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ACTA UNIVERSITATIS PALACKIANAE OLOHUCENSIS FACULTAS RERUM NATÜRALIUM 

1992 Mathematica XXXI Vol.105 

ON TRANSFORMATIONS OF TWO LINEAR SECOND ORDER 
DIFFERENTIAL EQUATIONS 

JITKA LAITOCHOVÁ 

(Received March 22, 1991) 

Abstract. We are concerned with the Rummer's transformation 

[1], [2] of two linear differential equations in the form 

(ru' +qu)' -~(qu' +pu)=0 into itself. 

Key words: Ordinary differential equation of the second 

order, Rummer's transformation. 

MS Classification: 34A30 

Consider the following homogeneous linear differential 

equations of the second order 

[r(t)u'+q(t)u]'-[q(t)u'+p(t)u]=0, (rqp) 

r,q,pec(0)(j), r(t)*0 in j, 

[R(T)U' +Q(T)UV-[Q(T)U'+P(T)U]=0, (RQP) 

R/Q,P€C(0)(J), R(T)*0 in J. 

Definition 1. By a solution of an equation (rqp) [5] we 

mean every continuous function u with a continuous derivative u' 

for which there is an associate function v continuously 

differentiated such that 

v(t)=r(t)u' (t)+q(t)u(t), v'(t)=q(t)u' (t)+p(t)u(t). 
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Definition 2. If j, J are open intervals and tej, TeJ, then 

by a transformation of the differential equation (RQP) into the 

differential equation (rqp) we mean an ordered pair [f,h] of 

functions f(t), h(t) defined in an open interval i, icj, and 

having such properties that h(i)-=I, Icj, fec(2)(i), hec{3)(i), 

f(t)h' (t)*0 for tei [l] and for every solution Y of (RQP) the 

function 

y(t)=f(t)Y[h(t)] 

is a solution of the differential equation (rqp) in the 

interval i . 

The foregoing relation between the solution y and Y is 

called the transformation equation. The function h is called the 

parametrization and the function f the multiplier of the 

transformation [f,h]. 

Main results. 

T h o n r o m , Jmi. R[h(t)] ^ m , . v (r2(t)h' (t)( R[h(t)] V V 
Theorem 1. Let r(t)h> (tfC (i), { R[n(t)) [r(t)h'(t)j J 

TR[h(t)]f (t)l € c ^ ( i ^ Then t n e differential equation (RQP) 
L f3(t)h' (t) J 

is transformed into the differential equation (rqp) by the 

transformation [f,h] if and only if the parametrization h 

satisfies the nonlinear third order differential equation 
^ r *• \\^> r + \ r i - » r i k r + - w \ ' \ ' i f~r*-\L'f+\\2-f n f K . ' f n \ ' 2 

l(r(t)h' (t)( R[h(t)] YY . 1 „,„ .frCtЛ.' (t)У( RÍЫt)] y 
җ Riыt)] [r(t)h'(t)l ; + ? r ( t Ҷ Riыt)г) {rTtwтtjì 

(i) 
r(t)h'г(t)P[h(t)] Һ'2(t)r2(t)Q[h(t)]( R[Һ(t)ì ( R[h(t)] 

^r(t)h'(t) R[h(t)] 

and the coefficient q is given by the formula 

- p(t) = 0 

„f1.) - r(t)h' (t)Q[h(t)] ( 0 , 
q ( t ) Rlh(t)] ( 2 ) 

for the parametrization h=h(t), and the multiplier f is given by 

the formula 

f(t) = kV \rTTWTtj\' tei> k*°- (3) 

Proof. Let the differential equation (RQP) be transformed 

into (rqp) by means of [f,h]. We will show that h satisfies the 
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equation (1) when f satisfies the equation (3) and the 

coefficient q is given by ( 2 ) . 

