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Abstract: This paper is concerned with the existence and 

uniquenass of solutions of the problem 

u '" = f (t ,u ,u ' ,u ") 

u'(0) = u'(l) = u («j) = 0 , 0 £ \ ^ 1 . 

The existence is studied by means of topological degree methods. 

Key words: Boundary value problems, Mawhin's continuation 

theorem, a priori bounds, uniqueness. 

MS Classification : 34B10 

1. Introduction. In this paper there are found some conditions 

for the existence and uniqueness of solutions of the problem 

u'" = f(t,u,u',u") , (1.1) 

u'(0) = u'(l)=u(4,)=0, O ^ ^ ^ l . (1.2) 

This problem models the static deflection of a three-layered 
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elastic beam. The proof of the main result is based on Mawhin's 

continuation theorem. The existence of solutions is related to 

the sign of f on certain subsets of [0,l]xR. We shall prove 

an existence theorem without requiring a growth condition on the 

whole interval. 

Multipoint boundary value problems /BVPs/ for differential 

equations of the n-th order have been studied by many authors 

(see References). For n — 2 and 2 — k — n , the questions of 

existence and uniqueness of solutions of k-point BVPs Cauchy-Ni-

coletti, de la Vallee-Poussin or similar ones, in which the va

lues of a solution or the values of its derivatives are given, 

have been solved f.e. in [10, 11, 12-15]. 

We consider equation (1.1) with three-point boundary condi

tions. In this case the Vallee-Poussin conditions have the form 

u(a) = A , u(c) = C , u(b) = B , (1.3) 

where - o© £ a z c 4 b 4 + *o , A,B,CcR. 

BVP (1.1), (1.3) has been investigated f.e. in [l, 2, 5, 

18]. 

Replacing function values by their derivatives, we obtain 

u '(a) = A , u(c) = C , u'(b) = (1.4) 

In [4], the subfunction method (see [3]) is used for the exis

tence of solutions of BVP (1.1), (1.4), and in [16], the neces

sary and sufficient conditions for solvability of this problem 

are proved by means of lower and upper functions. 

BVP (1.1) , u(c) = 0 , u'(a) = u'(b) , 

u"(a) = u"(b) (1.5) 

where -oe»<:a-c — b < + o o , has been investigated in [17] . 

C.P.Gupta ([7]) studied the questions of the existence and 

uniqueness of solutions of the equation 

-u - fr u + g(x,u,u ,u ) = e(x) (1.6) 

72 u " + $" u' + g(x,u,u',u) = e(x) (1.7) 
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satisfying (1.2). The existence of a solution for the resonance 

problem (1.6), (1.2) was obtained when e was a Lebesguw-integra-

ble function with 

/ 
Л e(x) sinøг/x dx = 0 

and g was a Caratheodory function, bounded on [0 , lJ^B xR 

(for every bounded B of R) and 

g(x,u,v,w)v — 0 , x € [0, l] , u , v , w e R . 

For the existence of a solution for (1.7), (1.2) g, in addition, 

had to satisfy 

lim s u p fl(x,u,v,w) = Q 3^2 
|vh + « v 

These results were proved by means of the method using second-

order integro-differential boundary value problems and the Le-

ray-Schauder continuation theorem. 

2. Notations and definitions. In what follows we suppose that 

C (a,b) is the set of all real functions having continuous i-th 

derivatives on [a,bj , i = 0,1,2,3; 

||x|| = max (|x(t) | : a -* t * b J , where x e C°(a,b) ; 

11 x II x = (llx||
2
 + ||x'|| 2) 1 / 2 , where xeC^a.b) ; 

Ix|l2 - ( Ц x Ц
2
 + ||x-||

2 
| x " || ) , where x e C (a ,b), 

G is the Banach space of all functions from C (0,1) satisfying 

(1.2) and having the norm H-IU-

If DcG, then D and SB is the closure and the boundary of D in 

G, respectively. 

Definition. A function ueC
3
(0,l) which fulfils (1.1) for 

every te[0,l] and satisfies (1.2) will be called a solution of 

the problem (1.1), (1.2). 

