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We consider a linear differential equation 

y' = A(t)y , (1) 

where A(t) is an nxn matrix of continuous functions such that 

A[(j/(t)] ̂ "(t) = A(t), t£(-0D, OD). We suppose that the function 

Ĉ (t) is increasing from -OD to CD on the interval (-GD,GD), 

f ( t ) i 0 and ^(t);>t for every tG(-rjD, GD). 

Lemma 1. Let Y(t) be a fundamental matrix for the diffe

rential equation (1). Then a composite function Y[^(t)] is also 

a fundamental matrix for (1). 
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P r o o f . Setting Z(t) = Y t y ( t ) ] we obtain 

Z ' ( t ) = Y ' [ / ( t ) ] j T ( t ) = A [ / ( t ) ] Y [ ^ ( t ) ] / ' ( t ) = 
= A[(^( t ) ] p ' ( t ) Y [ p ( t ) ] = A( t )Z ( t ) . 

Thus Z(t) = Y[^(t)] is a fundamental matrix for (1). 

Lemma 2. To fundamental matrices Y(t), Y[^(t)] there 

exists a nonsingular constant matrix H such that 

Y[(/(t)] = Y(t)H(t), tc(-o),cD). (2) 

P r o o f . It is obvious, it is a property of a linear 

space of fundamental matrices for (1). 

Lemma 3. All constant matrices H satisfying (2) are si

milar . 

P r o o f . If Y(t), Y,(t) are two fundamental matrices for 

(1) then there exist nonsingular constant matrices H, H, such 

that 

Y[</(t)] = Y(t)H, 

Y-J^U)] » Y1(t)H1 . 

Since there is a constant matrix C such that 

Y1(t) = Y(t)C 

it follows that 

YlCy(t)] = Y[/(t)]C = Y(t)HC . 

Since Yx[f(t)] = Y1(t)H1 = Y(t)CH]L we get 

Y(t)HC = Y(t)CH, 

HC = CH-

hence 

Hj - C HC . 

Conversely, if Y(t) is a fundamental matrix for (1) satisfying 

(2) and H, = C_1HC then since Y-^t) = Y(t)C is a fundamental 

matrix for (1) the following identity is hold 

Yx [^(t)] = Y[^(t)]C = Y(t)H(t)C = Y(t)CH1 = Y1(t)H1 . 

Theorem. Any fundamental matrix Y(t) for the equation (1) 

may be written as 
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Y(t) = P(t)exp{F(t)S| , (3) 

where P(t) is a nonsingular nxn matrix such that P[</?(t)] = P(t), 

te(-CD, GO), and S is a constant matrix and F(t) is an increasing 

solution of the Abel functional equation F[*^(t)] - F(t) = 1. 

Conversely, if P(t) and S satisfy (3) with a fundamental 

matrix Y(t) of (1) and with an increasing solution F(t) of the 

Abel functional equation, then 

P(t) + PSF'(t) - A(t)P(t) = 0 for te(-GD,m), 

and under the transformation 

y(t) = P(t)w(t), t c ( - CD, CD) (4) 

the differential equation (1) reduces to 

w' = SF '(t)w, t e (- CD, CD) . (5) 

P r o o f . a) Let Y(t) be a fundamental matrix for (1), and 

H a constant matrix satisfying Y[^(t)] = Y(t)H(t). We know [l], 

[2] that there exists a matrix S such that H = expS. Thus if 

we set 

P(t) = Y(t)exp{-F(t)Sj 

we obtain 

P[f(t)] = Y[T
7(t)]exp{-F[^(t)]sj = Y(t)Hexp{(-F(t)-l)S| = 

= Y(t)expSexp(-F(t)S - S) = Y(t)exp{-F(t)S } =. P(t) . 

Thus 

P[?(t)] = P(t) 

and we have 

Y(t) = P(t)exp{F(t)SJ . 

b) Let P(t) = Y(t)exp{-F(t)S{. Since Y' = A(t)Y and 

(exp {-F(t)SJ ) ' = exp {-F(t)s|F'(t)S we have 

P'(t) = Y'(t)exp{-F(t)S j - Y(t)exp{-F(t)s{ F'(t)S 

or 

P'(t) - A(t)Y(t)exp{-F(t)SfM-Y(t)exp{-F(t)S} F'(t)S = 0. 

After arrangements we obtain 
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P'(t) - A(t)P(t) + P(t)F'(t)S = 0. 

Hence 

F'(t)S = P"1(t)(.A(t)P(t) - P'(t)) for t€(- CD, CD) . (6) 

With respect to (1) and the transformation 

y = Pw (7) 

we get 

(y' = ) P 'w + Pw' = APw 

or 

AP - P' = P w V 1 

and inserting into (7) we get 

w' = F'(t)Sw, t e(~ m, CD) . (8) 
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