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1. Introduction

We consider a system of nonhomogeneous linear different-

ial equations

y" = A(t)y + f(t) (1)
with A:R — R™" an almost periodic square matrix function of
order n and f:R — R" an almost periodic vector function of

order n, n 2 2, Besides (1) we consider system

.

x” = A(t)x . (2)

As is well-known from by Favard [2] (see e.g. also [7]
Theorem 18.2, p.207, [6] Theorem 4.2.2, p.180, [3] Theorenm 4,

p.218) there exists an almost periodic solution of (1) if has
a bounded solution (on R) and every nontrivial bounded solution
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x of the system x’ = B(t)x satisfies inf Ix(t)]| >0 for every
BEH(A). teR

This paper presents sufficient conditions for even every
bounded solution of (1) to be almost periodic. This result is
then used to establish sufficient conditions for almost pe-
riodicity of every "bounded" solution of nonhomogeneous n-th
order linear differential equations.

2. Basic concepts, notations, lemmas

N¥N (nh 2 2) to be

almost periodic (i.e. A6 C(R,R ) and for any sequence {hn},
h,€R, there exists a subsequence {hnk} such that iA(t+hnk)}

We assume the matrix function A:R — R
nxn

is uniformly convergent on R) and f:R —> R" to be the. almost
periodic vector function (see e.g. [1], [3],[5] - [7]).

Let H(A) be the hull generated by A and H(f) be the hull
generated by f (i.e. B€H(A) (g&H(f)) if and only if there

exists a sequence {hn}, h,€ R, such that lim A(t+hn) = B(t)
n-co :

(lim f(t+h ) = g(t)) uniformly on R). It holds: if B &H(A)
n+o

(9€H(F)), then H(B) = H(A) (H(g) = H(f)).
Next we assume:

(i) the space of bounded solutions of (2) has dimension m,
1 £ m<n;

(ii) the space of bounded solutions of system
x* = B(t)x, (BEH(A)) (3)
has dimension m, for every B&€ H(A);

(iii) every nontrivial bounded solution x of (2) satisfies

inf lIx(t)ll > o.
teR

By X4s.¢0,%x, we understand linearly independent bounded

m
solutions of (2).

Lemma 1. Let B€H(A). Then, there exists a sequence {hn },
h,€R, such that
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lim A(t+h_ ) = B(t) (4)
n-+ Q@

uniformly on R.

lim x.(h ) = a,, i=1,2,...,m . (5)
nsco - " * '

and
lim xi(t+hn) = x;(t), i=1,2,...,m (6)

n-+

local-uniformly on R, where x? (i=1,2,...,m) are linearly in-
dependent bounded solution of (3), x:(o) = a;, and every non-

* of (3) satisfies inf Ux™(t)ll >o0.
t&R

trivial solution x

Proof. From the fact that B€ H(A) there exists a sequence
{hni, h,€R, such that (4) is uniformly on R. It follows from
the boundedness of XqooooaXp that we may without loss of gene-
rality assume the validity of (5) (refining the sequence {hnf
if necessary). From Theorem 2.4 [4], p.15, we obtain (6) local-
uniformly on R, where x; are bounded solutions of (3), x:(O) =
= a; (i=1,2,...,m). We now prove x; (i=1,2,...,m) being linearly
independent solutions gf é3). In the contrary case there exist
c;€R (i=1,2,...,m), E;%ci > 0, such that

u -
S&: cixi(t) = 0 for t&R.

i=1

Set X := z?: CiXse Then X is a nontrivial bounded solution of
i=1

(2). Then assumption (iii) yields inf IX(t)l>0 contrary to
téR
lim X(t+h_ ) = O local-uniformly on R. It remains to prove that
n-+00
every nontrivial bounded solution X" of (3) satisfies

inf Ux(t)ll > 0. With respect to assumption (ii) we see that
teR

x: (i=1,2,...,m) form a base of the space of bounded solutions
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of (3) wherefore we have for every nontrivial bounded solution

x" of (3)

x* = i dix’.( ,

i=1 1

with d. € R, i: d?)O. Then X := S :d.x. is a nontrivial bounded
* i=1 * i=1 1
solution of (2) and inf UX(t)ll >0. In view of the fact that
t&R

lim 'i(t+hn) = x”(t) local-uniformly on R we obtain
n+ o

inf I x®(t)ll >o.
teR

Definition 1. A set {2 CR“"’1 is called the integral set
of bounded solutions (ISBS) of (2) ((1)) if:

a) (t,x(t))e -O., t 6 R, for every bounded solution x of (2)
((1));

b) (to,xo)ﬁn then there exists the bounded solution x of
(2) (1)), x(t,) = x, and (t,x(t))€Ld for teRr.

