i_2 - - k vl(t) + ^tr1 

ku)* 1 +> 
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as recorded in figure 4, then at the output of the first 

integrator we get the response to the unit pulse 

v 
' 

get - kv* a - ksin k CO t. Bringing now the function ~ f(t) 

instead of the unit pulse S (t) to the input of the summator 

k cos kAJt and at tne output of tne 2nd integrátor we 

2 

Figure 4 

> — Í M 
ÅV, 

\w 
and letting the integrators integrate for the duration of 

then there will be the value ka« at the output of the 1st 

integrator and kb. at the Output of the 2nd integrator. 

Sience 
ѓл) 

2 1 
= -s—•

 f
 we msy use the program scheme in 

figure 5 to obtain the coefficients a. and b. . 

Figure 5 

; <^>^^-iI>^M]>f 
The circuit in figure 3 anables us also to determine 

the coefficient a
f
, which is impossible by the circuit in 

figure 5. For instance, we have to determine the coefficients 

of the Fourier expansion of a periodic function with the 

period T =- 2/T 

f(t) • 0,5 for 0< t -=F 

f ( t ) - 0,5 foг!J< t — 2î* 
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2 It 2 £ 
T a 2 ^ 

. b. may be determined by ( 4 . 1 ) 

T 

I n our case 60 = 
a 

"0 
a f f ( t -

i/"" 

• : : " 

1. The Fourier coefficients aQ, 

(4.3), so that 

257 

~r(/o,5 dt + J - 0,5 dt) = 0 
л-

cos küjt dt = 
2T 

(4.12) 

(Jo. 5 cos k.t dt + 

p. • 

/ 0,5 cos k.t dt] 

- - f f(t) sin k& t dt 

0 

2 
2J 

.... 

^ 0 ' 
5 sin k.t dt + 

2Ж 

/ 0,5 sin k.t dt) = 
Ą___ 

2ľk 
2 
kУ 

= 0 

for an odd k 

for an even k 

a, and b, for By machine processing we determine a~, 

instance following the program scheme in figure 6. We bring 

to the input circuit a rectangular function f(t) = 0^5 for 

the duration of T = 5T and f(t) = - 0,5 for the duration of 

T = If . The machine determined coefficients may be compared 

with the theoretic coefficients of (4.12). 

By placing the function f(t) there is aQ = 0ff
 for in-

creaving the accuracy in determining the coefficients a
5
, and 

b, (k = l,2,...
f
n) we ref.er to the program scheme in figure 5, 

: f e 

F i g u r e 6 

llï 

Í^5> 
ГTs 

\ ^ kЯ-д 
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We let the circuit operate for the duration of t = ZT , 

after this time the computation is stopped. 

5. Applying the Laplace transform in generating the time 

delay. 

In solving some problems it becomes necessary to delay 

the given function u(t) by the prescribed time interval T, 

i.e. we have to form a function u(t-T) from the function 

u(t). If u(t) is the input signal of the computing block 

generating the time delay, then 

v(t) = u(t-T) (5.1) 

holds for the output signal v(t). Let Lfv(t)] = V(s), 

L]u(t)J = U(s). Then the Laplace image of equation (5.1) is 

of the form 

V(s) = e" s t U(s) . 

Thus, the image transfer function of the delayed circuit is 

H(S) = )liSlm e" sT . 
^ U(s) 

On account of the fact that a delayed circuit is concerned, 

we have for the output signal v(0) = v'(0) = ... = v^ " )(0) = 

= O. Under these conditions the Laplace operator s may be 

replaced by the operator p = -Tr, so that the transfer function 

H(p) of the delayed circuit 

H(P) = S 1 U . e" P
T , (5.2) 

u(t) 

which may be taken as a writting of a certain differential 

equation. 

The transfer function H(p) = e" p cannot be directly 

simulated by a computer. Therefore this function must be 

approximated by another transfer function which can be si-
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mulated so. One possibility of approximating the expression 

e~ p is to expand this expression in a Taylor's series, i.e. 

8- PT . ! . fil + (PT)
2 _ (pT)5 + _ + (- PT)

0 . 
1! 21 3! n! 