Let us differentiate with respect to t the transformation 

equation 

y(t) = f(t)Y[h(t)], (4) 

We get 

y'(t) -- f (t)Y[h(t)]+f(t)h'(t)Y'[h(t)]. (5) 

Let us multiply both sides of (5) by RfbO/f2!.'. Substituting 

from (4) for Y(h) we get 

R [ h ( t ) ] y'(t) = Rt"(t)]f'(t)y(t)+R[h(t_lr[h(t)] ( 6 ) 

f2(t)h'(t) f3(t)h'(t) XKX-] 

By consequence of (4) we have 

ai|ituy( t) -ajwrnyrhct)]" m 
f 2 ( t ) t{Z) 

and adding (6) and (7) we get 

R[h(t>] y, ( t ) + ________ y ( t ) 
f2(t)h'(t) f2(t) (8) 

R[h(t)]f (t) y ( t ) + _1_ { R [ h ( t ) ] r [h(t)]+Q[h(t)]Y[h(t)]}. 
f3(t>h'(t) . f(t) 

As there is a derivative of the right side of the foregoing 

equation we obtain by differentiating the following equality 

r R i h i t ) ] y , ( t ) + o ih( t ) i y ( t ) y _ 
1 f 2 ( t ) h ' ( t ) f 2 ( t ) h ' ( t ) > 

( R[h(t)]f (t) V y ( t ) + R[h(t)]f (t) y, ( t ) ._ 

*• f 3 ( t ) h ' ( t ) > f 3 ( t ) h ' ( t ) 

£ll_i { R[h(t)] Y'[h(t)] + Q[h(t)] Y[h(t)] } + 
f2(t) 

{ R[h(t)] Y'[h(t)] + Q[h(t)] Y[h(t)] }' 
f(t) 

From here and from the identity 

{ R[h(t)]Y'[h(t)]+Q[h(t)]Y[h(t)] }' = 

{ Q[h(t)]Y'[h(t)]+P[h(t)]Y[h(t)]h' (t) } 

we get 

/ RCh(t>] ( t ) + Q[h(t)] y ( t )y _ 
1 f2(t)h-(t) f2(t) > 
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( R[h(t)]f'(t)Г
 ( t ) 

1 f
3
(t)h'(t) > 

+ R[h(t)]f'(t) ,
( t ) 

f
3
(t)h'(t) 

iliU { R[h(t)]Y'[h(t)] + Q[h(t)]Y[h(t)] } + 
f

2
(t) 

-------- { Qth(t)]Y' [h(t)] + P[h(t)]Y[h(t)] } 

f(t) 

After substitution for Y and Y' from the equations (4) and (5) 

we have 

( R [ h ( t ) ] - ( t ) + Qihitny _ Q[|(t)i . ( t ) + 
(
 f

2
(t)h' (t) f

2
(t) > f

2
(t)

 ( 9 ) 

rrf (t)R[h(t)]V 2r (t)Q[h(t)]
 +
 h'(t)P[h(t)]

 +
 f___Rih_t_il y(t) 

^ f
3
(t)h'(t) > f

3
(t) f

2
(t) f 4 ( t ) h ' ( t ) ! 

This is a linear second order differential equation for the 

function y and it has to be identical with the equation (rqp) 

except a nonzero multiplicative constant. So we have 

(10) 

(11) 

+
 h'(t)P[h(t)]

 + 

f
2
(t) 

(12) 
f
4
(t)h' (t) 

where c*0 is an appropriate constant. 

After rearrangement of (10) and (11) we get 

r f
2 ,

t )
 R[h(t)] fin'1 

c f ( t )
 ~ r(t)h'(t)

 ( 1
° > 

c f 2 ( t ) _ QihUn ( i r ) 

From here we receive the condition (2). 

As fec
(2)
(i) we have by differentiating the identity (10') that 

•«<«'<«-(-ffiW 
and from here and ( 1 0 ' ) we get 

f ( t ) 1 r ( t ) h ' ( t ) f R [ h ( t ) ] V , , - . 
fTFT = 2 R[h(t)J IrTtJFTtjJ * ( 1 3 ) 

I f we s u b s t i t u t e for f / f and f2 in (12) we have 

- 32 -

R [ h ( t ) ] _ __ 

f 2 ( t ) h ' ( t ) 
( t ) 

Q [ * ( t ) 1 = c q ( t ) 
f 2 ( t ) 

(Г ( t ) R [ h ( t ) ] V 

^ f 3 ( t ) h ' ( t ) > 
- ,í. ( t ) Q [ h ( t ) ] (Г ( t ) R [ h ( t ) ] V 

^ f 3 ( t ) h ' ( t ) > f 3 ( t ) 

f ' 2 ( t ) R [ h ( t ) ] . CDÍt :). 