3. Existence. 

Lemma 1. Let g e C°( [0, l] x R 3
) , r ^ T?e R and r

1
< 0 < r

2
. 

Then for each solution ueG of the equation 
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u '" = g(t,u,u',u") 

satisfying 

r
x
 -= u'(t) == r'

2 

the inequality 

| u ( t ) | < M 

foг any t € [0,1] , 

for any t e [ 0 , l ] , 

(3.1) 

(3.2) 

(3.3) 

where M = max jlr-J , r 2| , is valid. 

Proof. Let us suppose that there exists t c [0,l] such that 

|u(tQ)| = M . If tQ = 0, \ = 1 or \ = 0, t = 1 and (3.2) is 

valid, then |u'(t)| = M for every te[0,l], which contradicts 

(1.2). If tQ, 4/ €(0,1), then there exists t1e(0,l) such that 

|u'(t,)|>M, which contradicts (3.2). Lemma is proved. 

Lemma 2. Let there exist r,, r26"R, r , < 0 < r 2 and 

C°([0,l] x R3) such that 

g(t,x,r1,0)< 0 and g(t , x , r : 2 , 0 ) > 0 (3.4) 

for any t € [0,l] , x €(-M,M) . 

quation (3.1) satisfying (3.2) 

g є 

Then each solution u e G of the e 

fulfils 

max [u'(t) : 0 == t - l| t r
2
 and min fu'(t) : 0 t «- l] t г, 

(3.5) 

Proof. Let us suppose that u£ G satisfies (3.1), (3.2) and 

Then there exists t e(0,l) such 
o 

that u'(t„) = r2. Then u"(t ) = 0 and u'"(t ) - 0. According to 

ntradicts (3.4). 

max (u'(t) : 0 == t == 1} = r2. T 

idt u'(t^) = r0. Then u"(t ) -o z o 
(3.1), g(to,u(tQ),r2,0) == 0, which cor (3.1), g(t ,u(t ) ,r2,0) — 0, which contradicts (3.4). 

We can obtain a similar contradiction for minlu'(t) : 0 — t ̂  1 j = r, , 

Lemma is proved. 

Lemma 3. Let there exist F, £, r,, r2, c,, c 2eR , r,<0<r 2, 

c:< 0 <c 2, 0 < £ * 1 and g e C°( [0, l] x R3) such that 

2 Г, 

Í 

2тr nin {lc^l.c^] 

2Í 

and 

|g(t,x,y,z)| ^ F (3.6) 
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for t€Tl1 t = [l - Z ,l] , x e(-M,M), y € [r1,r2] , z e [c]_,c2] . 
1.« 

Further let 

(3.7) g(t ,x,y ,c,) <c 0 and g(t ,x ,y ,c2) > 0 

for tc[0,l), x€(-M,M), y^[r1,r2] . 

Then for each solution u G of the problem (3.1), (1.2) satisfy

ing (3.2) and 

cľ == u ( t ) == c 2 
foг any t є [ û , l ] 

the inequalities 

max {u "(t) : 0 -= t == 1 j 

min (u"(t) : 0 *= t =- l| 

are valid. 

J* C , 

* c, 

aпd 

(3.8) 

(3.9) 

G satisfies (3.1), (1.2) and 

c
2
. Then there exists t

Q
e [0,l] 

Proof. Let us suppose that u 

let max (u "(t) :0 = t = l 

such that u"(t ) = c
0
. If t 6T (0,1), then u'"(t

n
) = 0 and 

o I o o 
according to (3.1) g(t ,u(t ),u'(t ),c

0
) = 0, which contradicts 

a
 • o o o z 

(3.7). If t = 0, then u"(0) = c
2
 and u"'(0) -= 0 and according 

to (3.1) g(0,u(0),0,c
2
) * 0, which contradicts (3.7). If t

Q
 = 1, 

then u"(l) = c
2
. From (3.1) and (3.6) we obtain |u"'(t)| ^ F 

for t c l
1
 . From the relation between F and c

2
 follows u' (t) -* 

== c
2
 - FV-= °-f- for t€ I1 r . From (1.2) and from the relation 

between c2 and v^ it follows that u'(l-£)<r1, which contradicts 

(3.2). We can obtain a similar contradiction for min [u (t) : 

: 0 — t — if = c,. Lemma is proved. 

