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Introduction 

This article is a contribution to the transformation theory 

of the second order linear differential equations in Jacobian 

form 

y " = q(t)y (q ( 1 )) 

Y" = Q(T)Y (Q ( 1 )) 
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which are in their definition intervals j = (a,b) 3 - (A,B) of 

the same type, 1-special. This paper immediately follows with 

the publication [5] in which there are defined the general dis

persions relative to some canonical mapping p of the space r of 

all the solutions of (q ) onto the space R of all the solutions 

of (Q ( 1 )). 

At the same time, by the canonical mapping p we will mean 

the mapping which maps every 1-fundamental basis of the equation 

(q ) onto some 1-fundamental basis of the equation (Q ). The 

canonical mapping p of the space r onto the space R is always 

determined by some forming phase basis ( fl( , $ ) , i.e. basis which 

is composed of the normal directly or indirectly similar first 

phases of the equations (q ), (Q ). At the same time, the 

direct or indirect general dispersion of these equations relati

ve to the canonical mapping p has the quality of mapping zeros 

of an arbitrary solution yer onto directly or indirectly as

sociated zeros of his image pyeR, respectively. General dis

persions represent just all the transformation functions of the 

equations (q ), (Q ) defined in the whole interval j. A set 

of all the general dispersions of the considered pair of equati

ons forms a two-parametric system. 

Special dispersions of the differential equations of type (q ) 

Now let us consider the assumptions, concepts and notations 

introduced in the article [5] and let us focus on the functions 

that associate zeros of an arbitrary solution y e r at zeros of 

its image py€.R, where p is some canonical mapping of the space 

r onto R, but those need not be points directly or indirectly 

associated. These functions will be called the special dispersi

ons of the considered equations in sence of the following de

finition 1. On the basis of properties of general dispersions 

and of special central dispersions treated in the article [5], 

[2] we can derive analogical properties of thus defined functi

ons . 

Definition 1 

(zm + k)-th direct or indirect special dispersion of the 

équations (q ), (Q ) relative to the canonical mapping p of 

the space r onto R with the characteristic X > 0 or X < 0 
P P 
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will be called the function x

z m + k defined by relation 

zm+k 
( t ) = X ^ z m + k

( t ) ^ fot t-J, t t am_k , 

respectively, where cj> is a special central dispersion of the 

1-st kind of the equation (q ), for k = 0,l,...,m-l, z e Z and 

where X is a direct or indirect general dispersion of these 

equations relative to the mapping p. 

Theorem 1 

The set of all the special dispersions of the equations 

(q ), (Q ) relative to a concrete canonical mapping p of the 

space r onto R is finite and contains precisely m of various 

elements X = Xn,X,,...,X , . U 1 ' m-1 

P r o o f . The assertion follows from the properties of spe

cial central dispersions of the 1-st kind of the equation (q ). 

Regarding the fact $ = t, 4>_k = 4>m_k for k = 0,1,...,m-1 

and that's way <p . = <p. for an arbitrary z^Z, it is evident 

also the validity of X , = X , , X , = X. and Xn is a general J -k m-k zm+k k U 
dispersion X in the sence of definition 1. 

The basic properties of the special dispersions are stated 

in the theorem 2. For the partial intervals from j or from 3 

the following notation 

( ai-ľ ai 

Ч-i' 

1
 u

l 

(A. , ,A.) = 3, 
foг i = 1,2 , . . . ,m 

will be used, where points a. or A. are elements of 1-fundamental 
,(!)> .(1), sequence (a ) or (A ), respectively. 

Theorem 2 

a) The k-th direct special dispersion X, of the equations 
(1) (1) 

(q ), (Q ) relative to an arbitrary canonical mapping p of 

the space r onto R, where X" >0, has for k = 0,1,...,m-1 the 

following properties: 

1) the domain of definition of X, forms (a,a ,)u(a ,,b) 
k ' m-k m-k' 

2) the range of values of X
R
 forms (A,A

R
) U(A

R
 , B) 

3) X
k
 is an increasing function from class C with the 
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derivative X.'> 0 in both the definition intervals (a,a , ), k ' m-k 
( am-k> b ) 

4) for k = 1,2,...,m-l holds 

lim_ Xk(t) =B , lim+ XR(t) = A , lim+ XR(t) = lim_ Xk(t) = AR 
t-»a , t-*a , t-*a t-»b m-k m-k 