/ 1 R [ h ( t ) ] r ( t ) h ' ( t )Г R [ h ( t ) ] V c r ( t ) h ' ( t ) \' 
\ 2 h ' ( t ) felh(t)] U ( t ) h ' ( t ) J R[h(t}] / ~ 

1 r ( t ) h ' ( t ) f R[h(t)Ҙ ľ c г ( t ) Һ Ҷ t ) n Г 1 , , ł П . çríţWJҶл)prь/fм , 
2
I Rlh(t)] U(t)h'(t)J R[h(t)J Q

[ h ( t )
)
 + ŁThTtЛ P [ h ( t ) ] + 

1 £І(t)h'2
(t)Г R[h(t)] |'

2
 cr(t)ҺЧt)

 R [ h ( t ) ]
 „

 c p ( t ) 

4 R
2
[h(t)]

 l
r(t)h'(t)'' h'(t)R[h(t)] 

and after rearrangement 

1 / r 2 ( t ) h ' ( t ) f R [ h ( t ) ] V V , 1 , , . Ҷ r ( t ) h ' ( t ) ì z f R [ h ( t ) ] > 
2 \ ŘThTtЛ " U ( t ) h ' ( t ) J / + 4 r { t Ҷ Rlh(t)J J třTПFTETj 

f
 R[h(t)

 )' -p(t) 
1
 r(t)h'(t) > 

• 2 

r(t)h'
 2
(t)P[h(t)] _ r

2
(t)h'

 2
(t)Q[h(t)] 

R[h(t)] R
2
[h(t)] 

And this is the equation (1) for the parametrization h. 

From (10) yields immidiately that the multiplier f is given by 

the formula (3). 

Conversely, let functions f,h satisfy the equations (1),(3). 

We will show that the transformation [f,h] transforms the 

equation (RQP) into the equation (rqp) if the coefficient q is 

given by the formula (2). 

The validity of the formulas (11), (10) and consequently (13) 

follows from (2) and (3). From (1) we get (12) by the help 

of (10). 

Let Y be a solution of (RQP). We will show that the function y 

given by (4) is a solution of (rqp). From the transformation 

equation (4) and its derivative (5) we obtain 

Y[h(t)] - Ijlj (4') 

y [h(t)] = y' (t) -
 0

f / ( t )
 y(t) (5') 

f(t)h'(t) f
2
(t)h'(t) 

If we multiply both sides of (5') by R(h)/f we have the equality 

(6). If we add (7) after rearrangement we get 

R [ h ( t
" y'(t) +

 0 [ h ( t ) 3
 y(t) 

f
2
(t)h'(t) f

2
(t) 

R[h(t)]f(t) „,. .
 A
 1 

f
3
(t)h'(t) f(t) 

y(t) + - i — {R[h(t)]T'[h(t)] + Q[Һ(t)]Y[h(t)]}, 
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which is the equation (8) and from it we get ( 9 ) . From here by 

help of (10), (11) and (12) we have 

{ r(t)y'(t) + q(t)y(t)}' - (q(t)y'(t) + p(t)y(t)} - 0 

or y(t) is a solution of the equation (rqp). 

Remark 1. In assuming that rec(2)(i), ReC2 (I) then the 

parametrization h satisfies in i the nonlinear differential 

equation of the third order 

-{h,t} + f- i R//[h(t)] _ 1 R'2[h(t)] + P[h(t)] + 
^ 2 R[h(t)] 4 R2[h(t)] R[h(t)] 

Q[h(t)]R' [h(t)] h , 2 ( t ) + 1 Q[h(t)]-| = ( 1 4 ) 

2 R[h(t)]; 

- I r" <*> - I r'2(t) + p(t) + q(t)r' (t) 
2 r(t) 4 r2(t) r(t) r2(t) 

where the symbol {h,t} = - —- - — ——- and denotes 
2 h' (t) 4 h' 2 

the Schwarzian derivative of function h. 