Lemma 4. Let there exist k, F , r, , r2, c^ , c2, i , \ e R , 

r1< 0 < r 2 , c ^ 0 < c 2 , F -= c2 + |c1l , 0 < t - 1 . 0 ~ * ~ 1 and 

f € C°([0,l] x R 3 ) . Let the function f : [0 , l] x R3 x [0 , l] -+ R be 

defined by 

?(t,x,y,z, A) = »f(t,xfy,z) + (1 -*)(ky + z) , 

min { I c. 
where 0^k<i- 'I1 

••«<-* \ l r i I » r 2 ? 

Let f fulfil (3.6) and 
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f ( t , x , Г l , 0 ) 0 aпd f ( t , x , г 2 , 0 ) -* 0 

foг any t є [ 0 , 1 ] , x є (-M,M) 

(3.10) 

aпd 

f(t,x,y,c
1
) -*• 0 and f(t,x,y,c

2
) ̂ 0 (3.11) 

for any t € [0,1) , x € (-M,M), y e [r̂  ,r2] . 

Then t satisfies (3.4), (3.6) and (3.7) for any A e (0,1). 

Proof. Let t € [0, l] , xe(-M,M), Ac(0,l) and f fulfil 

(3.10). Then 

f(t,x,ri,0,A) = \ f(t,x,r1,0) + (1 - ^ ( k r ^ O and 

f(t,x,r2,0, A) = 5|f(t,x,r2,0) + (1-Jk)(kr2) >0 . 

Further l e t t e [ 0 , l ) , xe ( -M,M) , y c [ r 1 , r 2 ] , , \ e ( 0 , l ) and f 

f u l f i l ( 3 . 1 1 ) . Then 

f ( t , x , y , c 1 ) = A f ( t , x , y , c 1 ) + (1 - !\)(ky + c 1 ) z 0 and 

? ( t , x , y , c 2 ) = A f ( t , x , y , c 2 ) + (1 - A) (ky + c 2 ) > 0 . 

Further l e t t € I-, ^ , xe ( -M,M) , y e [ r 1 , r 2 ] , z e [c, , c 2 ] and 

f f u l f i l ( 3 . 6 ) . Then 

|?(t,x,y,z, J)| = Uf(t,x,y,z) + (1 -A)(ky + z)\< 

£ ЛF + (1 ->)( 
min f |c, |,c

2
| 
~ax } | г

x
|,г

2
( + max {JcJ,c

2
\ ) 

max ' 
ľЛc 

= AF + (1 -A)(|c
1
| + c

2
) * F . 

Lemma is proved. 

Lemma 5. Let f£ C°([o,l] x R3x [ o , l ] ) and let there exists 

an open bounded set Dc G such that for any A £ (0,1) each solu
tion UA e G of the equation 

u"' = A 7 (t,u,u ',u ", A) (3.12) 

satisfies 

U> t flD (3.13) 

and let 0€ D . 

Then for any Ac[0,l] the equation (3.13) has at least one 

solution in D . 
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Proof. Lemma follows from the Mawhin continuation theorem 

[6. Theorem IV.1, p.27]. 

Theorem 6. Let there exist F, r, , r2, c, , c2,£ e R, r,<0<r2, 

c,< 0 < c 2 , 0^ t ~ 1 and f e C°( [0, l] x R*) such that 

2 г, 2r„ 

lcJ.*-----, |Cj_| + c
2
^F-

min | c, I , c„ 

u
2 - £ x c 2 £ 

I f f f u l f i l s ( 3 . 6 ) , (3 .10 ) and ( 3 . 1 1 ) , then the problem ( 1 . 1 ) , 

( 1 . 2 ) has a s o l u t i o n u s a t i s f y i n g 

г 2 , Cj - u ( t ) - c 2 ( 3 . 1 4 ) - M < u ( t ) < £ M, r- -* u ( t ) 

P roo f . Put 

D = (x 6 G : -M < x ( t ) - c M, r ^ x ' ( t ) < r:2 , c ^ x " ( t )-c c2 , f or t c [ 0 , l ] | 