5) the function Xk uniquely maps intervals 

j. onto J. , for i = l,2,...,m-k 
1 l+K 

•ilm-k+i o n t o 3i f°r i = l > 2 > - • • > k 

b) The k-th indirect special dispersion of the equations 

(q ), (Q ) relative to an arbitrary mapping p of the space r 

onto R, where X <0, has for k = 0,l,...,m-l the following pro

perties : 

1) the domain of definition of Xk forms (a, am_k) U(am_k, b) 

2) the range of values of XR forms (A , Am_R) U(Am_k, B) 

3) X, is an decreasing function from the class C with 

derivative X'<0 in both the intervals (a,am_k), (am_k,b) 

4) for k = 1,2,...,m-l holds 

lim_ X (t) =A, lim+ Xk(t) = B, lim+ XR(t) = lim_ XR(t) = Am_k 
t̂ a , t->a , t-»a t-»b 

m-k m-k 
5) the function Xk uniquely maps 

j. onto Jm_k_i+1 f°r i = 1,2,...,m-k 

Wi o n t o 3m-i+l
 for i = 1.2,...fk 

P r o o f . The above mentioned properties immediately follow 

from the definition of the direct or indirect general dispersion, 

from the properties stated in Theorem 4 of [5] and from the 

properties of special central dispersions of the 1-st kind de

rived in article [2]. 

1) the domain of definition of the direct and indirect 

dispersions is the same as that one of the function c£>k(t) 

2) the range of values of the function x
k("t) forms the 

directly or indirectly associted points to the values of 

the function cj>. (t) 

3) from the fact that X€C ( 3 )(j), cJ>k<sC
(3) in the intervals 
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(a,am_k), (am_k,b) holds X( 4>k)eC
(3) in intervals (a,am_k), 

(a m.,b); from the fact X'>0 or X <0 in the interval j m~K 

and <£k >0 in (a,a k ) , (am_k,b) holds ( X ( 4 > k j ) ' > 0 or 

(X(<£> ))'<0 in (a,a m (), (a m.,b), respectively 
K m~K m~K 

4) the expressed limits are directly or indirectly associated 

points relative to limits of the function *£k("t) 

5) the direct or indirect associated points of the images 

relative to the function <-rV(t) form the images of the 

above mentioned intervals. 

The following statement can be formulated on the basis of 

the functional equation (4) from [5-J and modification of Abel s 

equation for special central dispersions of the 1-st kind. 

Theorem 3 

The k-th special dispersion X. (t) of the differential 
(1) (1) equations (q ), (Q ) relative to the canonical mapping p of 

the space r onto R fulfils in its domain of definition the 

functional equation 

acxk(o> = 
rtL(X) + k T sign <K' for t e (a,a .) 

,oL(t) - (m-k)î'sign <A' for te(am_k,b) 
(D 

with regard to an arbitrary forming phase basis (<£,&) of 

mapping p. 

P r o o f . From relation (4) from [5] for general dispersion 

X in the point df>(t) using the relation (1) from [3j for spe-
(1) cial central dispersion of equation (q ) follows that 

a(xk(t)) = ű(xФk(t))^(Фk(t)) = 
oC(t) +k Tsigп ?C' foг te(a,a ,) 

m-k 

(<(t) - (m-kV' sign^' 

foг te(a
m
_

k
,b) 

which is what we wanted to prove. 

On the basis of the Theorem 3 we can derive all the other 

properties of the special dispersions of the above mentioned 
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differential equations, which are analogical to the properties 

of general dispersions X of these equations, mentioned in the 

Theorem 4 from [5]. 

Theorem 4 

The k-th special dispersion of equations (q ), (Q ) 

corresponding to the canonical mapping p of the space r onto R 

prossesses in its domain of definition in the relation with an 

arbitrary forming phase basis (o(.,(X) of this mapping the fol

lowing properties: 

1) For every te j, t i a . the function X. is uniquely de

termined by the relation 

f ^ [ ^ ( t ) + kSTsign oC] for te(a,a ,) 

x k ( t ) 
m-k7 

(2 ) 
i - l CL [ o U t ) - (m-k ) í ^s ign c C ] f o r \6 (a . ,b) 

m-k' 

where (X is the function inverse to the phase (X . 