Then the output signal v(t) given by (5.2) is 

v(t) = e" p T u(t) = u(t) - pTu(t) + 

+ (- PT." _ _ 

Since p = -TT- , the output signal is 

(5.3) 

v(t) = u(t) - T u'(t) + I- u"(t) + ... + L±L_ u(")(t) 

This approach is not generally used, because in applying 

the analog technique the differentiation is always performed 

with greater deviation. To approximate the function e" p 

we use the so-called Pade expansion, where the approximating 

function is a rational broken function of the argument p 

-i (n) _ (n) 2_2 , A . n (n) n_n 
1- .V ;PT + V ;p T - ... + (-1) n * 'p T 

e P
1 _ —± ^ -I! — (5.4) 

. (n) _ (n) 2_2 (n) n_n v ; 

1 + n1
v ;pT + n2

v ;p T + ... + n K yp T 

where the coefficients n. ̂  ' are given by the relation 

n (") = [} ) (5.5) 
k ( 2k" ) k! 

The coefficients of this rational broken function are 

determined so that Taylor's expansion of the function e~ p 

and the approximating function may have the greatest number 

of equal terms. For instance, the 1st Pade expansion of the 

function e~ p by (5.4) and (5.5) is of the form 
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1 - П ^ ^ p T 1 - | pT 2 - pT 

—7T1—
 s
 "~ T~ s

 — — , (5.6) 
1 + n, ̂

 j
pT 1 - i

 p
т 2 + pT 

because 

u (-) - ( - . = ł 1 " ( l ) - 2 

the 2nd order Padé expәnsion has the form 

(2.\ 1 1 2 2 

- PT
 X - V P

T
 1 " 2 PT + T2 P

 T 

+ n-
(2)
pT 1 + ì PT + Ar p2T2 1 

' pT 1 + 2 p T + 12 P 

n 

12 - 6 pT + p 2T 2 

1 2 + 6 pT + p 2T 2 

(2) _ ( 1 j 2 1 

(5.7) 

1 " 7 4 ( ï ) II 4 2 

} ( | ) 1 1 

* ( p ) 21 6.2 12 

Taylor's expansion of the function f(x) has the form 

f(x) = f(O) + f'(0).x + f"(0) |j. + ... + f(n)(0) £ 

(5.8) 

Taylor's expansion of the function e" p (setting x = pT) has 

the form 

^T 2_2 3̂ .3 n~.n 
e~ PT = 1 - PT • fi-X- - fi-T- + ... + (-l)n fi-J- (5.9) 

2! 3! n! 
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For the 1st order Pade expansion (n=l) we have 

e" PT •_ .- x _ 2_=_5
 ( 5 - 1 0 ) 

#
 2 - x 

Performing Taylor s expansion of f(x) = K — , then 

f(0) = 1 

f*(x) - - - ( - ^ ) - (2-x) _ _ _ 4
 t f

'
( 0 )

 _ _ 

(2+x) (2+x) 

r ( x )
 . _j__i_il__xi . B

 (
 f"

(0
) - a 

(2+x)
4
 (2+x)-

3 

f " (
X )
 - - 3.3(2+x)

2
 _ ____24^

 ( f
... _ _ 3 

(2+x)
D
 (2 + x) * 

We see that 

2 - X „ 1 2 3 3 
— ш 1 . - X + — X - — — • X + . 
2 + x 2 2 . 3 1 

.. 

2 - Pт . i - Pт + Ł P

2 т 2 - Ł . i -
2 + pT 2 2 3 ! 

F V (5.11) 

Relation (5.9) is true for Taylor's expansion of e" p"« 

Comparing (5»9) and (5»11) we find that the first three terms 

in expansions (5.9) and (5.11) are equal and that the expres

sions begin to differ first at the fourth term. Taylor's 

expansion of the expression e " differs thus from Taylor's 

expansion beginning the third term. Setting again x = pT in 

the second order Pad6 expansion, then 

f(x) = 1Z ~ 6 x * * , f(O) = 1 
12 + 6x + x 

f'/ \ (2x-6)(12+6x+x2) - (2x+6)(12-6x+x2) 

(12+6x+x ) 

_ 12X2 - 144 r ( 0 ) _ _ _ 

(12+бx+x
2
)

2 
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r", 24x(l2+6x+x2)2 - 2(12+6x+x2)(2x+6)(l2x2-144) 
1" \x) = 2 4 

(12+6X+X )* 

-24x3 + 864x + 1728 f "(O) = l 7 2 8 = 1 
(12+6X+X2)2 1728 

likewise 

**", , 72x4 - 5184X2 - 20736X - 20736 .c*"/m 1 

t (x; = S—T , T (u; - -a. 
(12+6x+x )^ 

,(4), . -288x5 + 34660X3 + 207960x2 + 4l6920x + 248828 
r \x) = 2~~5 

(12+6X+X y 

f (4) m 248828 = 1 # 

248832 

Then 

4! 