Then xe 0 D i f 

-M *= x ( t ) * M, rx - x ' ( t ) *-* r 2 , f o r t ^ [ o , l ] | and 

(max x " ( t ) = c2 or min x " ( t ) = c^ on [ 0 , l ] { 

-M * x ( t ) -* M, cľ -s x " ( t ) - c 2 , f o г t є [ 0 , l ] | and 

ìax x ' ( t ) = г 2 oг min x ' ( t ) = г^ oп [ 0 , l ] ţ 

max x 

x ' ( t ) ,, cľ * x " ( t ) -* c 2 , f o г t £ [0 ,1 ]J and 

( t ) = M oг min x ( t ) = -M oп [ 0 , l ] | . 

Let f be defined in the same way as in Lemma 4. Let \ £(0,1) 

and u« € G be a solution of (3.12). According to Lemma 4 f sa

tisfies (3.4), (3.6) and (3.7). If u^ fulfils (3.2) and (3.8), 

then by Lemma 1 u* - satisfies (3.3), by Lemma 2 u^ satisfies 

(3.5) and by Lemma 3 u* satisfies (3.9). Thus we get u^ qt 1) D. 

Using Lemma 5, we obtain that for any Ac[0,l] the equation 

(3.12) has atleast one solution in D. From Lemma 1 it follows 

that the problem (1.1), (1.2) has a solution satisfying (3.14). 

Theorem is proved. 

Note. Similarly it is possible to prove a theorem which is 

in a certain way symetric to the Theorem 6. It follows. 

Theorem 6'. Let there exist F, r^, r2, cl5 c2,£ e R, r1-c0---r2, 
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: ^ 0 ^ c 2 , 0 < £ - l and f € C° ( [ 0 , l ] x R 3 ) such t h a t 

2г, 2 г-
c 9 > I c 1 l > - T 

c ^ F ^ 
2Є -2 - g 

I f f f u l f i l s ( 3 . 1 0 ) , 

| g ( t , x , y , z ) | * F ( 3 . 6 ) ' 

f o r t e I Q £ = [ 0 , f ] , x e ( - M , M ) , y s [ r 1 , r 2 ] , Z d [ c 1 , c 2 ] 

and f ( t , x , y , c 1 ) -- 0 and f ( t , x , y , c 2 ) ^ . 0 ( 3 . 1 1 ) ' 

f o r t € ( 0 , l ] , x e ( - M , M ) , y « [ - : - _ , r : 2 ] , 

then the problem (1.1), (1.2) has a solution u satisfying (3.14). 

Theorem 7. Let fG C°( [0,l]x R 3 ) . If f fulfils 

f(t,x,y,z)y -* 0 (3.15) 
for any t e[0,l] , x , y , z e R , 

then the problem (1.1), (1.2) has only a trivial solution. 

Proof. Let u be a solution of (1.1), (1.2). Multiplying now 

the equation (1.1) by u and integrating on the interval [0,l] we 

get 

1 

0 . 
1 
ŕ ,„ ' , 
i u u dt = « f(t,u , u , u )udt 
o o 

Hence , 

(u"Г dt -- 0 , 

which implies that u"(t) = 0 and further, that u(t) = 0 for 

te[0,l]. The assumption (3.15) implies that 

f(t,x,0,z) = 0 

f o г any t є [ o , l ] , x , z є R 

(3.16) 

From (3.16) it follows that u(t) = 0 for t a [0,l] is a solution 
of (1.1), (1.2). Theorem is proved. 

Note. Let us set 
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, / . ^ / . v 2 k / ,N2n+l 2m+l 
f T ( t , x , y , z ) = a ( t ) x ( y + d) + z 

f 2 ( t , x , y , z ) = a ( t ) x 2 k ( y + d ) 2 n + 1 + z , 

foг t є [ f , 1] , 

w h e r e a <£ C ° ( 0 , 1 ) , 0 * a ( t ) --- 1 f o r t € [ 0 , l ] , d *r R and k , m, n a r e 

n o n n e g a t i v e i n t e g e r s . Then f o r examp le t h e f u n c t i o n f-, , where 