P r o o f . The relation (2) follows immediately from the 

relation (1). 

2) The function X~ inverse to the function X.(t) is for 

X.' > 0 the (m-k)-th direct special dispersiorf x ,(T) or for k ~ m-k 
X,'< 0 the k-th indirect special dispersion x.(T) of the 

(1) (1) 
equations (Q ), (q ) corresponding to the inverse linear ca
nonical mapping p~ of the space R onto r with appropriate 
forming phase basis (&,l(), respectively. 

P r o o f . a) At first, let us consider X'>0. From the 

expression of the derivative x'(t) from (1) in form 

xk(t) TTxp" foг t i a 
m-k tбj 

it is evident, that X^>0 holds only if sign cC = signet*. From 

the relation (1) at the same time follows that 

* ( ( t ) 

й[X
k
(t)]-kГsigпv<' = d[X

k
(t)]-kГsigna

-
 foг té(a,am_k) 

CL [Xk(t)] + (m-k)rsign d' = tf [xk(t)] + 

+ (m-k)~~sign#* foг tб(a
m
_

k
,b) 
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Hence, it is evident that the function X~ (T) fulfils the 

functional equation 

f ^ _ 1 [ ^ ( T ) - k T s i g n L T ] for T € (A B) 

Xk*(T) = 

/ [tf(T) + (m-k)î'sign &' ] for T6(A,A k) 

from which the assertion X. (T) = x , (T), sign x* . = 
K m-k m-k 

= sign !X sign OS = sign Xk follows compared with the relation 
(2) and from the fact X . = X . . 

-k m-k 

b) Now let us consider X'-CO, which holds only if 

sign <X/ = -sign OC • From relation (1) the following fact 

e<(t) = 

d[x. (t)] + k^Tsign d' for t 6 (a,a . ) 
K m — K 

#L\(t)] - (m-k)rsign cT for t £ ( a , ,b) 
m-k' 

analogously follows. Hence, it is evident, that the function 

X. (T) fulfils the functional equation 

r ct~l[(l(D + kTsign CC ] for le (A,Am_R) 

x-Чт) = 
ck 1[&(1) - (m-k)!Tsigna- ] for T<£(A,,B) 

m-k' 

Comparing that with the relation (2) we receive also the 

proclaimed validity of follows 

X" (T) = xk(T), sign xk(T) = sign e( 'signed* = sign *k(t) 

3) Each special dispersion Xk, for k = 0,l,...,m-l is three 

times continuously differentiable in its domain of definition 

and it fulfils in every two homological points 

t € ( a , a m _ k ) ( j ( a m _ k , b ) , XR e (A , AR)c; (AR , B) for XR > 0 or XRe(A,Am_k) 

Lt(A . ,B) for X.'>0 the following formulae 
m-k' k 

yV + \ _ P\Чt) 

v t ; - õľтy ' k- a->( j 
' xk'(t) = 7TTZ ; [ ^ " W ^ V -/-'2(t)a(xk)] 

'V ( 3 ) 

a (x) = £i& , a(xk) = —4— [ocet).x.(t) - x.-(t)/-(t)] 
' V « Xk ( « ' ' (4) 
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P r o o f . The existence of continuous derivatives in the 

domain of definition already has been discussed in Theorem 2. 

The formulae (3) and (4) follow from double derivation of the 

functional equation (1). 

4) For all te j, t t a k holds 

Xk(t) = F6k(X(t)) (5) 

where £ = sign X' F(T) is the special central dispersion of 
(1) the 1-st kind of the equation (Q ). 

P r o o f . The assertion directly follows from the definition 

of the function xk(t) and from the property 5) mentioned in the 

Theorem 4 from [5]. 

5) The special dispersion Xk(t) satisfies for all t e j , 

t t a . the nonlinear differential equation of the second order 

- {Xk,t \ + Q(Xk) Xk
2 = q(t) (Q(1)q(1)) 

P r o o f . Let us start from the relation (1) 

atxco] 
c(.(t) + kî^sign <A.' for t€(a,a .) 

