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INIRODUCTION 

The concept of the translation operator and its applicati

on to the periodic boundary value problem is well-known since 

the time of Poincare [l]. However, Levinson L2] was the first 

who studied its properties in detail (whence the name) with res

pect to the second order differential e q u a t i o n s . 

Since there exists the whole theory concerning the trans

lation operator at present (see e . g . [3]), we will not repeat 

here the basic notions, but will be concentrated directly to 

our goal, consisting of a suitable modification of the Levinson 

operator, corresponding to the following three-point periodic 

boundary value problem, namely 

x " = f ( t , x ) , f € C « 0 , 2 a > x R1 ) ( 1 ) 

and x ( 0 ) = x ( a ) = x ( 2 a ) , 0 i a c R 1 . ( 2 ) 
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Remark 1. In order to apply the modified Levinson operator, it 

is necessary to assume that all solutions of (1) exist and are 

uniquely determined on <0,2a> . However, since we use the a 

priori estimates technique, the existence requirement can be 

strictly localized (and hence practically omitted; see bellow), 

Moreover, it is possible (see [3, p.23]) to approximate uni

formly f(t,x) by the Lipschitz functions with respect to x on 

<0,2a> in arbitrary accuracy and to apply the standard li

miting argument (cf. [3, p.24]) to satisfy the uniqueness. 

2. MODIFICATION OF THE OPERATOR TO SECOND ORDER SCALAR 

EQUATIONS 

Hence, let us define the modified Levinson operator 

T X(0), where ̂ , V 6<0,1> are parameters and X(0) = (x(0), 

x'(0)) are the Cauchy initial values of solutions x(t) of (1), 

in the following way 

{^[x(a)-x(0)],a~2[x(2a)-2x(a)+x(0)]j for^=V = 1, 

[>a[x(va)-x(0)],[x((>+v)a)-x(va)]~[x(^a)-x(0)]](/lv)"
1a~2 

for^,V6(0,l> , 

V,v X ( 0 ) 

l[x(va)-x(0),x'(va)-x'(0)](va)~1 for ̂ i= 0,V€(0,1> , 

l[x'(Q),f(0,x(0))] for ^i= V = 0. 

It is clear that 

lx XX(0) = 0 iff x(0) = x(a) = x(2a) 

and TQ XX(0) = 0 iff x(0) = x(a), x'(0) = x'(a). 

Lemma 1. The problem (1) - (2) is solvable, provided 

(f(0,x(0)) t 0) 
f(0,x(0)) f(0,-x(0)) 

|f(0,x(0))| |f(0,-x(0))| 

(3) 

(І) 
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holds for |x(0)| — RQ, where RQ is a suitable positive constant 

and T. 1X(0) i 0, TQ yX(0) i 0 (ii) 

for |X(0)||- R — RQ (R - great enough real), independently of 

Jk,, ve(0,l> . 

Proof. As we have already pointed out, the problem considered 

is solvable if 

T1>1X(0) = 0. 

Since we employ here the topological degree arguments, the fun

damental requirement reads [4] (see also (3)) 

T1 1X(0) t 0, (TQ 1X(0) i 0) (4) 

on the sphere ||X(0)||= R. But assuming (ii), condition (4) can 

be replaced by 

T0,0 X ( 0 ) * ° for Hx(0)ll = R (5) 

by virtue of the well-known [4] invariance under the homotopy. 

Furthermore, since the degree of an odd operator is not equal 

to zero on the sphere according to the classical Borsuk anti

podal theorem [4], namely 

d[T0>QX(0) - TQ Q(-X(0)),|X(0)|£ R,0] t 0 for |X(0)||= R, 

condition (5) can be still replaced by 

T0fJX(0) - (1 - * )T 0 ) 0 ( -X(0) ) i 0 for a l l A e ( 0 , l > , 

which is certainly implied by (i) for f(0,x(0)) t 0. This 

completes the proof. 

Lemma 2. Condition (ii) of Lemma 1 is fulfilled, if all so

lutions x(t) of (1), satisfying the following simultaneous 

boundarv conditions 

x(va) = x(0), x'(va) = x'(0) for all V«(0,1> , (6) 

x((^+l)a) = x(^a), x(a) = x(0) for all^«(0,l> (7) 
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are uniformly a priori bounded (in case (6) with their derivati

ves x (t) as well). 

Proof. It can be easily seen (see (ii)) that 

T 1X(0) i 0 iff x(a)^x(0) or x( (l+^)a)^x(/*a) for all(A6(0,l> , 

TQ v X(0) i 0 iff x(ya)^x(0) or x'(ya)^x'(0) for ally€(0,l> . 