Convention., We say that h:R — R" lies in a set .Q.CR““‘
if (t,h(t))e Q for teRr.

Remark 1. Let {) be the ISBS of (2). The a function
h: R — R" lies in L if and only if there exists functions
ci:R —» R (i=1,2,...,m) such that

h(t) = tl c;(t)x;(t) for teR.

i=

Lemma 2. Let LL be the ISBS of (1), y a solution of (3)
lying in QL and let for a sequence {hn}, h &R,

lim A(t+h ) = B(t), lim f(t+h ) = g(t)
n= 0 n-»

uniformly on R and lim y(h ) = a, aeR". Then
n+0oo
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Lim y(t+h ) = y™(t) (7)
n-% @

local-uniformly on R, where y* is a solution of the system

.

y = B(t)y + g(t), (8)
y*(0) = a.-

1f £2* is the ISBS of (3), then y* is lying in f)?.

Proof. The first part of Lemma 1 follows from Theorem 2.4
[4], p.15.

Suppose y = col(yl,yz,...,ym) to lie in 19} . Then
m

y(t) = Zci(t)xi(t) , t&rR , (9)
i=1 .

with ci:R —» R (i=1,2,...,m). Let t,€R. It follows from the

boundedness of Xy = °°1(x11'x21"°"xni) (i=1,2,...,m) that

there exists a sequence {h j selected from {h } such that
N n

iiﬂn*i(t°+hnk)' i=1,2,...,m,

exist, Of course, we then have from Lemma 1

Lim x,(t+h ) = x3(t), i=1,2,...,m,
k- 00 [3

*
i
..,m, are linearly independent bounded solutions of (3). There-

*

local-uniformly on R, where x. = col(x:i.x .,...,x:i), i=1,2,..

fore the rank of the nxm matrix
»* »* »
(xg(t5)s X5(t ) seee,x (1))
is equal to m. From this matrix may then be selected m rows so

that the obtained m ¥ m matrix S is regular. For simplicity let
S be formed by the first m rows

S = (x?i(to))?'i=1 (det S # 0).
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Setting s := det (xji(t°+hnk))'; j=1 yields tim S = det S ¥ 0O
! +

and therefore s # 0 for sufficiently large k. It is possible
for there k from the system of linear equation

yj(t0+hnk) = E;;ci(to+hnk)xji(to+hnk) 3=1,2,...,m, (10)

(as obtained from (9)) to express c;(t +h_ ) by Cramers rule
k

using yi(t°+hnk) and xji(to*hnk)' From this expression it is

apparent that there exist lim c
k#® o0

.+«,m) and passing to the limit as k —» oo in (10) we get

i(to+hnk) (=2 c;(t,)) (i=1,2,..

m
V() = iZ_;c’i‘(to)x;‘(to)-

Consequently (to,y"(to))e _Q_* for t €R, thus y“ lies in D:‘.

Corollary 1. Let £) be the 1SBS of (2). If a bounded so-

lution y of (1) is not lying in -Q, then no bounded solution
of (1) is lying there.

Proof. Every bounded solution w of (1) is of the form

W = y-l-S :cixi,

i=1

with ¢, €R (i=1,2,...,m). If for a t, &R we have (to,y(to))*ﬂ,
then (to,w(to))ﬁﬂ. Contraryviee if (to,w(to))c .Q, we get

(toew(ty) - 2 : cyxy(t ))e L. Hence (toey(ty)e Q. This contra-
i=1
diction proves Corollary 1,

Corollary 2. Let £l be the ISBS of (2) and let for a
sequence fhn}, h €R,
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lim A(t+h ) = B(t), lim f(t+h ) = g(t)
n-o n-+00

uniformly on R. Let L) be the 1SBS of (3).

If a (and then evéryf.bounded solution of (1) does not
lie in J]., then no bounded solution of (8) lies in I)f.

Proof. Assume a (and by Corollary 1 every) bounded solution
yx of (8) be lying in N, Then there exists a subsequence
{hnk} of {n } such that

Lim y*(t-h ) = y(t)
k+» o0 3

local-uniformly on R, where y is a bounded solution of (1).
By Lemma 2, y lies in 11, which is (with respect to Corollary
1) contrary to our assumptions of Corollary 2.