*C(t) - (m-k)î^sign p(.' for té(am_k,b) 

where ( < A , # ) is an arbitrary forming phase basis relative to 

the canonical mapping p of the space r onto R, where <h is the 
first phase of the certain basis (u,v) of the space r and (Z 
is the first phase of the basis (pu,pV) of the space R. Accord

ing the relation (1), there alwais exist phases *C , c< in the 

phase system of the basis (u,v), which satisfy the equations 

fl[xk(t)] = X ( t ) for t<s(a,am_k) 
. i 

tf[Xk(t)J = X ( t ) for t£(am_k,b) 

The re la t ionship 

f 7 . * { = {Xk.t{ • {^.Xkjxk
2 (6) 

follows for the function "^T(t) in the interval (a,a .) from the 
' m-k 
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expression of the Schwarz s derivative of a composed function 

(17) chapter 8 §1 from [l] . The same relation is fulfiled also 

for ^T in the interval (a . ,b). Regarding the fact, that the 

derivative c<', c<", pC' and the Schwarz s derivatives of the 

functions tX , cXT , Z" are identical for all t € j , we get after 
r 9 * 9 • 9 

the addition of equation GK (t) = (X (X. )X' (t) and the equation 
(6) for all t €. j, t t a . to the validity of relation 

m—K 

{\,t\ * i{a,\\ * a'2(xk)]xk
2 = {c(,t\ + ^:2(t) 

Using (16) of § 5 from [l] for the expression of carriers (q ), 

(Q(1)) we come also to the validity of (Q ( 1 )q ( 1 )). 

6) The function X~ = x . or X~ = x, inverse to the special 

dispersion X. for X' >0 or X' <£ 0 satisfies in its domain of de

finition, i.e. for TcJ, T / A, or T / A . , respectively, the 

nonlinear diferential equation of the third order 

- {\l^\ + q ( Xk 1 ) ( Xk 1 )' 2 = Q ( T ) (q(1)Q(1)) 

P r o o f . The statement follows immediately from the pro

perties 2) and 5) mentioned in this theorem. 

Now let us consider more equations of the same type 1-spe-

cial in their definition intervals. We want to proove, that 

the special dispersions relative to the linear mapping composed 

of the canonical mappings of individual pairs of spaces of so

lutions corresponding to the above mentioned equations can be 

obtained by the composition of the special dispersions relative 

to these mappings on certain domain of definition. The regu

lations of this composition are contained in the following 

theorem. 

Theorem 5 

Consider three difeerential equations (q ), (Q^ ' ) , 

(Q ) of the same finite type m, which are 1-special in their 

intervals of definition j = (a,b), 3 = (A,B), "J = (A ,B"). Let 

4>(t), F(T), F(T) be the special central dispersions of these 

equations, respectively. Let p be a canonical linear mapping 

of the space r of all the solutions of (q ) onto space R of 

all the solutions of (Q ( 1 )), let XR(t) be the k-th special 
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dispersion relative to this mapping. Let P be a canonical li

near mapping of the space R onto space R of all the solutions 

of the equation (Cr ), let X.(t) be the k-th special dispersion 

corresponding to this mapping. Then the composed mapping Pp is 

canonical again and the composed function X.(X. (t)) represents 

for all t €. i different from the elements of the 1-fundamental 

Љ sequence (a ) some special dispersion X corresponding to the 

composed mapping Pp. At the same time, the following relations 

are valid: 

a) If X ' > 0, X"> 0 or X'<C 0 then X' > 0 or X'4. 0, respectively, 

and the relations 

1) x. x
k 

X. . 
i+k 

2) x:1 x, 
i k 

%-І 

hold for t € j , t t a., i,k,h = 0,l,...,m-l . 

b) If X'< 0, X V 0 or X'> 0 then f > 0 o r l V o , respectively, 

and the relations 

1) X. X,̂  

2) X-1Xk 

"k-i 

Ф k-i 

hold for t<£j, t t ah, i,k,h = 0,1, ...,m-l . 