Therefore assuming a priori estimates as above (cf. (6), (7)), 

these inequalities are trivially satisfied for R great enough. 

Remark 2. The criterium of the solvability of (1) - (2) is re

presented by the assumptions of Lemma 2 and (i) (for the problem 

of Poincare it is enough to verify besides (i) a priori esti

mates corresponding to (6), only). 

3. A PRIORI ESTIMATES 

Now we will proceed to the verification of such a crite

rium, provided 

lim inf f(t,x)sgn x > 0 , 
!x|-»~ 

(8) 

uniformly with respect to te<0,2a> , by which (i) is guaranteed 

immediately. 

Lemma 3. The uniform a priori boundedness of solutions x(t) of 

problem (1) - (6) implies the same for their derivatives 

x'(t). 

Proof. According to Hille's version [5] of the Landau inequali

ty, we have 

||x'(t)|F *• 4||x(t)|| ||x"(t)|| 

9 1 

for all bounded functions x(t)£ C (R ), where || . || = sup | . | . 
t<£<Q,oo) 

If x(t) are uniformly bounded on each subinterval of <0,2a> , 

|f(t,x)| atteins there its maximum, say M , with respect to the 

continuity assumed, and consequently we have 
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x'(t)||
 2 $ 4Mj| x(t)|| 

which was to be proved. 

As we can see, only a priori estimates of solutions to 

(1) - (6) or (1) - (7) are needed. 

Lemma 4. There exists such a positive constant S that all solu

tions x(t) of (1) - (6) or (1) - (7) are under (8) uniformly 

a priori bounded by it on the appropriate intervals of their 

existence. 

Proof. Relation (8) implies the existence of such an S>0 great 

enough that 

'sgn x = f(t,x)sgп x > 0 (9) 

f o г a l l t є < 0 , 2 a > aпd >S. If |x(0)| S and |x(t
Q
)| > S 

for some t«€(0,va), then x(t) > S becomes convex (cf. (9)), 

while x(t)< - S becomes concave there by the same reason, by 

which x(t) cannot evidently come to x(Va) (for V = 1 to x(a) 

in (7)). In this respect |x(^,a)| — S must be satisfied as well 

and consequently also |x(t)| — S for all te<0,(l+/k)a) (for 

/*> = 1 to x(2a)), because of (7). Hence, if |x(0)| — S, then 

the solutions of boundary value problems (1) - (6) and (1) -

(7) are uniformly bounded by the same constant . 

If |x(0)| J> S, then x(t) becomes convev or concave just 

from the beginning, respectively and either x(va) 1 x(0) again 

(for V - 1 x(a) i x(0) in (7)) or x (va) ± x (0) in the case 

corresponding to (6) resp . x((<A+l)a) ^ x(<>a) in the case cor

responding to ( 7 ) . Thus, x(t) is bounded in the same way. 

4 . MAIN STATEMENT AND CONCLUDING REMARKS 

Now we can give the principal r e s u l t . 

Theorem. The problem (1) - (2) admits a solution, provided (8). 

Proof - follows immediately from Lemmas 1 - 4 with respect to 

Remark 2. 
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Remark 3. It would be only a technical matter to generalize the 

above idea and solve (n+l)-point periodic-like boundary value 

problem. 

Remark 4. If f(t+a,x) = f(t,x), we obtain as a special product 

of our investigation the existence of an a-periodic solution 

of (1) (see Remarks 1 - 2). This result is comparable in certain 

aspects to those obtained earlier by several authors (see e.g. 

[6], [7] and the references included). 
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SOUHRN 

O JISTÉ MODIFIKACI LEVINSONOVA OPERÁTORU 

A JEJÍ APLIKACI NA TŘÍBODOVOU OKRAJOVOU ÚLOHU 

JAN ANDRES 

Jsou nalezeny postačující podmínky řešení tříbodové okra

jové úlohy periodického typu (1) - (2) na bázi adekvátně modi

fikovaného operátoru Levinsona. 
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РЕЗЮМЕ 

ОБ ОДНОЙ МОДИФИКАЦИИ ОПЕРАТОРА ЛЕВИНСОНА И ЕЕ 

ПРИЛОЖЕНИИ К ТРЕХТОЧЕЧНОЙ КРАЕВОЙ ЗАДАЧЕ 

Я. АНДРЕС 

Покезены достеточнке условия решения трехточечной 

краевой ведечи периодического типа /1/-/2/ не основе 

соответствующим способом обреботенкого оператора Левин-

соне. 
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