\d\< y-r , s a t i s f i e s t h e a s s u m p t i o n s o f Theorem 6 f o r t = -r , 

r l 2 = * TO ' c l 2 = "̂  i ' F = 2 - F u n c t i o n s f 2 and Y ( t ) f , + 

+ ( 1 - Y ( t ) ) f 2 , where | d | ^ y , s a t i s f y t h e a s s u m p t i o n s o f Theorem 

6 foг 6 » г- '1,2 + 5, F = 10 

U n i q u e n e s s 

Theorem 8. L e t f e C ° ( [ 0 , l ] x R 3 ) and f o r any t € [ 0 , l ] , x . , 

y . , z . £ R , i = 1 , 2 , t h e i n e q u a l i t y 

f ( t , x 1 , y 1 , z 1 ) - f ( t , x 2 , y 2 , z 2 ) ( y 1 - y 2 ) * 0 (4 .1 ) 

i s v a l i d . Then BVP ( 1 . 1 ) , ( 1 . 2 ) has a t most one s o l u t i o n . 

P r o o f . L e t u^9 u 2 be s o l u t i o n s o f BVP ( 1 . 1 ) , ( 1 . 2 ) . 

We s e e b y s e t t i n g v = u-, - u 2 , t h a t 

- v ' " + f ( t , u , , u j , u j ' ) - f ( t , u 2 , u 2 , u 2 ' ) = 0 , ( 4 . 2 ) 

v ' (0) = v ' ( l ) = y{\ ) - 0 . (4 .3 ) 

M u l t i p l y i n g now t h e e q u a t i o n ( 4 . 2 ) by v = u i ~ u ? a r | d i n t e g r a t 

i n g on t h e i n t e r v a l [ 0 , l ] we g e t 

1 ,„ . } . „ 
v v d t + / ( f ( t , u - , , u , , u 1 ) - f ( t , u 2 , u 2 , u 2 ) ) ( u ^ - u 2 ) d t -

1 

v v dt dt 
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Hence 

1 
f "2 
| v dt = 0 , 
o 

which implies that v"(t) = 0 for every ttr[0,l] and by (4.3) we 

get v(t) = 0 for every tc[0,l]. The uniqueness is proved. 

Lemma 9. [8, Theorem 256, p.219]. If f is absolutely con

tinuous on [t,,t2], f is Lebesgue integrable on (t-.,t2) and 

f(t ) = 0, where - «~> ̂ ^ ~ tQ - t 2 < + oo , then 

t 2 t 2 

f2(t)dt * [2(t2 - t p / î " ]
2 i f'2(t)dt 

Theorem 10. Let fe C°( [0,l] y R ) and let there exist possi-
tive constans </ , I , ]/• satisfying 

^TCT + fc-h + t^ * l (4-4) 

such, t h a t f o r any t e [ 0 , l ] , x. , y . , z . €" R , i = l , 2 the i n e q u a l i t y 

I f ( t , x 1 , y 1 , z 1 ) - f ( t , x 2 , y 2 > z 2 ) | - c?C | x x - x 2 l + 

+ / ? l y l " y 2 ' + / | z l " z 2 ! ( 4 ' 5 ) 

is valid. Then BVP (1.1), (1.2) has at most one solution. 

Proof. Let u 1,u 2 be solutions of BVP (1.1), (1.2). We 

see by setting v = u, - u« , that 

v'(0) = v'(l) = vCV) = 0 . (4.6) 

According to the last equation there exists t e[0,l] such that 
1 ° 

v"(tg) = 0 . Put (d = (J v"'2(t)dt) 1/2. Then by Lemma 9 

(| v"2(t)dt)1/2 ~ Ą r - f 
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By the Wirtinger inequality [9, p.409] we get 

(• v (t)dt) 
J 
o 

1/2 
.2 

Further by Lemma 9 we obtain 

1 

( V(t)dt)
 1/2
 * - 1 ^ . 0 

From (4.5) we get 

<? - Г̂  ̂ f
 + l ^ 

ì , ..'/ 

.- 2 ) . 

According to (4.4) we obtain d = 0 and by (4.6) v = 0. Uniqueness 

is proved. 
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