P r o o f . Proving the Theorem 5 from [5] we came to the 

conclusion, that the mapping Pp composed of two canonical mappins 
ss 

is canonical too, and the general dispersion X relative to it 

equals the function X"(X(t)). Now we have to prove the validity 

of above mentioned relations on the interval j except of the 

points of the sequence (a ). We start from the validity of (9) 

of [5] from the Theorem 5 of [5], from the formula (5) and from 

the property 2) mentioned in the Theorem 4. At the same time we 

use the introduced notation X" = x, "X" = "x, X ~~ = X . 

a) If X' > 0, X'>0 then X >0 and holds 

1) X. X, = X. F. X 
1 k 1 k X F i F k X - X Fi+k X F. , X X = 

i+k 

= ғ. . x = x <ф. . 
i+k ^ ì+k 

x. . 
i+k 
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2) XT1 X. = x . X. = x F . X. = 4> . x X d>. = 
1 k m-i k m-i k ^ m - i ^ K 

= 4> = ct> 
^ m-i+k n k - i ' 

i f X ' > 0 , X ' ^ 0 then f ' < £ 0 and holds 

1) X. X. = X F. R X = X F. . X = F , . . x X X = 
l k I k l+k - d + k ) 

= F , . . x ¥ = X <£. , = X. . 
- d + k ) ^ l+k l+k 

b) If X'<0, X'<0 then f'>0 and holds 

1) X_ Xk = X F. F.kX = X F._kX = Fk..X X = 

= Fk-i f = X *k-i = Xk-i 8 

2) X"1 Xk = x. Xk = x F. F.k X = x F._k X = 

= x X ^ _ . „ c ^ . ; 

if X'<0, X'>0 then X '-£ 0 and holds 

1) X. X. = X F. F . X = X F. . X = F. . X X = 
l k l -k l-k l-k 

= F . . X = X <4>. . = X. . . 
l-k ^ k-i k-i 

Regarding the property 5) of Theorem 4, it is evident, that 

also the special dispersions X. (t) are immediately related to 

the Kurnmer s transformation problem. This fact will be proved 

in the following theorem. 

Theorem 6 

Let X.(t) be the k-th special dispersion of the equations 

(q ), (Q ) corresponding to the canonical mapping p of the 

space r onto R, for k = 0,l,...,m-l 

a) Let y be an arbitrary element of the space r, let Y = py 

be its image in the space R. Then the function Y(Xk) : yl Xk | 

represents for all t « j , t i am . a solution of equation 
(1) 

(q ) . At the same time, there is fulfilled the relation 

k + y(t) , (7) 

hxk(t)i f\T. 

135 -



where sign + or - is independent on the choice of Y. 

b) There exists such a variation cp = p* of mapping p, where 

Y(X. (t)) 
= y(t) (8) 

f|xk(t)| 

holds for an arbitrary element y£r and its image Y* = pyeR 

for t e i , t t a . . At the same time, the characteristic of the u ' m-k , " 
mapping p is determined by relation X = sign X/ . 

p* k 

c) If (U,,V) is an arbitrary 1-fundamental basis of the 
(1) equation (Q ) and W is the Wronskian of this basis, then 

(Ux(Xk) : /|XkJ , V(Xk) : ]/\\\) is a 1-f undamental basis of (q(1)) 

and for its Wronskian w the relationship w = W sign X' holds. 

P r o o f . a) If (<̂  ,#) is a forming phase basis of mapping 

p, then the functional equation (1) is fulfilled for all t e. j, 

"t ̂  am î  • After expressing of the solutions y(t), Y(X.(t)) in m—K K 

form (3) of [5] and using the relationship cC(t) = <5t* (Xk)x'( t) 

we come to the desired validity of (7). 

b) At choice of mapping p* = cp = p £ E y\XD\ , where £ , 

E = -1 according to the phases *C , 0. are proper or unproper, 

Y* = Y£ E ylXTl holds. General dispersions corresponding to the 

mapping p and p are coinciding identically and the relationship 

(8) follows immediately from the relation (7). Besides, from 

X * = £Cp
 = c~ 2 ^p f o l l o w s t h a t IX x\ = 1 and thus 1 H = 

P P P 

= sign X = sign Xk . 

c) If (U,,V) is a 1-fundamental basis of equation (Q ) 

and W is its Wronskian, then there exists a canonical mapping p 

which maps some 1-fundamental basis (u1?v) of (q̂  ') onto (U,,V). 

With respect to the validity of (7) the solutions u,, 

U,(X. ) : y|Xk| or v, V(Xk) : /|x/| are dependent. Consequently, 

(U1(X[<) : |/|Xk| , V(XR) : l/l Xk | ) is also 1-fundamental basis of 

the equation (q ). The relationship w = W sign X/ follows 

immediately from the direct computation of w. 