Lemma 3. Let £ be the ISBS of (2). If a (and then every)
bounded solution of (1) lies in Il, then there lies the function
f also. Conversely also, if the function f lies in fl, then
there exists a solution of (1) lying there also.

Proof. Let y be a bounded solution of (1) lying in Q. By
Corollary 1 every bounded solution of (1) lies in L) so that
we may without any loss of -generality assume y(O) = O. Let Y be
a fundamental matrix of (2) and the first m columns of Y be

linearly independent bounded solutions XgaXop e X of (2). Then
t

y(t) = Y(t) fY-l(s)f(s)ds for teR.
()

m

t
Set c(t):= J( Y'l(s)f(s)ds for teR. Let ¢ = col (cy,Cp,...,Cp)
()

and Y(t) = (xji(t))g j=1- By our assumption y is lying in n
and therefore

n
E xji(t)ci(t) = 0 for t&Rr, j=1,2,...,n. (11)
i=m+1
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with a fixed t (& R) we may consider (11) as a system of n
linear equations having n-m unknowns c.(t), j=m+1,...,n. Since
the rank of the matrix of system (11) is n-m, then necessarily
cJ(t) = 0 for teR and j = m+l,...,m. Consequently

t
‘/’Y_l(s)f(s)ds = col(cy(t),eee,c (t),0,...,0),
o

whence

Y7 (t)f(t) = col(cf(t),e.e,ci(t),0,.0.,0)

and
f(t) =-Y(t)col(c (t),eee,C (t),0,0..,0).

From this (f = col(fl,fz,...,fn))
fJ(t) =§c;(t)xji(t), teR, J=1l21"'ln
and f is lying in 0.

Letting (t,f(t))e £ for teR yields f(t) = Y(t)c(t) with
C:R —» Rn, c = col(cl,cz,...,c 0,...0). If y(t) :=

ml
t
1= Y(t) f Y'l(s)f(s)ds for t€R, then y is a solution of (1)
()

and from the equality y(t) = Y(t)] c(s)ds, t &R, we obtain
o

m

t
y(t) =Z : xi(t)f c;(s)ds. Hence y is lying in 0.
i=1
o

i=

Results

Theorem 1. Let A:R — R™" be an almost periodic matrix
function, f:R —» R" be an almost periodic vector function and
the assumptions (i) - (iii) be satisfied. Let Clbe the ISBS
of (2) and f does not lie in Q.

34



Then every bounded solution of (1) is almost periodic.

Proof. Let y be a bounded solution of (1). By our
assumption f is not lying in 0. Therefore, by Lemma 3, y is
also not lying there. Suppose y is not an almost periodic
function. Then there exists a sequence {hni, hn‘ R, such that
every subsequence of {y(t+hn)} is not uniformly converging on
R. From the almost periodicity A and f and from the boundedness
of the solution y then follows the existence of a subsequence
of {hn} (using the same notation for simplification) such that

lim A(t+h = B,(t lim f(t+h = t
et ( n) 2( ) neto ( n) 92( )

uniformly on R and

lim y(h ) = a(e R").
n-+

On account of Lemma 2 we have

lim y(t+h ) = y*(t)
n-s 0

local-uniformly on R, where yx is the solution of system

\/' = Bz(t)y + gz(t)r (12)

y”(O) = a. Since {y(t+hn)f is not uniformly converging on R,
there exist: an f)O, {tn}(tne R, lim ltn | = o) and subsequen-
n+o

ces {hkn}, {hrn} of {hnl such that
ly(e+h ) = y(e+h ) 2 €, n=1,2,... (13)
n n
(see [5], p.156) and besides
lim A(t+tn+hk ) = B(t), lim f(t+tn+hk ) = g(t),
n+o n n-+oo n
n+ o n+ o

lim A(t+th+hrn) = Bl(t), lim f(t+tn+hrn) = gi(t),
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uniformly on R. We may prove that B = By, g = g, analogous to
[5] p.157. We may also assume (without any loss of generality)

lim y(t_+h ) = L, lim y(t +h_ ) = .
n$ oo nky n- Nt ﬂ

With respect to (13) then

I - AU 2 E . ‘ (14)