Indeed, if we set X = R(h)/r we get from (10) that cf2==X/h' 

By differentiating this equation we get 

2cf(t)f'(t) -= r [ h ( t )-I - X[h(t)] -2lliH 
h'(t) h'2(t) 

and from the foregoing relations we obtain 

9 ±' (t) _ X' [h(t)] h" (t) 

2 fTET" x[h(t)] " h'(t) • 

On substituting for f' /f and f into (12) we have 

lffX' [ h ( t ) ] h " it)) n h ' ( t ) R [ h ( t ) ] V 

r i l x i h ( t ) ] " h ' ( t ) J c x th( t ) ] h ' ( t ) / 
i rx' [h( t )] __ h " u n r h; (t) o r h m i . r h / 2 ( t )p [h( t ) ] 

2 2 l x [ h ( t ) ] h ' ( t ) J c XTEItn Q [ h ( t ) ] + c - x [ h ( t ) l — + 
1 fXf [h(t)3 h " (t)^2

 r h' (t) R[h(t)3 _ ,. , 
4 lxlh(t)] • ~ h'(t) J C X[h(t)] h'(t) " Cp(t) 

On substituting the expression Xr for R(h) we get 

_ 1 h'" (t) + 3 h"
2(t) + P[h(t)3 h'

2
(t) 

2 h'(t) 4 h'2(t) r(t)X[h(t)] 
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l f r ' ( t ) . X' [ h ( t ) ] h ' ( t ) Q [ h ( t ) ] l h " ( t ) l(r [ h ( t ) ] \ ' . 

l i rTTT x[h(t)] FU)x[h(t)iJ w(t) lixnriTTrJ 
1 Eljtj X' [h(t)] + h

/ (t)Q[h(t)] X' [h(t)] + i x'
2[h(t)] m p(t) 

2 r(t) X[h(t)] r(t)X[h(t)] X[h(t)] 4 X2[h(t)] r(t)' 

where X=R(h)/r. 

From here 

R'[h(t)]h'(t) r'(t)R[h(t)] X' [h(t)] 
r(t) 

X'[h(t)] _ R'[h(t)j ., . . r' (t) 
xTETtll R[h(t)] h {t) " FTTT-

Inserting for X and X' into the foregoing equation we get after 

rearragement (14), which is the assartion of our theorem. 

Remark 2. Setting Q-0 we have q=0 and the equations (RQP) 

resp. (rqp) go over into linear differential equations of the 

second order of Sturm form [3] and we get this theorem: 

Let 

(r(t)u')' - p(t)u = 0 (rp) 

(R(T)U')' - P(T)U = 0 (RP) 

he linear second order differential equations of Sturm form, 

where r, peC(0) (j ), r*0, R,P€C<0,(J), R*0. 

The differential equation (RP) is transformed into the 

differential equation (rp) by the transformation [f,h] if and 

only if the parametrization h satisfies in i, icj, the nonlinear 

differential equation of the third order 

1/ r2(t)h' (t)f Ríh(t)] )')' l „,„,fr(t)h' (tП2
f R[h(t)] V 

2\ RThTtЛ lr(t)ћ'(t)J /
 +
 4

 r ( t
Ҷ Rlћ(t)] j lr(t)h'(t)j 

г ( t ) h ' 2 ( t ) P [ h ( t ) ] 

+ 

ШЇTtЛ - p ( t ) = o, 

w h e r e r f S < t ) ] € C c i . ( 1 ) f • R [ h ( t ) ] f ' ( t ) G C a > ( i ) a n d t h e 
r i t j n KZ) f 3 ( t ) h ' ( t ) 

m u l t i p l i e r f i s g;Lven by t h e f o r m u l a 

f ( t ) - * y l r * t*h*U) l ' k*0' t 6 i ' 
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