With respect to the statement a) of the Theorem 6 and to the 

properties of the special dispersions Xk it is evident, that 
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these functions represent transformations functions of the 

equations (q ), (Q ) on the both partial intervals (a,aml), 
m—K 

(ami.»°)- Thus, they are solutions of the nonlinear differential 
(1) (1) equations (Q q ) satisfying some initial condition 

W • A i + k ° r W = Vk- i ( 9 ) 

for i = 1,2, ... ,m-k-l, X ' > 0 or X ' «<-• 0 on the interval (a,a . ) 

and some initial conditions 

k m-K+i l K m-K+i m-i 

for i = 1,2, . . . ,k-l, X.' > 0 or Xj <c 0 on the interval (am.,b), K K m—K 
respectively. The converse statement is valid, too. 

Theorem 7 

Every in the interval (a,a .) defined regular solution X. 

of the differential equation (Q q ) , satisfying for some 

i = 1,2,...,m-k-l the initial condition (9), where a . , A4 are 
(1) (1) 

points of 1-fundamental sequences (a ) , (Av ), represents on 

the interval (a,am .) the direct or indirect k-th special 
(1) (1) 

dispersion of the equations (q ) , (Q ) relative to some ca
nonical mapping p of the space r onto R, according X/ > 0 or 
X ' < 0 , respectively. 

Every in the interval (a . ,b) defined regular solution X. 

of the differential equation (Q q ) satisfying for some 

i = 1,2,...,k-l the initial condition (10), represents on the 

interval (a . ,b) the direct or indirect k-th special dispersion 
m (1) (1) of the equation (q ) , (Q ) relative to some canonical mapping 

p of the space r onto R, according X/ > 0 or X / < 0 , respectively. 

P r o o f . The proving of validity of this statement is 

analogous to the proof of Theorem 8 from [5] . 

1) Let us choose an arbitrary point a . € ( a , a . ) , a , € ( ^ D ) # 

Let X. be a regular solution of (Q q̂  ) defined in the interval 

(a,am_k) and satisfying for X^ > 0 or X^ ̂  0 at the point &i the 

condition (9). Choosing a phase oL of the phase system of some 

1-fundamental basis relative (q̂  ) , which is vanishing in the 
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point a,, for example the phase determined by conditions 

^(a^ = 0 , *C(a.) = 1 , *C(a..) = 0 . (11) 

With respect to it we will choose the phase (X of (Q ) ful

filling initial conditions 

#(x 0 ) = i<т , acx 0 ) = -^ , a(x 0 ) 
x
o 

x
0 (12) 

where X
Q
, X

Q
, X

Q
 are values of function X

k
 and its first and 

second derivative in the point a.. Thus, this phase CL is with 

respect to the phase cA. directly or indirectly similar phase of 

the some 1-fundamental basis of equation (Q ). By relationships 

(18) of § 5 and 17 of § 1 from [l] from following expressions of 

carriers of both equations on the interval (a,a ,) in the forms 
m-k 

- {tgeC,t j = q(-t) , - ( t g ^ ( X k ) , X k ( t ) | = Q(Xk(t)) (13) 

fol lows the re lat ionships 

- ( x k , t \ - j t g a , Xk| Xk

2 = - { t g / , t ^ , 

{tg a(\), t } = jtg.<, t ] , 

(14) 

(15) 

and thus, from the point of wiew of 8, §1 of [l] , also the re

lation 

tg Ct(X. ) 
CJД tg Л (t) + c

1 2 

c
21 *

9
 ̂  ^

 + c
22 

(16) 

where c
11
,...,c

22
 are constants. By putting the initial con

ditions of phases^,(A. we get: c
1 2
 = 0, c,, = c

0 0
, C, 

From this fact follows the equality 

- 0, c
n
 - c

2 2
, C

2 1
 - 0 

tg#(X
k
(t» = tgX(t) 

and also the validity of 

&(X. (t)) = X(t) + kTTsign <k' for te(a,a . ) , 
K m—K 
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with respect to the initial conditions (11), (12) and the fact 

sign /X.' = 1 . Consequently, Xk(t) is on the interval (a,a .) 

the k-th special dispersion of the equations (q ) , (Q ) 

corresponding to the canonical mapping p determined by the 

forming phase basis ( K , # ) . 