Next by Lemma 2

iim@y(t+tn+hkn) = y:(t), ,];j_;mmY(t+tn+hrn) = y;(t)
local-uniformly on R, where y;f and y; are bounded solutions of
(8), v3(0) = &, y5(0) = 8 . Let {& be the ISBS of (3). From
Corollary 2 then follows that y,, Y, are not lying in L£1* and
therefore (to,y:(to))f_()_" for a t €R. Since y“ - y;is a
bounded solution of (3), we have (to,y;(to) - v¥o(t,))e 00 1¢
(to,y;(to))eﬂ”, then necessarily (to,yl(to))em which is a
contradiction. Therefore (to,y;(to)) & . Setting X?::{x «R";
(t,ex)€ .ﬂ.xf, yields X: (# {0}) being proper subspace in R".
Let X’z( be a complementary subspace to X: in Rn, y:’f(to)sxg,
X:’L( (©) X; = R". From the fact that y;_((to) - y;(to)c x;_(, there
then exists a b €X,:

yi(to) = ya(ty) + b (15)

We may express y:(to) being uniquely in the form y:(to) = U+ Vv
with uex:, Vv E x;. Then, naturally, u = O and we get b = 0 in
(15). Therefore ye(ty) = y2(to) whence & = ,@ contrary to (14).
Consequently {y(t+hn)} converges uniformly on R and y is an
almost periodic solution of (1),

Corollary 3. Let A:R — R™" be an almost periodic matrix
function and assumptions (i) - (iii) be satisfied. Let £L be
the ISBS of (2).

If (1) has bounded solution for an almost periodic function
f:R —» Rn, not lying in 0 , then every bounded solution of (2)
is almost periodic.
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Proof. Let y be a bounded solution of (1) with an almost
periodic function f not lying in ) . since x + y is a bounded
solution of (1) for every bounded solution x of (2), then y
and x + y are almost periodic functions by Theorem 1. Conse-
quently x (=(x+y)=-x) is an almost periodic function.

Corollary 4. Let A:R —» RN be an'almost periodic matrix
function and assumptions (i) - (iii) be satisfied. Let the

system

’

y = A(t)y + ¢

have a bounded solution for every ce R". Then all bounded so-
lutions of (2) are almost periodic functions.

Proof. Let £) be the ISBS of (2) and c,€ rR", (0,c0)¢ 0.
The system y* = A(t)y + c, has a bounded solution and since
the function f(t):= o for t&€R is not lying in.fl, then, every
bounded solution of (2) is almost periodic with respect to

Corollary 3.

Let us now consider a homogeneous n-th order (n £ 2) li-

near differential equation
x(M 4 al(t)x(n_l) + ...+ a (t)x =0 (16)

with a;:R —» R (i=1,2,...,n) being scalar almost periodic
functions. Setting a(t):= col(al(t),az(t),a..,an(t)), t€é€R,
then a:R — R” is an almost periodic vector function. As it
well-known, equation (16) can be converted into a system of
type (2). We introduce the following definitions for trans-
forming the above results, holding for systems of linear dif-
ferential equations, to the n-th order linear differential

equations.

Definition 3. We say, a function g has the property (BD)
if
~n-1 (i) L
g:R —* R, g€C (R) and g (t) are bounded functions

(8D)
on R (i=0,1,...,n-1).
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Definition 4. We say, a function g has the property (BAD)
if
n-1 (1) .
g:R —» R, geC (R) and g (t) are almost periodic
(BAD)
functions (i=0,1,...,n=-1).

Definition 5. We say, a set flcRn+1 is the ihtegral set

of BD-bounded solutions (BD-ISBS) of (16) if (t,x(t),ee.
....x(n-1)(t))€.f1.for t& R, for every solution x of (16) with
the property (BD), and to every point (t ,X_,¢c.)X, )6 0
there exists the solution u of (16) having the property (BD),
wl) (e ) = x; (1=0,4,...,n-1) and (t,u(t),u’(t),...,ul")(t))e
G.Q‘ for t€R.

Assumptions (i) - (iii) for system (2) may be formulated
for equation (16) in this way:

(1°%) the space of solutions of (16) having the property (BD)
has the dimension m, 1 § m<n;

(ii°) the space of solutions of the equation
x(M) 4 bl(t)x("'1) + ..o+ b (t)x =0
having the property (BD) has for every b:=col(b1,b

...,bn)c H(a) the dimension m;

PYRER

n-1
(14i°) inf Z lx(J)(t)l > 0 for every solution x of (16)
teR
j=1
having the property (BD).