P 4T 4 

4! 

( 5 . 1 2 ) 

Comparing the last expression with that of (5.9) we see that 

both expansions begin to differ at the fourth term (or with 

a sufficient accuracy beginning the fifth term). Figure 7 

shows the program scheme of a computing circuit using the 

second order Pad6 expansion. The computing circuit solves in 

fact the following equation 

YlU = 1 2 - 6 P T + P2"1"2 (5.13) 
u(t) 12 + 6pT + p 2T 2 

(see equation (5.7)). The equation in the form 

v"(t) + ̂  v'(t) + --§ v(t) = u"(t) 2 u'(t) + if u(t) 
T T^ T T^ 

12 -• 6x + x 2 

x 2 
= 1 - X • 2Č. £ • 248828 

12 -І • бx + 

x
2 

x
2 

2! 3! 248832 

12 _ 6pT 2_.2 
+ P T 

1 pT + 
2_2 

P_ T.... 
p T . 248828 

12 + 6pT 
2_2 

+ p T 
1 pT + 

2! 31 248832 
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is solved by the method of successive integrator 

6 ' 6 * 12 12 u - — u - — v + —--- u - —=• v 
T " T T T 

6 6 u - — u - — V + V„ 

where 

-i = / ( Џu - l j § v ) d t 

where 

Г, 6 б 
v

2
 = J ( - u + - v -

 V l 

) dt 

Figure 7a illustrates a graph of the function v • sin (t-T), 

where T = 1 obtained in the above mentioned way. 

F i g u r e 7 

ч> 
n>- <Ł 

> 

ñГ 

Q> 
<Ь 
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Figure 7a 

Ю t 

Figure 7b shows the response of this delaying circuit 

to the jump function u(t) = 1 for t-0, T = 1 second. 

^iqure 7b 

. -.gure 8 presents the program scheme using the third 

order Fade expansion. The computing circuit solves the equa

tion 

v(t) 

u(t) 

1 - i pT 
1 2_2 
ГÕ P T 

1 з
т
з 

Î2Õ P T 
" I ~ I 2~2~ 
1 + ^ PT + lõ P I — D3T3 

120 p ' 

(5.14) 

The equation in the form 

12 „ 60 - 120 
— v + —R- v + -—=• v = -u 
T T T 

12 60 

T* U 

120 
т
2 
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is solved by the method of successive integration again. 

"* J** 1 2 „ 1 2 „ 6 0 - 6 0 - 1 2 0 1 2 0 
v = - u + — u" - V" - —s- u - —p V + — = • u - — = • V 

T T T T T T 

1 2 * 1 2 - 6 0 6 0 
U " + — u . — v - ---j U я- v + v., 

T T T T 

w h e r e 

/ 
, 1 2 0 1 2 0 ч .. ( — - u _ v ) d t , 

T ^ T ^ 

1 2 1 2 
u + — u - — V + v^ 

w h e r e 

/ 
( . 6 | u _ 6 0 v + t § 

T ^ T 

' 3 ' 

w h e r e 

• / 

( — u - — v + v 9 ) d t V T T 2 

/X/ 

Jť 
J*J 

l ГT 4 ^ U — Г T ^ П\. 

< 
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Figure 8a shows the response of this circuit to the jump 

function u(t) = 1 for T = 1 sec. 

ЛГ 

Figure 8a 
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POUŽITÍ LAPLACEOVY TRANSFORMACE PŘI SIMULACI SPOJITÝCH 

SYSTÉM8 

Souhrn 

Práce se zabývá použitím Laplaceovy transformace při 

simulaci spojitých systémů, je uvedeno použití této trans-
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formace při vyšetřování dynamických systémů buzených Diraco-

vou funkcí, generování funkčních závislostí, řešení integrál

ních rovnic s jádrem typu k(t - x), určení koeficientů Fou-

rierova rozvoje a při vytváření časového zpoždění. De ukázá
no praktické použití na příkladech. 

АПЛИКАШЯ ПРЕОБРАЗОВАНИЯ ЛАПЛАСА В СИМУЛЯЦИИ 

НЕПРЕРЫВНЫХ СИСТЕМ 

PesDMe 

Работа занимается использованием преобразования Лапласа 

в симуляции непрерывных систем, напр. функции Дирака, реше

нием интегральных уравнений, опождением и другими случаями. 
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