2) Let us choose again an arbitrary point a. €. (a , ,b), 
/•j \ ° l m-k 

a. c (a ). Let X. be in (a ,.b) defined regular solution of the l k m-k7 ° 
equation (Q q̂  ) satisfying for X' > 0 or X ' ̂  0 at the point 

a. the condition (10). If we choose again a phase iA of (q ) 

determined by initial conditions 

Z(a.) = 0, A'(a.) = 1, ^ " ( a ^ = 0 (17) 

and a phase 3t of (Q ) fulfilling the conditions 

#(Xn) = -(m-k)?', Ci(Jn) = Z7 . tfcxj (18) 

where X« , XQ , XQ are values of the function X. and its first 

and second derivative at the point a,, the phased represents 

a directly or indirectly similar phase of some 1-fundamental 

basis of equation (Q ). The relationships (14), (15), (16) 

follow also for the values of the functions X^^C ,(X from the 

expressing of carriers of the both equations on the interval 

(a . ,b) in form (13). By putting the initial conditions of the m-k — -—-

phases c\ ,6t we come again to the values of constants: c,« = 

= c21 = 0 , c,-. = c22 . The equality 

tgcT(xk(t)) = tgZ(t) 

and also the validity of 

cT(Xk(t)) = Z"(t) - (m-k)Tsign X for t€(am_k,b) 

follows immediately from this fact with respect to the initial 

conditions (17), (18) and the fact sign e{' = 1 . Thus, the 
function X. (t) is on the interval (am . ,b) the k-th special 

(1) (1) 
dispersion of (q ), (Q ) corresponding to the canonical map
ping p of the space r onto R determined by the forming phase 
basis ( K ,7JL ). 
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In agreement with the statement of the Theorem 7 we can 

describe the structure of a set of all the k-th special disper

sions of (q ) , (Q ) corresponding to different canonical 

mappings of the space r onto R. 

Theorem 8 

A set M. of all the k-th special dispersions X. of equations 
(1) (1) t K 

(q ) , (Q ) by the choice of k e |1,2,...,m-lf , composed of two 

disjunct subsets M. and M. of direct or indirect k-th special 

dispersions, respectively, is a two-parametric system which we 

will call a bunch. The bunch of the k-th special dispersions 

is a one-parametric system of one-parametric subsystems M J , 

°k 
where o is a real number, which are called bundels. Every bundel 

M is composed of two disjunct subbundels M^. , M^ which are 

kp kn 

composed of only direct or only indirect k-th special dispersions 

of equations (q ( 1 )) , (Q(1)) . All curves [t,X k(t)] for XR <£ M. 

or for X.e M. pass through m-2 common points P(a. > ̂ i+L.) for 

i = 1,2, . . . ,m-k-l and p ( a
m ^ + i

 , A i ^ for i = 1 >2' * ' ' ,k""1 or 

P^i'Vk-P for i = l»2,...,m-k-l and P(am_k+i ,Affl_.) for i= 1,2,... 

...,k-l, respectively, where a., A. are points of the 1-funda-
mental sequences (a ) , (A^ O . All the curves [t,X.(t)] for 
XL, 6 M>r or for XL. € ^<er and for the fixed value of the para- ^ k % k °kn 

metr O pass through also m the common points P(t.,T. .) for 

i = 1,2,...,m-k and p(t j . ^\) for i=l,2,...,k or 

P ( t i ' T » * - i + l
) f0r 1-1.2,. . . . » - • < and P(tm_k+i,T__.+1) for i = 

= 1,2,...,k, respectively, where t.e(a. ,,a.) for i=l,2,...,m 

are 1-conjugate points of (q ), T.e(A._,,A.) for i=l,2,...,m 

are 1-conjugate points of (Q ) . 

P r o o f . All the general dispersions of the equations 

(q ) ,(Q ) are determined by the different independent canoni

cal mappings of the space r onto the space R. The k-th special 

dispersion corresponding to the mapping p is determined uniquely 

by the general dispersion X(t) corresponding to the mapping p. 

Consequently, the structure of the set M. immediately follows 
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from the structure of the set M, described in Theorem 11 of [5] 

and from the properties of the special central dispersions of 

the 1-st kind, mentioned in the article [2]. 
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