Theorem 2. Let a = col(aj,a5,.0058,):R — R" be an almost
periodic vector function and (i°) - (iii’) be satisfied. Let (Ll
be the BD-ISBS of (16), p:R —» R be an almost periodic function
and the vector function (0,...,0,p):R —» R" be not lying in fl.
Then, every solution of equation

x(M al(t)x("'i) + .o0 + a (t)x = p(t) (17)
having the property (BD) has the property (BAD) as well.

The proof follows immediately from Theorem 1,
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Remark 2, If 381+185,44.,8, are € -periodic and continuous

n
(on R) functions and p is an almost periodic function, then
(as is well-known form [1] p.423, [5] p.128) every ‘bounded so-

lution of (17) is almost periodic.

From Corollary 3 now immediately follows

Corollary 5. Let a = col(ay,8,,+¢+,8,):R — R" be an
almost periodic vector function and assumptions (i°) - (iii”)
be satisfied. Let £l be the BD-ISBS of (16). If equation (17)
has for an almost periodic function (0,...0,p):R —» R" not
lying in fl a solution with the property (BD), then every so-
lution of (16) with the property (BD) has the property (BAD)
as well,

Corollary 6. Let a = col(al,az,...,an):R — R" be an
almost periodic vector function and assumptions (i”) - (iii”)
be satisfied. If there exists a solution of the differential
equation

e ap(t)x =1 (18)

x(N) a,(t)x

having the property (BD), then every solution of (16) having
the property (BD) has the property (BAD) as well,

Proof. Let x, be a solution of (18) having the property
(BD). Then Xyi=Cxy is a solution of the differential equation

x(M ai(t)x(n'l) * .o+ a(t)x=c

having the property (BD) for all c&R. Therefore every solution
of (16) having the property (BD) has also the property (BAD)
as follows from Corollary 4.

Summary

Let A:R — R™" be an almost periodic matrix function and
f:R — R" be an almost periodic vector function. In the paper
are present sufficient conditions for every bounded solution
of the system
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y© = A(t)y + f(t)
to be almost periodic. One in conditions required that f is
not lying in the integral set of bounded solutions of the
system y° = A(t)y. The results are applied to a derivation of
an almost periodicity criterion of solutions for a nonhomoge-
neous n-th.order linear differential equation.

souhrn

KRITERIUM SKOROPERIODIENOSTI REZEN? NEHOMOGENNEHO 'SYSTEMU
LINEARNEICH DIFERENCIALNfCH ROVNIC
SE SKOROPERIODICKYMI KOEFICIENTY

Necht A:R —» R™X"

f:R — R" skoroperiodicka vektorové funkce. V préaci jsou uve-

je skoroperiodicka maticovéa funkce a

deny podminky, které jsou postadujici k tomu, aby kaZdé ohra-
nidené rFeSeni systému

.

y = A(t)y + f(t)
byla skoroperiodické funkce. Jeden z predpokladd je, aby funk-
ce f nelezela v integralni mnoZiné ohranidenych Fedeni systému
y’ = A(t)y. Vysledky jsou pouzity k odvozeni kriteria skoro-
periodiénosti rFe$eni nehomogenni linearni diferencidlni rovni-
ce n-tého fadu.

Pespoue

NPU3HAK NOYTH-IEPMOMUHOCTH PEMEHMMA
HEOZNHOPOJIHOR CHCTEMH JMHEMHEX IMeSEPEHIMANBHHX YPABHEHUA
C MOYTH-NEPMOMMUECKMY KOISSHUIMEHTAMM
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Nycrs At R —» R™® o jouwrx - NEePROANUECKEN MATDEUNAS
dynxuns, £3 R->R" = MOYTN = MEPNOZNTYECKas BexTopHas (Jymux-
nus. B pafoTe NMPNBOAATCK YCAOBNS, KOTOPNM® KOCTETOUHNG® IRAS TO~
ro, 4rofy BCe OrpaNNYENHNE DEmEeHNS CHCTeMM

y= A(t)y + £(t)

OMAX TOUTN = NMEPNOENWECKNMN QyHXIMSMN. OZHO M8 ycaosx#t npex-
noxoraer uro £ MNeXeXNT B NNTErpPEALHOM MNOXECTBE OrPEHNYENNNX
pemenxh cucremm Y = A(t)y . PesyapreTs mcmoassoseEm npx
BNBOXY NPMSRAXE NMOYTN - MEPNOANUENOCTH DEmeHRS NeOXHOPOAROTO
annefnoro mdPepeHUN@XLEOTO YPOBHEHNS R-T0 MOPSAXE@.
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